
MARKOV DECISION PROCESSES

LODEWIJK KALLENBERG

UNIVERSITY OF LEIDEN

Preface

Branching out from operations research roots of the 1950’s, Markov decision processes (MDPs)

have gained recognition in such diverse fields as economics, telecommunication, engineering and

ecology. These applications have been accompanied by many theoretical advances. Markov

decision processes, also referred to as stochastic dynamic programming or stochastic control

problems, are models for sequential decision making when outcomes are uncertain. The Markov

decision process model consists of decision epochs, states, actions, transition probabilities and

rewards. Choosing an action in a state generates a reward and determines the state at the next

decision epoch through a transition probability function. Policies or strategies are prescriptions

of which action to choose under any eventuality at every future decision epoch. Decision makers

seek policies which are optimal in some sense.

These lecture notes aim to present a unified treatment of the theoretical and algorithmic as-

pects of Markov decision process models. It can serve as a text for an advanced undergraduate

or graduate level course in operations research, econometrics or control engineering. As a prereq-

uisite, the reader should have some background in linear algebra, real analysis, probability, and

linear programming. Throughout the text there are a lot of examples. At the end of each chapter

there is a section with bibliographic notes and a section with exercises. A solution manual is

available on request (e-mail to kallenberg@math.leidenuniv.nl).

Chapter 1 introduces the Markov decision process model as a sequential decision model with

actions, transitions, rewards and policies. We illustrate these concepts with nine different ap-

plications: red-black gambling, how-to-serve in tennis, optimal stopping, replacement problems,

maintenance and repair, production control, optimal control of queues, stochastic scheduling, and

the multi-armed bandit problem.

Chapter 2 deals with the finite horizon model with nonstationary transitions and rewards, and

the principle of dynamic programming: backward induction. We present an equivalent stationary

infinite horizon model. We also study under which conditions optimal policies are monotone, i.e.

nondecreasing or nonincreasing in the ordering of the state space.

In chapter 3 the discounted rewards over an infinite horizon are studied. This results in the

optimality equation and methods to solve this equation: policy iteration, linear programming,

value iteration and modified value iteration. Furthermore, we study under which conditions

monotone optimal policies exist.

Chapter 4 discusses the total rewards over an infinite horizon under the assumption that

the transition matrices are substochastic. We first present some background material on square

i

ii

matrices, eigenvalues and the spectral radius. Then, we introduce the linear program and its

correspondence to policies. We derive equivalent statements for the properties that the model

is a so-called contracting or normalized dynamic programming model. Next, we present the

optimality equation and results on the computations of optimal transient policies. For contracting

dynamic programming results and algorithms can be formulated which are similar to the results

and algorithms in the discounted reward model. Special sections are devoted to finite horizon and

transient MDPs, to positive, negative and convergent MDPs, and to special models as red-black

gambling and the optimal stopping problem.

Chapter 5 discusses the criterion of average rewards over an infinite horizon, in the most

general case. Firstly, polynomial algorithms are developed to classify MDPs as irreducible or

communicating. The distinction between unichain and multichain turns out to be NP-complete,

so there is no hope of a polynomial algorithm. Then, the stationary, the fundamental and the

deviation matrices are introduced, and the internal relations and properties are derived. Next,

an extension of a theorem by Blackwell and the Laurent series expansion are presented. These

results are fundamental to analyze the relation between discounted, average and more sensitive

optimality criteria. With these results, as in the discounted case but via a more complicated

analysis, the optimality equation is derived and methods to solve this equation are presented

(policy iteration, linear programming and value iteration).

In chapter 6 special cases of the average reward criterion (irreducible, unichain and commu-

nicating) are considered. In all these cases the optimality equation and the methods of policy

iteration, linear programming and value iteration can be simplified. Furthermore, we present the

method of modified value iteration for these special cases.

Chapter 7 introduces more sensitive optimality criteria: bias optimality, n-discount and n-

average optimality, and Blackwell optimality. The criteria of n-discount and n-average optimality

are equivalent. We present a unifying framework, based on the Laurent series expansion, to derive

sensitive discount optimality equations. Using a lexicographic ordering of the Laurent series, we

derive the policy iteration method for n-discount optimality. In the irreducible case, one can

derive a sequence of nested linear programs to compute n-discount optimal policies for any n.

Also for Blackwell optimality, even in the most general case, linear programming can be applied.

However, then the elements are not real numbers, but lie in a much general ordered field, namely

in an ordered field of rational functions. For bias optimality, an optimal policy can be found

with a three-step linear programming approach. When in addition the model is a unichain MDP,

the linear programs for bias optimality can be simplified. In this unichain case, we also derive a

simple policy iteration method and turnpike results. The last sections of this chapter deal with

some special optimality criteria. We consider overtaking, average overtaking and cumulative

overtaking optimality. A next section deals with a weighted combination of the total discounted

rewards and the long-run average rewards. For this criterion an optimal policy might not exist,

even when we allow nonstationary randomized policies. We present an iterative algorithm for

computing an ε-optimal nonstationary policy with a simple structure. Finally, we study an

optimality criterion which is the sum of expected total discounted rewards with different one-step

iii

rewards and discount factors. It turns out that for this criterion an optimal deterministic policy

exists with a first nonstationary part and then it becomes stationary. We present an algorithm

to compute such policy.

In chapter 8, six of the applications introduced in chapter 1 (replacement problems, mainte-

nance and repair, production and inventory control, optimal control of queues, stochastic schedul-

ing and multi-armed bandit problems) are analyzed in much more detail. In most cases theoretical

and computational (algorithmic) results are presented. It turns out that in many cases polyno-

mial algorithms exist, e.g. of order O(N 3), where N is the number of states. Finally, we present

separableMDP problems.

Chapter 9 deals with some other topics. We start with complexity results (e.g. MDPs are

P-complete, deterministic MDPs are in NC), additional constraints (for discounted and average

rewards, and for MDPs with sum of discounted rewards and different discount factors) and

multiple objectives (both for discounted MDPs as well as for average MDPs). Then, the linear

program approach for average rewards is revisited. Next, we consider mean-variance tradeoffs,

followed by determinstic MDPs (models in which each action determines the next state with

probability 1). In the last section of this chapter semi-Markov decision problems are analyzed.

The subject of the last chapter (chapter 10) is stochastic games, particularly the two-person

zero-sum stochastic game. Then, both players may choose actions from their own action sets,

resulting in transitions and rewards determined by both players. Zero-sum means that the reward

for player 1 has to be payed by player 2. Hence, there is a conflicting situation: player 1 wants to

maximize the rewards, while player 2 tries to minimize the rewards. We discuss the value of the

game and the concept of optimal policies for discounted, total as well as for average rewards. We

also derive mathematical programming formulations and iterative methods. In some special cases

we can present finite solution methods to find the value and optimal policies. In the last section

before the sections with the bibliographic notes and the exercises we discuss two-person general-

sum stochastic games in which each player has his own reward function and tries to maximize his

own payoff.

For these lecture notes a lot of material, collected over the years and from various sources is used.

In the bibliographic notes is referred to many books, papers and reports. I close this preface by

expressing my gratitude to Arie Hordijk, who introduced me to the topic of MDPs. Furthermore,

he was my supervisor and after my PhD a colleague during many years.

Lodewijk Kallenberg

Leiden, October, 2016.

iv

Contents

1 Introduction 1

1.1 The MDP model . 1

1.2 Policies and optimality criteria . 3

1.2.1 Policies . 3

1.2.2 Optimality criteria . 7

1.3 Examples . 15

1.3.1 Red-black gambling . 15

1.3.2 Gaming: How to serve in tennis . 16

1.3.3 Optimal stopping . 17

1.3.4 Replacement problems . 18

1.3.5 Maintenance and repair . 19

1.3.6 Production control . 20

1.3.7 Optimal control of queues . 21

1.3.8 Stochastic scheduling . 22

1.3.9 Multi-armed bandit problem . 23

1.4 Bibliographic notes . 24

1.5 Exercises . 26

2 Finite Horizon 29

2.1 Introduction . 29

2.2 Backward induction . 30

2.3 An equivalent stationary infinite horizon model . 32

2.4 Monotone optimal policies . 33

2.5 Bibliographic notes . 39

2.6 Exercises . 40

3 Discounted rewards 43

3.1 Introduction . 43

3.2 Monotone contraction mappings . 44

3.3 The optimality equation . 48

3.4 Policy iteration . 53

3.5 Linear programming . 60

v

vi CONTENTS

3.6 Value iteration . 72

3.7 Value iteration and bisection . 85

3.8 Modified Policy Iteration . 88

3.9 Monotone optimal policies . 96

3.10 Bibliographic notes . 100

3.11 Exercises . 101

4 Total reward 107

4.1 Introduction . 107

4.2 Square matrices, eigenvalues and spectral radius 109

4.3 The linear program . 115

4.4 Transient, contracting, excessive and normalized MDPs 116

4.5 The optimality equation . 125

4.6 Optimal transient policies . 127

4.7 The contracting model . 132

4.8 Finite horizon and transient MPDs . 136

4.9 Positive MDPs . 140

4.10 Negative MDPs . 147

4.11 Convergent MDPs . 151

4.12 Special models . 154

4.12.1 Red-black gambling . 154

4.12.2 Optimal stopping . 156

4.13 Bibliographic notes . 160

4.14 Exercises . 161

5 Average reward - general case 165

5.1 Introduction . 165

5.2 Classification of MDPs . 166

5.2.1 Definitions . 166

5.2.2 Classification of Markov chains . 167

5.2.3 Classification of Markov decision chains . 167

5.3 Stationary, fundamental and deviation matrix . 173

5.3.1 The stationary matrix . 173

5.3.2 The fundamental matrix and the deviation matrix 176

5.4 Extension of Blackwell’s theorem . 180

5.5 The Laurent series expansion . 181

5.6 The optimality equation . 182

5.7 Policy iteration . 184

5.8 Linear programming . 192

5.9 Value iteration . 202

5.10 Bibliographic notes . 211

CONTENTS vii

5.11 Exercises . 212

6 Average reward - special cases 215

6.1 The irreducible case . 215

6.1.1 Optimality equation . 216

6.1.2 Policy iteration . 217

6.1.3 Linear programming . 218

6.1.4 Value iteration . 224

6.1.5 Modified policy iteration . 224

6.2 The unichain case . 228

6.2.1 Optimality equation . 228

6.2.2 Policy iteration . 229

6.2.3 Linear programming . 234

6.2.4 Value iteration . 243

6.2.5 Modified policy iteration . 247

6.3 The communicating case . 251

6.3.1 Optimality equation . 252

6.3.2 Policy iteration . 252

6.3.3 Linear programming . 254

6.3.4 Value iteration . 258

6.3.5 Modified value iteration . 258

6.4 Bibliographic notes . 261

6.5 Exercises . 261

7 More sensitive optimality criteria 265

7.1 Introduction . 265

7.2 Equivalence between n-discount and n-average optimality 266

7.3 Stationary optimal policies and optimality equations 268

7.4 Lexicographic ordering of Laurent series . 271

7.5 Policy iteration for n-discount optimality . 274

7.6 Linear programming and n-discount optimality (irreducible case) 279

7.6.1 Average optimality . 280

7.6.2 Bias optimality . 280

7.6.3 n-discount optimality . 282

7.7 Blackwell optimality and linear programming . 283

7.8 Bias optimality and policy iteration (unichain case) 288

7.9 Bias optimality and linear programming . 289

7.9.1 The general case . 289

7.9.2 The unichain case . 297

7.10 Turnpike results and bias optimality (unichain case) 298

7.11 Overtaking, average overtaking and cumulative overtaking optimality 302

viii CONTENTS

7.12 A weighted combination of discounted and average rewards 303

7.13 A sum of discount factors . 310

7.14 Bibliographic notes . 315

7.15 Exercises . 316

8 Special models 321

8.1 Replacement problems . 322

8.1.1 A general replacement model . 322

8.1.2 A replacement model with increasing deterioration 325

8.1.3 Skip to the right model with failure . 327

8.1.4 A separable replacement problem . 328

8.2 Maintenance and repair problems . 329

8.2.1 A surveillance-maintenance-replacement model 329

8.2.2 Optimal repair allocation in a series system 331

8.2.3 Maintenance of systems composed of highly reliable components 334

8.3 Production and inventory control . 344

8.3.1 No backlogging . 344

8.3.2 Backlogging . 346

8.3.3 Inventory control and single-critical-number policies 348

8.3.4 Inventory control and (s, S)-policies . 350

8.4 Optimal control of queues . 355

8.4.1 The single-server queue . 355

8.4.2 Parallel queues . 358

8.5 Stochastic scheduling . 359

8.5.1 Maximizing finite-time returns on a single processor 359

8.5.2 Optimality of the µc-rule . 360

8.5.3 Optimality of threshold policies . 361

8.5.4 Optimality of join-the-shortest-queue policies 362

8.5.5 Optimality of LEPT and SEPT policies . 364

8.5.6 Maximizing finite-time returns on two processors 369

8.5.7 Tandem queues . 369

8.6 Multi-armed bandit problems . 372

8.6.1 Introduction . 372

8.6.2 A single project with a terminal reward . 372

8.6.3 Multi-armed bandits . 374

8.6.4 Methods for the computation of the Gittins indices 377

8.7 Separable problems . 386

8.7.1 Introduction . 386

8.7.2 Examples (part 1) . 387

8.7.3 Discounted rewards . 388

CONTENTS ix

8.7.4 Average rewards - unichain case . 390

8.7.5 Average rewards - general case . 392

8.7.6 Examples (part 2) . 399

8.8 Bibliographic notes . 401

8.9 Exercises . 403

9 Other topics 407

9.1 Complexity results . 408

9.1.1 Complexity theory . 408

9.1.2 MDPs are P-complete . 413

9.1.3 DMDPs are in NC . 415

9.1.4 For discounted MDPs, the policy iteration and linear programming method

are strongly polynomial . 419

9.1.5 Value iteration for discounted MDPs . 433

9.2 Additional constraints . 436

9.2.1 Introduction . 436

9.2.2 Infinite horizon and discounted rewards . 436

9.2.3 Infinite horizon and total rewards . 446

9.2.4 Infinite horizon and total rewards for transient MDPs 449

9.2.5 Finite horizon . 450

9.2.6 Infinite horizon and average rewards . 451

9.2.7 Constrained MDPs with sum of discounted rewards and different discount

factors . 464

9.2.8 Constrained discounted MDPs with two discount factors 475

9.3 Multiple objectives . 480

9.3.1 Multi-objective linear programming . 481

9.3.2 Discounted rewards . 483

9.3.3 Average rewards . 485

9.4 The linear program approach for average rewards revisited 496

9.5 Mean-variance tradeoffs . 502

9.5.1 Formulations of the problem . 502

9.5.2 A unifying framework . 503

9.5.3 Determination of an optimal solution . 504

9.5.4 Determination of an optimal policy . 508

9.5.5 The unichain case . 511

9.5.6 Finite horizon variance-penalized MDPs . 512

9.6 Deterministic MDPs . 520

9.6.1 Introduction . 520

9.6.2 Average costs . 520

9.6.3 Discounted costs . 525

x CONTENTS

9.7 Semi-Markov decision processes . 532

9.7.1 Introduction . 532

9.7.2 Model formulation . 533

9.7.3 Examples . 534

9.7.4 Discounted rewards . 536

9.7.5 Average rewards - general case . 541

9.7.6 Average rewards - special cases . 548

9.7.7 Continuous-time Markov decision processes 558

9.8 Bibliographic notes . 564

9.9 Exercises . 566

10 Stochastic Games 569

10.1 Introduction . 570

10.1.1 The model . 570

10.1.2 Optimality criteria . 571

10.1.3 Matrix games . 571

10.1.4 Bimatrix games . 574

10.2 Discounted rewards . 576

10.2.1 Value and optimal policies . 576

10.2.2 Mathematical programming . 588

10.2.3 Iterative methods . 589

10.2.4 Finite methods . 597

10.3 Total rewards . 611

10.3.1 Value and optimal policies . 611

10.3.2 Mathematical programming . 612

10.3.3 Single-controller stochastic game: the transient case 614

10.3.4 Single-controller stochastic game: the general case 618

10.4 Average rewards . 621

10.4.1 Value and optimal policies . 621

10.4.2 The Big Match . 622

10.4.3 Mathematical programming . 626

10.4.4 Perfect information and irreducible games 635

10.4.5 Finite methods . 641

10.5 Two-person general-sum stochastic game . 670

10.5.1 Introduction . 670

10.5.2 Discounted rewards . 671

10.5.3 Single-controller stochastic games . 674

10.6 Bibliographic notes . 682

10.7 Exercises . 684

Chapter 1

Introduction

1.1 The MDP model

1.2 Policies and optimality criteria

1.2.1 Policies

1.2.2 Optimality criteria

1.3 Examples

1.3.1 Red-black gambling

1.3.2 Gaming: How to serve in tennis

1.3.3 Optimal stopping

1.3.4 Replacement problems

1.3.5 Maintenance and repair

1.3.6 Production control

1.3.7 Optimal control of queues

1.3.8 Stochastic scheduling

1.3.9 Multi-armed bandit problems

1.4 Bibliographic notes

1.5 Exercises

1.1 The MDP model

An MDP is a model for sequential decision making under uncertainty, taking into account both

the short-term outcomes of current decisions and opportunities for making decisions in the future.

While the notion of an MDP may appear quite simple, it encompasses a wide range of applications

and has generated a rich mathematical theory. In an MDP model one can distinguish the following

seven characteristics.

1. The state space

At any time point at which a decision has to be made, the state of the system is observed by the

decision maker. The set of possible states is called the state space and will be denoted by S. The

state space may be finite, denumerable, compact or even more general. In a finite state space,

the number of states, i.e. |S|, will be denoted by N .

1

2 CHAPTER 1. INTRODUCTION

2. The action sets

When the decision maker observes that the system is in state i, he (we will refer to the decision

maker as ’he’) chooses an action from a certain action set that may depend on the observed state:

the action set in state i is denoted by A(i). Similarly to the state space the action sets may be

finite, denumerable, compact or more general.

3. The decision time points

The time intervals between the decision points may be constant or random. In the first case

the model is said to be a Markov decision process; when the times between consecutive decision

points are random the model is called a semi-Markov decision process.

4. The immediate rewards (or costs)

Given the state of the system and the chosen action, an immediate reward (or cost) is earned (there

is no essential difference between rewards and costs, namely: maximizing rewards is equivalent

to minimizing costs). These rewards may in general depend on the decision time point, the

observed state and the chosen action, but not on the history of the process. The immediate

reward at decision time point t for an action a in state i will be denoted by rt
i(a); if the reward

is independent of the time t, we will write ri(a) instead of rt
i(a).

5. The transition probabilities

Given the state of the system and the chosen action, the state at the next decision time point is

determined by a transition law. These transitions only depend on the decision time point t, the

observed state i and the chosen action a and not on the history of the process. This property

is called the Markov property. If the transitions really depend on the decision time point, the

problem is said to be nonstationary. If the state at time t is i and action a is chosen, we denote

the probability that at the next time point the system is in state j by pt
ij(a). If the transitions are

independent of the time points, the problem is called stationary, and the transition probabilities

are denoted by pij(a).

6. The planning horizon

The process has a planning horizon, which is the result of the time points at which the system

has to be controlled. This horizon may be finite, infinite or of random length.

7. The optimality criterion

The objective of a Markov decision problem (or a semi-Markov decision problem) is to determine

a policy, i.e. a decision rule for each decision time point and each history (including the present

state) of the process, that optimizes the performance of the system. The performance is measured

by a utility function. This utility function assigns to each policy a value, given the starting state

of the process. In the next section we will explain the concept of a policy in more detail and we

will present several optimality criteria.

1.2. POLICIES AND OPTIMALITY CRITERIA 3

Example 1.1 Inventory model with backlog

An inventory has to be managed over a planning horizon of T weeks. At the beginning of each

week the manager observes the inventory on hand and has to decide how many units to order. We

assume that orders can be delivered instantaneously and that there is a finite inventory capacity

of B units. We also assume that the demands Dt in week t, 1 ≤ t ≤ T , are independent random

variables that have nonnegative integer values and that the numbers pj(t) := P{Dt = j} are

known for all j ∈ N0 and for t = 1, 2, . . . , T . If the demand during a period exceeds the inventory

on hand, the shortage is backlogged in the next period. The optimization problem is: which

inventory strategy minimizes the total expected costs?

If an order is made in week t, there is a fixed cost Kt and a cost kt for each ordered unit. If

at the end of week t there is a positive inventory, then there are inventory costs of ht per unit;

when there is a shortage, there are backlogging costs of qt per unit. The data Kt, kt, ht, qt and

pj(t), j ∈ N, are known for all t ∈ {1, 2, . . . , T}.
Let i, the state of the system, be the inventory at the start of week t (shortages are modeled

as negative inventory), let the number of ordered units be a and let j be the inventory at the end

of week t; so j is the state of the next decision time point.

Then, the following costs are involved, where we use the notation δ(x) =

{

1 if x ≥ 1;

0 if x ≤ 0.

ordering costs: Kt · δ(a) + kt · a;
inventory costs: ht · δ(j) · j;
backlogging costs: qt · δ(−j) · (−j).

This inventory problem can be modeled as a nonstationary MDP over a finite planning horizon,

with a denumerable state space and finite action sets:

S = {. . . ,−1, 0, 1, . . . , B}; A(i) = {a ≥ 0 | 0 ≤ i+ a ≤ B};

pt
ij(a) =

{

pi+a−j(t) j ≤ i+ a;

0 B ≥ j > i+ a;

rt
i(a) = −{Kt · δ(a) + kt · a +

∑i+a
j=0 pj(t) · ht · (i+ a− j) +

∑∞
j=i+a+1 pj(t) · qt · (j − i− a)}.

1.2 Policies and optimality criteria

1.2.1 Policies

A policy R is a sequence of decision rules: R = (π1, π2, . . . , πt, . . .), where πt is the decision rule

at time point t, t = 1, 2, The decision rule πt at time point t may depend on all available

information on the system until time t, i.e. on the states at the time points 1, 2, . . . , t and the

actions at the time points 1, 2, . . . , t− 1.

The formal definition of a policy is as follows. Consider the Cartesian product

S ×A := {(i, a) | i ∈ S, a ∈ A(i)} (1.1)

4 CHAPTER 1. INTRODUCTION

and let Ht denote the set of the possible histories of the system up to time point t, i.e.

Ht := {ht = (i1, a1, . . . , it−1, at−1, it) | (ik, ak) ∈ S × A, 1 ≤ k ≤ t− 1; it ∈ S}. (1.2)

A decision rule πt at time point t is function on Ht×A := {(ht, at) | ht ∈ Ht, at ∈ A(it)}, which

gives the probability of the action to be taken at time t, given the history ht, i.e.

πt
htat
≥ 0 for every at ∈ A(it) and

∑

at

πt
htat

= 1 for every ht ∈ Ht. (1.3)

Let C denote the set of all policies. A policy is said to be memoryless if the decision rule πt is

independent of (i1, a1, . . . , it−1, at−1) for every t ∈ N. So, for a memoryless policy, the decision

rule at time t depends - with regard to the history ht - only on the state it; therefore the notation

πt
itat

is used instead of πt
htat

. We call C(M) the set of the memoryless policies. Memoryless

policies are also called Markov policies.

If a policy is memoryless and the decision rules are independent of the time point t, i.e.

π1 = π2 = · · · , then the policy is called stationary. Hence, a stationary policy is determined by

a nonnegative function π on S ×A such that
∑

a πia = 1 for every i ∈ S. The stationary policy

R = (π, π, . . .) is denoted by π∞ (and sometimes by π). The set of stationary policies is notated

by C(S).

If the decision rule π of the stationary policy π∞ is nonrandomized, i.e. for every i ∈ S, we

have πia = 1 for exactly one action ai and consequently πia = 0 for every a 6= ai, then the policy is

called deterministic. Hence, a deterministic policy can be described by a function f on S, where

f(i) is the chosen action ai, i ∈ S. A deterministic policy is denoted by f∞ (and sometimes by

f). The set of deterministic policies is notated by by C(D).

A matrix P = (pij) is a transition matrix if pij ≥ 0 for all (i, j) and
∑

j pij = 1 for all i. For

a Markov policy R = (π1, π2, . . .) the transition matrix P (πt) and the reward vector r(πt) are

defined by

{

P (πt)
}

ij
:=

∑

a

pt
ij(a) · πt

ia for every i ∈ S, j ∈ S and t ∈ N; (1.4)

{

r(πt)
}

i
:=

∑

a

rt
i(a) · πt

ia for every i ∈ S and t ∈ N. (1.5)

Take any initial distribution β defined on the state space S, i.e. βi is the probability that the

system starts in state i, and take any policy R. Then, by the theorem of Ionescu Tulcea (see e.g.

Bertsekas and Shreve [21], Proposition 7.28, p.140), there exists a unique probability measure

Pβ,R on H∞, where

H∞ := {h∞ = (i1, a1, i2, a2, . . .) | (ik, ak) ∈ S ×A, k = 1, 2, . . .}. (1.6)

If βi = 1 for some i ∈ S, then we write Pi,R instead of Pβ,R.

Let the random variables Xt and Yt denote the state and action at time t, t = 1, 2, Given an

initial distribution β and a policy R, by the theorem of Ionescu Tulcea, for all j ∈ S, a ∈ A(j)

1.2. POLICIES AND OPTIMALITY CRITERIA 5

the notion Pβ,R{Xt = j, Yt = a} is well-defined as the probability that at time t the state is j and

the action is a. Similarly, for all j ∈ S the notion Pβ,R{Xt = j} is well-defined as the probability

that at time t the state is j. Furthermore, Pβ,R{Xt = j} =
∑

a Pβ,R{Xt = j, Yt = a}.

Lemma 1.1

For any Markov policy R = (π1, π2, . . .), any initial distribution β and any t ∈ N, we have

(1) Pβ,R{Xt = j, Yt = a} =
∑

i βi · {P (π1)P (π2) · · ·P (πt−1)}ij · πt
ja for all (j, a) ∈ S ×A,

where, if t = 1, P (π1)P (π2) · · ·P (πt−1) is defined as the identity matrix I.

(2) Eβ,R{rt
Xt

(Yt)} =
∑

i βi · {P (π1)P (π2) · · ·P (πt−1) · r(πt)}i.

Proof

By induction on t. For t = 1,

Pβ,R{Xt = j, Yt = a} = βj · π1
ja =

∑

i

βi · {P (π1)P (π2) · · ·P (πt−1)}ij · πt
ja

and

Eβ,R{rt
Xt

(Yt)} =
∑

i,a

βi · π1
ia · r1i (a) =

∑

i

βi · {P (π1)P (π2) · · ·P (πt−1) · r(πt)}i.

Assume that the results are true for t; we show that the results also hold for t+ 1:

Pβ,R{Xt+1 = j, Yt+1 = a} =
∑

k,b Pβ,R{Xt = k, Yt = b} · pt
kj(b) · πt+1

ja

=
∑

k,b,i βi · {P (π1)P (π2) · · ·P (πt−1)}ik · πt
kb · pt

kj(b) · πt+1
ja

=
∑

i βi ·
∑

k {P (π1)P (π2) · · ·P (πt−1)}ik ·
∑

b πt
kb · pt

kj(b) · πt+1
ja

=
∑

i βi ·
∑

k {P (π1)P (π2) · · ·P (πt−1)}ik · {P (πt)}kj · πt+1
ja

=
∑

i βi · {P (π1)P (π2) · · ·P (πt)}ij · πt+1
ja .

Furthermore, one has

Eβ,R{rt+1
Xt+1

(Yt+1)} =
∑

j,a Pβ,R{Xt+1 = j, Yt+1 = a} · rt+1
j (a)

=
∑

j,a,i βi · {P (π1)P (π2) · · ·P (πt)}ij · πt+1
ja · rt+1

j (a)

=
∑

i βi ·
∑

j{P (π1)P (π2) · · ·P (πt)}ij ·
∑

a πt+1
ja · rt+1

j (a)

=
∑

i βi ·
∑

j{P (π1)P (π2) · · ·P (πt)}ij · {r(πt+1)}j
=

∑

i βi · {P (π1)P (π2) · · ·P (πt)r(πt+1)}i.

The next theorem shows that for any initial distribution β, any sequence of policies R1, R2, . . .

and any convex combination of the marginal distributions of Pβ,Rk
, k ∈ N, there exists a Markov

policy R∗ with the same marginal distribution.

Theorem 1.1

For any initial distribution β, any sequence of policies R1, R2, . . . and any sequence of nonnegative

real numbers p1, p2, . . . satisfying
∑

k pk = 1, there exists a Markov policy R∗ such that

Pβ,R∗{Xt = j, Yt = a} =
∑

k

pk ·Pβ,Rk
{Xt = j, Yt = a} for all (j, a) ∈ S×A, and all t ∈ N. (1.7)

6 CHAPTER 1. INTRODUCTION

Proof

Define the Markov policy R∗ = (π1, π2, . . .) by

πt
ja :=

∑

k pk · Pβ,Rk
{Xt = j, Yt = a}

∑

k pk · Pβ,Rk
{Xt = j} for all t ∈ N and all (j, a) ∈ S × A. (1.8)

In case the denominator is zero, take for πt
ja, a ∈ A(j) arbitrary nonnegative numbers such that

∑

a πt
ja = 1, j ∈ S. Take any (j, a) ∈ S × A. We prove the theorem by induction on t.

For t = 1, we obtain Pβ,R∗{X1 = j} = βj and
∑

k pk · Pβ,Rk
{X1 = j} =

∑

k pk · βj = βj.

If βj = 0, then Pβ,R∗{X1 = j, Y1 = a} =
∑

k pk · Pβ,Rk
{X1 = j, Y1 = a} = 0.

If βj 6= 0, then from (1.8) it follows that

∑

k pk · Pβ,Rk
{X1 = j, Y1 = a} =

∑

k pk · Pβ,Rk
{X1 = j} · π1

ja = βj · π1
ja

= Pβ,R∗{X1 = j, Y1 = a}.

Assume that (1.7) is true for t. We shall prove that (1.7) is also true for t+ 1.

Pβ,R∗{Xt+1 = j} =
∑

l,b Pβ,R∗{Xt = l, Yb = b} · pt
lj(b)

=
∑

l,b,k pk · Pβ,Rk
{Xt = l, Yb = b} · pt

lj(b)

=
∑

k pk ·
∑

l,b Pβ,Rk
{Xt = l, Yb = b} · pt

lj(b)

=
∑

k pk · Pβ,Rk
{Xt+1 = j}.

If Pβ,R∗{Xt+1 = j} = 0, then
∑

k pk · Pβ,Rk
{Xt+1 = j} = 0, and consequently,

Pβ,R∗{Xt+1 = j, Yt+1 = a} =
∑

k pk · Pβ,Rk
{Xt+1 = j, Yt+1 = a} = 0.

If Pβ,R∗{Xt+1 = j} 6= 0, then

Pβ,R∗{Xt+1 = j, Yt+1 = a} = Pβ,R∗{Xt+1 = j} · πt+1
ja =

∑

k pk · Pβ,Rk
{Xt+1 = j} · πt+1

ja

=
∑

k pk · Pβ,Rk
{Xt+1 = j} ·

P

k pk·Pβ,Rk
{Xt+1=j,Yt+1=a}

P

k pk·Pβ,Rk
{Xt+1=j}

=
∑

k pk · Pβ,Rk
{Xt+1 = j, Yt+1 = a}.

Corollary 1.1

For any starting state i and any policy R, there exists a Markov policy R∗ such that

Pi,R∗{Xt = j, Yt = a} = Pi,R{Xt = j, Yt = a} for all t ∈ N and all (j, a) ∈ S × A,

and

Ei,R∗{rt
Xt

(Yt)} = Ei,R{rt
Xt

(Yt)} for all t ∈ N.

1.2. POLICIES AND OPTIMALITY CRITERIA 7

1.2.2 Optimality criteria

We consider the following optimality criteria:

1. Total expected reward over a finite horizon.

2. Total expected discounted reward over an infinite horizon.

3. Total expected reward over an infinite horizon.

4. Average expected reward over an infinite horizon.

5. More sensitive optimality criteria over an infinite horizon.

Assumption 1.1

In infinite horizon models we assume that the immediate rewards and the transition probabilities

are stationary, and we denote these quantities by ri(a) and pij(a), respectively, for all i, j and a.

Total expected reward over a finite horizon

Consider an MDP with a finite planning horizon of T periods. For any policy R and any initial

state i ∈ S, the total expected reward over the planning horizon is defined by:

vT
i (R) :=

T
∑

t=1

Ei,R{rt
Xt

(Yt)} =

T
∑

t=1

∑

j,a

Pi,R{Xt = j, Yt = a} · rt
j(a) for all i ∈ S. (1.9)

Interchanging the summation and the expectation in (1.9) is allowed, so vT
i (R) may also be

defined as the expected total reward, i.e.

vT
i (R) := Ei,R

{

T
∑

t=1

rt
Xt

(Yt)
}

for all i ∈ S.

Let

vT
i := supR∈C vT

i (R) for all i ∈ S, (1.10)

or in vector notation, vT = supR∈C vT (R). The vector vT is called the value vector. From

Corollary 1.1 and Lemma 1.1, it follows that

vT = supR∈C(M) v
T (R) (1.11)

and

vT (R) =

T
∑

t=1

P (π1)P (π2) · · ·P (πt−1) · r(πt) for R = (π1, π2, · · ·) ∈ C(M). (1.12)

A policy R∗ is called an optimal policy if

vT (R∗) = vT . (1.13)

It is nontrivial that there exists an optimal policy: the supremum has to be attained and it has

to be attained simultaneously for all starting states. It can be shown (see the next chapter) that

an optimal Markov policy R∗ = (f1
∗ , f

2
∗ , · · · , fT

∗) exists, where f t
∗ is a deterministic decision rule

for t = 1, 2, . . . , T .

8 CHAPTER 1. INTRODUCTION

Total expected discounted reward over an infinite horizon

Assume that an amount r earned at time point 1 is deposited in a bank with interest rate ρ. This

amount becomes (1 + ρ) · r at time point 2, (1 + ρ)2 · r at time point 3, etc. Hence, for interest

rate ρ, an amount r at time point 1 is comparable with (1+ρ)t−1 · r at time point t, t = 1, 2,

Define α := (1 + ρ)−1 and call α the discount factor. Note that α ∈ (0, 1). Then, conversely,

an amount r received at time point t is considered as equivalent to the amount αt−1 · r at time

point 1, the so-called discounted value.

Hence, the reward rXt(Yt) at time point t has at time point 1 the discounted value αt−1·rXt(Yt).

The total expected α-discounted reward, given initial state i and policy R, is denoted by vα
i (R)

and defined by

vα
i (R) :=

∞
∑

t=1

Ei,R{αt−1 · rXt(Yt)}. (1.14)

Obviously, vα
i (R) =

∑∞
t=1 α

t−1
∑

j,a Pi,R{Xt = j, Yt = a} · rj(a). Another way to consider the

discounted reward is by the expected total α-discounted reward, i.e.

Ei,R

{ ∞
∑

t=1

αt−1 · rXt(Yt)

}

.

Since
∣

∣

∣

∣

∣

∞
∑

t=1

αt−1 · rXt(Yt)

∣

∣

∣

∣

∣

≤
∞
∑

t=1

αt−1 ·M = (1− α)−1 ·M,

where M = maxi,a|ri(a)|, the theorem of dominated convergence (e.g. Bauer [13] p. 71) implies

Ei,R

{ ∞
∑

t=1

αt−1 · rXt(Yt)

}

=

∞
∑

t=1

Ei,R{αt−1 · rXt(Yt)} = vα
i (R), (1.15)

i.e. the expected total discounted reward and the total expected discounted reward criteria are

equivalent.

Let R = (π1, π2, . . .) ∈ C(M), then

vα(R) =
∞
∑

t=1

αt−1 · P (π1)P (π2) · · ·P (πt−1) · r(πt). (1.16)

Hence, a stationary policy π∞ satisfies

vα(π∞) =
∞
∑

t=1

αt−1P (π)t−1r(π). (1.17)

Like before, the value vector vα is defined by

vα := supR∈C vα(R). (1.18)

A policy R∗ is an optimal policy if

vα(R∗) = vα. (1.19)

1.2. POLICIES AND OPTIMALITY CRITERIA 9

In Chapter 3 we will show the existence of an optimal deterministic policy f∞∗ for this criterion

and we also will prove that the value vector vα is the unique solution of the so-called optimality

equation

xi = maxa∈A(i)

{

ri(a) + α
∑

j

pij(a)xj

}

for all i ∈ S. (1.20)

Furthermore, we will derive that f∞∗ is an optimal policy if

ri(f∗) + α
∑

j

pij(f∗)v
α
j ≥ ri(a) + α

∑

j

pij(a)v
α
j for all a ∈ A(i) for all i ∈ S. (1.21)

Total expected reward over an infinite horizon

A logical definition of the total expected reward is the total expected discounted reward with

discount factor α = 1. So, given initial state i and policy R, we obtain
∑∞

t=1 Ei,R{rXt(Yt)}.
However, in general

∑∞
t=1 Ei,R{rXt(Yt)} may be not well-defined. Therefore, we consider this

criterion under the following assumptions.

Assumption 1.2

(1) The model is substochastic, i.e.
∑

j pij(a) ≤ 1 for all (i, a) ∈ S ×A.

(2) For any initial state i and any policy R,
∑∞

t=1 Ei,R{rXt(Yt)} is well-defined (possibly ±∞).

Under these assumptions the total expected reward, which we denote by vi(R) for initial state i

and policy R, is well-defined by

vi(R) :=

∞
∑

t=1

Ei,R{rXt(Yt)}. (1.22)

In this case, we also can write vi(R) =
∑∞

t=1

∑

j,a Pi,R{Xt = j, Yt = a} · rj(a). The value vector,

denoted by v and the concept of an optimal policy are defined in the usual way:

v := supR∈C v(R). (1.23)

A policy R∗ is an optimal policy if

v(R∗) = v. (1.24)

Under the additional assumption that every policy R is transient, i.e.

∞
∑

t=1

Pi,R{Xt = j, Yt = a} <∞ for all i, j and all a,

it can be shown (cf. Kallenberg [148], chapter 3) that most properties of the discounted MDP

model are valid for the total reward MDP model, taking discount factor α = 1.

10 CHAPTER 1. INTRODUCTION

Average expected reward over an infinite horizon

In the criterion of average reward the limiting behavior of the average reward over the first T

periods, i.e. 1
T

∑T
t=1 rXt(Yt), is considered for T → ∞. Since limT→∞ 1

T

∑T
t=1 rXt(Yt) may not

exist and interchanging limit and expectation is not allowed in general, there are four different

evaluation measures which can be considered:

1. Lower limit of the average expected reward:

φi(R) := lim infT→∞
1
T

∑T
t=1 Ei,R{rXt(Yt)}, i ∈ S, with value vector φ := supR∈C φ(R).

2. Upper limit of the average expected reward:

φi(R) := lim supT→∞
1
T

∑T
t=1 Ei,R{rXt(Yt)}, i ∈ S, with value vector φ := supR∈C φ(R).

3. Expectation of the lower limit of the average reward:

ψi(R) := Ei,R{lim infT→∞
1
T

∑T
t=1 rXt(Yt)}, i ∈ S, with value vector ψ := supR∈C ψ(R).

4. Expectation of the upper limit of the average reward:

ψi(R) := Ei,R{lim supT→∞
1
T

∑T
t=1 rXt(Yt)}, i ∈ S, with value vector ψ := supR∈C ψ(R).

The next lemma shows the relation between these four criteria.

Lemma 1.2

ψi(R) ≤ φi(R) ≤ φi(R) ≤ ψi(R) for every state i and every policy R.

Proof

Take any state i and any policy R. The first inequality follow from Fatou’s lemma (e.g. Bauer

[13], p.126):

ψi(R) = Ei,R{lim infT→∞
1
T

∑T
t=1 rXt(Yt)} ≤ lim infT→∞

1
T

∑T
t=1 Ei,R{rXt(Yt)} = φi(R).

The second inequality (φi(R) ≤ φi(R)) is obvious. The third inequality is also a consequence of

Fatou’s lemma:

φi(R) = lim supT→∞
1
T

∑T
t=1 Ei,R{rXt(Yt)} ≤ Ei,R{lim supT→∞

1
T

∑T
t=1 rXt(Yt)} = ψi(R).

We will present two examples to show that the quantities ψi(R), φi(R), φi(R) and ψi(R) may

differ for some state i and some policy R. In the first example we show that ψi(R) < φi(R) and

φi(R) < ψi(R) is possible; the second example shows that φi(R) < φi(R) is possible.

We use directed graphs to illustrate examples. The nodes of the graph represent the states. If

the transition probability pij(a) is positive there is an arc (i, j) from node i to node j; for a = 1

we use a simple arc, for a = 2 a double arc, etc.; next to the arc from node i to node j we note

the transition probability pij(a).

1.2. POLICIES AND OPTIMALITY CRITERIA 11

Example 1.2

Consider the following MDP:

S = {1, 2, 3}; A(1) = {1}, A(2) = A(3) = {1, 2}.
p11(1) = 0, p12(1) = 0.5; p13(1) = 0.5; r1(1) = 0.

p21(1) = 0, p22(1) = 1; p23(1) = 0; r2(1) = 1.

p21(2) = 0, p22(2) = 0; p23(2) = 1; r2(2) = 1.

p31(1) = 0, p32(1) = 0; p33(1) = 1; r3(1) = 0.

p31(2) = 0, p32(2) = 1; p33(2) = 0; r3(2) = 0.

If we start in state 1, we never return to state 1, but

we will remain in the states 2 and state 3 for ever,

independent the policy which is chosen.

s s

s
1

2 3

6 6

--

��
1 1

1

1

0.50.5
�K

�
�
�
�
�
�
�
�
�
�

A
A

A
A

A
A

A
A

A
A&%

'$
&%
'$

Because of the reward structure, 1
T

∑T
t=1 rXt(Yt) is the average number of visits to state 2 during

the periods 1, 2, . . . , T . Consider the policy R = (π1, π2, . . . , πt, . . .), where π1
i1 := 1 for i = 1, 2, 3,

i.e. at time point t = 1 the first action is chosen in each state.

For t ≥ 2 and history ht = (i1, a1, i2, a2, . . . , it−1, at−1, it), π
t
htat

is defined by:

πt
htat

:=

kt

kt+1 if at = 1

1
kt+1 if at = 2

where kt := max{k ≥ 1 | it−1 = it−2 = · · · = it−k+1 = it, it−k 6= it}.

So, kt is the maximum number of periods we consecutively are in state it at the time points

t, t − 1, The definition of πt
htat

implies that each time the system stays in the same state

up to and including time point t, there is a higher probability to stay in this state for one more

period. E.g. for t = 5 and h5 = (i1, a1, i2, a2, i3, a3, i4, a4, i5) = (1, 1, 2, 2, 3, 2, 2, 2, 3), k5 = 1, and

for t = 5 and h5 = (i1, a1, i2, a2, i3, a3, i4, a4, i5) = (1, 1, 2, 2, 3, 1, 3, 1, 3), k5 = 3.

The probability to stay in state 2 for ever, given that we enter state 2 at time point t0 is:

PR{Xt = 2 for t = t0 + 1, t0 + 2, . . . | Xt0 = 2 and Xt0−1 6= 2} =

limt→∞
{

1
2 · 2

3 · 3
4 · · · t−1

t

}

= limt→∞
1
t = 0.

Hence, with probability 1, a switch from state 2 to state 3 will occur at some time point; similarly,

with probability 1, there is a switch from state 3 to state 2 at some time point. We even can

compute the expected number of periods before such a switch occurs:

ER{number of consecutive stays in state 2} =

∑∞
k=1 k·PR{Xj = 2 for t = t0 + 1, t0 + 2, . . . , t0 + k − 1; Xt0+k 6= 2 | Xt0 = 2 and Xt0−1 6= 2} =

∑∞
k=1 k ·

{

1
2 · 2

3 · 3
4 · · · k−1

k · 1
k+1

}

=
∑∞

k=1
1

k+1 =∞.

So for this policy R, as long as we stay in state 2, we obtain a reward of 1 in each period. The

expected number of stays in state 2 is infinite. Therefore, with probability 1, there is an infinite

number of time points T at which the average reward 1
T

∑T
t=1 rXt(Yt) is arbitrary close to 1.

Similarly for state 3, with probability 1, there is an infinite number of time points T at which the

average reward 1
T

∑T
t=1 rXt(Yt) is arbitrary close to 0.

12 CHAPTER 1. INTRODUCTION

This implies for policy R that

lim sup
T→∞

1

T

T
∑

t=1

rXt(Yt) = 1 with probability 1 and lim inf T →∞
1

T

T
∑

t=1

rXt(Yt) = 0 with probability 1.

From this we obtain

(1) ψ1(R) = E1,R{lim infT→∞
1
T

∑T
t=1 rXt(Yt)} = 0;

(2) ψ1(R) = E1,R{lim supT→∞
1
T

∑T
t=1 rXt(Yt)} = 1.

If the process starts in state 1, then at any time point t ≥ 2 - by symmetry - the probability

to be in state 2 and earn 1 will be equal to the probability to be in state 3 and earn 0. So,

E1,R {rXt(Yt)} = 1
2 for all t ≥ 2. Hence,

φ1(R) = lim infT→∞
1
T

∑T
t=1 Ei,R{rXt(Yt)} = φ1(R) = lim supT→∞

1
T

∑T
t=1 Ei,R{rXt(Yt)} = 1

2 .

So, this example shows that

ψ1(R) = 0 < φ1(R) =
1

2
= φ1(R) < ψ1(R) = 1.

Example 1.3

Consider the following MDP:

S = {1}; A(1) = {1, 2}; p11(1) = p11(2) = 1; r1(1) = 1, r1(2) = −1.

Take the policy R that chooses action 1 at t = 1; action 2 at t = 2, 3;

s1
&%
'$

&%
'$

6 66
1 1

action 1 at t = 4, 5, 6, 7; action 2 at t = 8, 9, . . . , 15.

In general: action 1 at t = 22k, 22k + 1, . . . , 22k + 22k − 1 for k = 0, 1, . . . and action 2 at

t = 22k+1, 22k+1 + 1, . . . , 22k+1 + 22k+1 − 1 for k = 0, 1,

This gives a deterministic stream of rewards: 1;−1,−1; 1, 1, 1, 1;−1,−1,−1,−1,−1,−1,−1,−1; . . .

with total rewards 1; 0,−1; 0, 1, 2, 3; 2, 1, 0,−1,−2,−3,−4,−5;

To compute the limsup we take the time points 22k−1 − 1 voor k = 1, 2, . . . , i.e. the time points

1, 7, 31, 127, . . . ; for the liminf we consider the time points 22k − 1 voor k = 1, 2, . . . , i.e. the time

points 3, 15, 63, 255,

Let Tk be the time points when we change the chosen action, i.e. Tk = 2k−1 for k = 1, 2, . . . , and

let Ak denote the total reward at the time points Tk, i.e. A1 = 1, A2 = −1, A3 = 3, A4 = −5, · · · .
It can be shown (this is left to the reader) that |Ak|+ |Ak+1| = 2k and |Ak+1| = 2 · |Ak|+ (−1)k.

This implies that |Ak| = 1
3{2k − (−1)k}. Since Ak is positive iff k is odd, we obtain

Ak =
1

3
{(−1)k+12k + 1}, k = 1, 2,

Hence,

φ1(R) = liminfT→∞
1
T

∑T
t=1 E1,R{rXt(Yt)} = limk→∞

A2k

22k−1
= limk→∞

1
3
{−22k+1}
22k−1

= −1
3

and

φ1(R) = limsupT→∞
1
T

∑T
t=1 E1,R{rXt(Yt)} = limk→∞

A2k−1

22k−1−1
= limk→∞

1
3
{22k−1+1}
22k−1−1

= +1
3 .

1.2. POLICIES AND OPTIMALITY CRITERIA 13

Bierth [28] has shown that

ψ(π∞) = φ(π∞) = φ(π∞) = ψ(π∞) for every stationary policy π∞ (1.25)

and that there exists a deterministic optimal policy which is optimal for all these four criteria.

Hence, the four criteria are equivalent in the sense that an optimal deterministic policy for one

criterion is also optimal for the other criteria.

More sensitive optimality criteria over an infinite horizon

The average reward criterion has the disadvantage that it does not consider rewards earned in a

finite number of periods. For example, the streams of rewards 0, 0, 0, 0, 0, . . . and 100, 100, 0, 0, 0, . . .

have the same average value 0 although usually the second stream will be preferred. Hence, there

is a need for criteria that select policies which are average optimal but also make the right ’early

decisions’ as well. There are several ways to create more sensitive criteria. One way is to con-

sider discounting for discount factors that tend to 1. Another way is to use more subtle kinds of

averaging. We present some of these criteria.

1. Bias optimality

A policy R∗ is called bias optimal if limα↑1 {vα(R∗)− vα} = 0.

2. Blackwell optimality

A policy R∗ is Blackwell optimal if there exists an α0 ∈ (0, 1) such that vα(R∗) = vα for all

α ∈ {α0, 1). From this definition it is clear that Blackwell optimality implies bias optimality. The

next example shows deterministic policies f∞1 , f∞2 and f∞3 such that f∞1 is average optimal but

not bias-optimal, f∞2 is bias-optimal but not Blackwell optimal, and f∞3 is Blackwell optimal.

Therefore, Blackwell optimality is more selective than bias-optimality which in his turn is more

selective than average optimality.

Example 1.4

Consider the following MDP:

S = {1, 2}; A(1) = {1, 2, 3}, A(2) = {1}.
p11(1) = 1, p12(1) = 0; p11(2) = p12(2) = 0.5;

p11(3) = 0, p12(3) = 1; p21(1) = 0, p22(1) = 1;

r1(1) = 0, r1(2) = 1, r1(3) = 2, r2(1) = 0.

s s
1 26 666

--

1 0.5

0.5

1

1����
&%
'$

����

If the system is in state 2, the system stays in state 2 forever and no rewards are earned. In state

1 we have to choose between the actions 1, 2 and 3, which is denoted by the policies f∞1 , f∞2 and

f∞3 , respectively. All policies have the same average reward (0 for both starting states) and the

discounted reward for these policies only differ in state 1 (in state 2 the discounted reward are 0

for every discount factor α).

It is easy to see that for all α, we have vα
1 (f∞1) = 0 and vα

1 (f∞3) = 2. For the second policy, we

there is an immediate reward 1 and the process stays in state 1 with probability 0.5 and moves

14 CHAPTER 1. INTRODUCTION

to state 2 with probability 0.5. Hence, we obtain vα
1 (f∞2) = 1 + 0.5 ·α · vα

1 (f∞2) + 0.5 ·α · vα
2 (f∞2),

so vα
1 (f∞2) = 2

2−α .

Alongside a picture shows these policies as function of the dis-

count factor α. From this picture it is obvious that vα
1 = 2

(vα = supf∈C(D) v
α(f), which is proved in the next chapter)

and that the policy f∞3 is the only Blackwell optimal policy.

Furthermore, we have limα↑1 {vα
1 (f∞1)− vα

1 } = −2,

limα↑1 {vα
1 (f∞2)− vα

1 } = limα↑1 { 2
2−α − 2} = 0, and

limα↑1 {vα
1 (f∞3)− vα

1 } = limα↑1 {2− 2} = 0.

Hence, both the policies f∞2 and f∞3 are bias-optimal.
α=0 α=1

vα
1 (f)

vα
1 (f∞

3)

vα
1 (f∞

2)

vα
1 (f∞

1)
0

1

2

3. n-discount optimality

For n = −1, 0, 1, . . . the policy R∗ is called n-discount optimal if

lim
α↑1

(1− α)−n{vα(R∗)− vα} = 0.

Obviously, 0-discount optimality is the same as bias-optimality. It can be shown that that (−1)-

discount optimality is equivalent to average optimality, and that Blackwell optimality is equivalent

to n-discount optimality for all n ≥ |S| − 1 = N − 1. In Chapter 7 we will shown that, for any

n = −1, 0, 1, . . . , an n-discount-optimal deterministic policy exists.

4. n-average optimality

Let R be any policy. For t ∈ N and n = −1, 0, 1, . . . , we define the vector vn,t(R) inductively by

vn,t(R) =

{

vt(R) for n = −1
∑t

s=1 v
n−1,s(R) for n = 0, 1, . . .

For n = −1, 0, 1, . . . a policy R∗ is said to be n-average optimal if

lim inf
T→∞

1

T
{vn,T (R∗)− vn,T (R)} ≥ 0 for all policies R.

It can be shown that n-average optimality is equivalent to n-discount optimality. Hence, for any

n = −1, 0, 1, . . . , there exists an n-average optimal deterministic policy.

5. Overtaking optimality

A policy R∗ is overtaking optimal if lim infT→∞ {vT (R∗) − vT (R)} ≥ 0 for all policies R. In

contrast with the other criteria mentioned in this section, an overtaking optimal policy doesn’t

exist in general.

6. Average overtaking optimality

A policy R∗ is average overtaking optimal if lim infT→∞
1
T

∑T
t=1{vt(R∗) − vt(R)} ≥ 0 for all

policies R. It is easy to verify that average overtaking optimality is equivalent to 0-average

optimality and consequently to 0-discount optimality, which is bias optimality. So, also for the

criterion of average overtaking optimality an optimal deterministic policy exists.

1.3. EXAMPLES 15

1.3 Examples

In Example 1.1 we have introduced an inventory model with backlogging. In this section we

introduce other examples of MDPs: gambling, gaming, optimal stopping, replacement, mainte-

nance and repair, production, optimal control of queues, stochastic scheduling and the so-called

multi-armed bandit problem. For some of these models the optimal policy has a special struc-

ture, which we shall mention. In Chapter 8 most of these models are discussed in more detail

and including the proofs of the structure of the optimal policies.

1.3.1 Red-black gambling

In the red-black gambling model a gambler with a fortune of i Euro may bet any amount a ∈
{1, 2, . . . , i}. He wins his amount a with probability p and he looses a Euro with probability

1 − p. The gambler’s goal is to reach a certain fortune N . The gambler continues until either

he has reached his goal or he has lost all his money. The problem is to determine a policy that

maximizes the probability to reach this goal.

This problem can be modeled as a substochastic MDP with the total reward criterion. At any

time point t, the fortune of the gambler is considered as the state of the system. Since the

gambling problem is over when the gambler has reached his goal or has lost all his money, there

are no transitions when the game is in either state N or state 0. Maximizing the probability

to reach the amount N is equivalent to assigning a reward 1 to state N and rewards 0 to the

other states, and then maximizing the total expected reward. The MDP model for the gambling

problem is formulated as follows.

S = {0, 1, . . . , N}; A(0) = A(N) = {0}, A(i) = {1, 2, . . . , min(i, N − i)}, 1 ≤ i ≤ N − 1.

For 1 ≤ i ≤ N − 1, a ∈ A(i) : pij(a) =

p , j = i+ a

1− p , j = i− a
0 , j 6= i+ a, i− a

and ri(a) = 0.

p0j(0) = pNj(0) = 0, j ∈ S; r0(0) = 0, rN(0) = 1.

Since under any policy state N or state 0 is reached with probability 1, it is easy to verify that

Assumption 1.2 of the total expected reward criterion over an infinite horizon is satisfied. Notice

also that

vi(R) =

∞
∑

t=1

∑

j,a

Pi,R{Xt = j, Yt = a} · rj(a) =

∞
∑

t=1

Pi,R{Xt = N},

i.e. the total expected reward is equal to the probability to reach state N .

It can be shown that an optimal policy has the following intuitively obvious structure:

if p > 1
2 , then timid play, i.e. always bet the amount 1, is optimal;

if p = 1
2 , then any policy is optimal;

if p < 1
2 , then bold play, i.e. betting min(i, N − i) in state i, is optimal.

16 CHAPTER 1. INTRODUCTION

1.3.2 Gaming: How to serve in tennis

The scoring in tennis is conventionally in steps from 0 to 15 to 30 to 40 to game. We simply use

the numbers 0 through 4 for these scores. If the score reaches deuce, i.e. 40 - 40, the game is won

by the player who has as first two points more than his opponent. Therefore, deuce is equivalent

to 30 - 30, and similarly advantage server (receiver) is equivalent to 40 - 30 (30 - 40).

Hence, the scores can be represented by (i, j), 0 ≤ i, j ≤ 3, excluding the pair (3,3) which is

equivalent to (2,2), where i denotes the score of the server and j of the receiver. Furthermore,

we use the states (4) and (5) for the case that the server or the receiver, respectively, wins the

game. When the score is (i, j), the server may serve a first service (s = 1), or a second service

(s = 2) in case the first serve is fault. This leads to the following 32 states:

(i, j, s) 0 ≤ i, j ≤ 3, (i, j) 6= (3, 3), s = 1, 2 : the states in which the game is going on

(4) : the target state for the server

(5) : the target state for the receiver

For the sake of simplicity, suppose that the players can choose between two types of services: a

fast service (a = 1) and a slow service (a = 2). The fast service is more likely to be fault, but

also more difficult to return; the slow service is more accurate and easier to return correctly.

Let p1 (p2) be the probability that the fast (slow) service is good, i.e. lands in the given

bounds of the court, and let q1 (q2) be the probability of winning the point by the server when

the fast (slow) service is good. We make the following obvious assumptions: p1 ≤ p2 and q1 ≥ q2.
Suppose the server chooses action a, where a = 1 or a = 2, for his first service. Then, the

event that the server serves right and wins the point has probability paqa; the event that the

server serves right and loses the point has probability pa(1− qa); the event that the server serves

a fault and continues with his second service has probability 1 − pa. For the second service, the

server either wins or loses the point with probabilities paqa and 1− paqa, respectively.

In the states which are no game point, i.e. i 6= 3 or j 6= 3, we have the following transition

probabilities:

p(i,j,1)(i+1,j,1)(a) = paqa; p(i,j,2)(i+1,j,1)(a) = paqa;

p(i,j,1)(i,j+1,1)(a) = pa(1− qa); p(i,j,2)(i,j+1,1)(a) = 1− paqa;

p(i,j,1)(i,j,2)(a) = 1− pa.

If i = 3, we obtain for j = 0, 1, 2:

p(3,j,1)(4)(a) = paqa; p(3,j,2)(4)(a) = paqa;

p(3,j,1)(3,j+1,1)(a) = pa(1− qa); p(3,j,2)(3,j+1,1)(a) = 1− paqa;

p(3,j,1)(3,j,2)(a) = 1− pa.

Similarly, if j = 3, we obtain for i = 0, 1, 2:

p(i,3,1)(i+1,3,1)(a) = paqa; p(i,3,2)(i+1,3,1)(a) = paqa;

p(i,3,1)(5)(a) = pa(1− qa); p(i,3,2)(5)(a) = 1− paqa;

p(i,3,1)(i,3,2)(a) = 1− pa.

1.3. EXAMPLES 17

Note that for j = 2 and i = 2 the states (3, j+1, s) and (i+1, 3, s) have to be considered as state

(2, 2, s) for s = 1, 2. When the game is over, i.e. in states (4) and (5), there are no transitions.

So, this model is substochastic.

The optimization problem is: What kind of service should the server choose, given the score, in

order to maximize the probability to win the game? For this aim the following reward structure

is suitable. All rewards are equal to 0, except in the target state (4) of the server, in which state

the reward is 1. As utility criterion the total expected reward will be used and it is easy to see

that with this transition and reward structure the total expected reward equals the probability

to win the game.

Let x = p1q1
p2q2

. Then, x is the ratio of serving right and winning the point for the two possible

actions a = 1 and a = 2. It can be shown (see exercise 4.12) that the optimal policy has the

following structure in each state:

If x ≥ 1 : always use the fast service

If 1− (p2 − p1) ≤ x < 1 : use the fast service as first service and the slow service as second

If x < 1− (p2 − p1) : use always the slow service

A similar problem is: Which service (the fast or the slow service) is the best to maximize the

probability of winning the next point. It turns out that this problem has the same optimal policy.

Hence, the optimal policy for winning the game is a myopic policy. Furthermore, this optimal

policy is independent of the state and depends only on the data p1, p2, q1 and q2.

1.3.3 Optimal stopping

In an optimal stopping problem there are two actions for every state. The first action is stopping

and the second corresponds to continue. If the stopping action 1 is chosen in state i, then a

terminal reward ri is earned and the process terminates. This termination is modeled by taking

all transition probabilities equal to zero. If action 2 is chosen in state i, then a cost ci is incurred

and the probability of being in state j at the next time point is pij. Hence, the characteristics of

the MDP model are:

S = {1, 2, . . . , N}; A(i) = {1, 2} for all i ∈ S;

ri(1) = ri for all i ∈ S; ri(2) = −ci for all i ∈ S;

pij(1) = 0 for all i, j ∈ S; pij(2) = pij for all i, j ∈ S.

We are interested in finding an optimal stopping policy. A stopping policy R is a policy such that

for any starting state i the process terminates in finite time with probability 1. Notice that for a

stopping policy the total expected reward v(R) is well-defined. As optimality criterion the total

expected reward is considered.

Let v be the value vector of this model, i.e.

vi = sup{vi(R) | R is a stopping policy}, i ∈ S.

18 CHAPTER 1. INTRODUCTION

A stopping policy R∗ is an optimal policy if v(R∗) = v.

Let

S0 = {i ∈ S | ri ≥ −ci +
∑

j

pijrj},

i.e. S0 is the set of states in which immediate stopping is as least as good as continuing for one

period and then choosing the stopping action. A one-step look-head policy is a policy which

chooses the stopping action in state i if and only if i ∈ S0. An optimal stopping problem is called

monotone if pij = 0 for all i ∈ S0, j /∈ S0, i.e. if S0 is closed under P . It can be shown that in a

monotone optimal stopping problem the one-step look-ahead policy is optimal.

Example 1.5 Selling the house

Someone wants to sell his house. He receives a price offer every week. Suppose successive offers

are independent and have a value of j euros with probability pj, for j = 0, 1, . . . , N . We assume

that an offer that is not immediately accepted can be accepted at any later time point. When the

house remains unsold, then there are maintenance costs c during that week. What is an optimal

policy for selling the house?

This problem can be modeled as an optimal stopping problem. Define the state space by

S := {0, 1, . . . , N}, where state i corresponds to the highest offer i so far. In state i there are

two actions: accept the offer i (i.e. ri = i) and stop, or continue with costs c and with transition

probabilities

pij =

pj j > i;

1−∑j>i pj j = i;

0 j < i.

For this problem

S0 =
{

i ∈ S
∣

∣

∣ i ≥ −c+ i · [1−∑j>i pj] +
∑

j>i j · pj

}

=
{

i ∈ S
∣

∣

∣ c ≥
∑

j>i(j − i)pj

}

.

Notice that
∑N

j=i+1 (j−i)pj = pi+1+2pi+2+· · ·+(N−i)pN is a monotone nonincreasing function

of i. Let

i∗ = min
{

i
∣

∣

∣
c ≥∑j>i(j − i)pj

}

.

Then, S0 = {i ∈ S | i ≥ i∗}. Since pij = 0, j < i, the problem is monotone. An optimal policy

accepts the first offer that is at least i∗ (such a policy is called a control-limit policy). Since
∑

j>i(j − i)pj is the expected additional income above i in the next period, an offer is accepted

if the the cost during the next week is at least the expected additional income of the offers next

week. Hence, this policy has a obvious interpretation.

1.3.4 Replacement problems

Consider an item (e.g. a component of an electric system or a truck of a transportation company)

that can be in one of a finite number of states, say the states 0, 1, . . . , N . Each state may be

associated with some parameter, e.g. the age of the item. Suppose that at the beginning of

1.3. EXAMPLES 19

each period the decision has to be made whether or not to replace the item. The motivation for

replacing an item is to avoid ‘bad’ states with high costs.

Action 1 corresponds to replacing the item by a new one (the state of a new item is state 0

and the transition to the new item is instantaneous). For an item in state i a trade-in value si is

received and a new item costs c.

Action 2 is to keep the item for (at least) one more period. Let pij be the probability that

an item of state i is in state j at the beginning of the next period, and suppose that ci is the

maintenance cost for an item of state i during one period.

The characteristics of the MDP model are:

S = {0, 1, . . . , N}; A(0) = {2}, A(i) = {1, 2}, 1 ≤ i ≤ N ;

pij(1) = p0j, 1 ≤ i ≤ N, j ∈ S; pij(2) = pij, 0 ≤ i ≤ N, j ∈ S;

ri(1) = si − c− c0, 1 ≤ i ≤ N ; ri(2) = −ci, 0 ≤ i ≤ N.

Many replacement problems have an optimal control-limit policy, i.e. the item is replaced by a

new one when the state (age) is at least a given number i∗.

1.3.5 Maintenance and repair

Consider a series system of n unreliable components, maintained by a single repairman. Each

of the components may be either working or failed. The state space can be represented by a

vector x = (x1, x2, . . . , xn), where xi = 1 (working) or 0 (failed) for i = 1, 2, . . . , n. The system is

functioning if and only if the state is (1, 1, . . . , 1).

The failure time and repair time of component i, 1 ≤ i ≤ n, are exponentially distributed

with rates λi and µi, respectively, and independently of the state of the other components. Notice

that, by the memoryless property of the exponential distribution, the elapsed time that a working

component operates or a failed component is under repair is not relevant for the description of a

state.

It is assumed that the repairman may change instantaneously among failed components. That

is, for example, if component i fails while component j is being repaired, the repairman may switch

instantaneously from j to i, or to any other failed component.

The objective is to find a policy which assigns the repairman to a failed component in such a

way that the average expected time that the system is functioning is maximized.

This problem is a finite state continuous-time Markov decision problem. In a continuous-time

Markov decision problem any deterministic policy f∞ generates a continuous-time Markov chain,

which is a stochastic process that stays in state i for an exponential time Ti(f) after which it

moves to some other state j with transition probability pij(f).

Let the deterministic policy f∞ assign the repairman to component i in state x. Then, we denote

this assignment by f(x) = i. We also use the following notation:

(1k, x) := (x1, x2, . . . , xk−1, 1, xk+1, . . . , xn); C1(x) := {i | xi = 1}; λ1(x) :=
∑

i∈C1(x) λi;

(0k, x) := (x1, x2, . . . , xk−1, 0, xk+1, . . . , xn); C0(x) := {i | xi = 0}.

20 CHAPTER 1. INTRODUCTION

Given policy f∞, the Markov chain remains in state x during an exponentially distributed time

with rate λ1(x) + µf(x). The transition probabilities of the Markov chain satisfy

px,(1f(x),x)(f(x)) =
µf(x)

λ1(x)+µf(x)
; px,(0k,x)(f(x)) = λk

λ1(x)+µf(x)
, k ∈ C1(x);

px,y)(f(x)) = 0 for y 6= (1f(x), x) and y 6= (0k, x) for some k ∈ C1(x).

The following results can be shown:

(1) An optimal policy can be found in the class of deterministic policies that never leave

the repairman idle when there is a failed component.

(2) Maximizing the average expected time that the system is functioning, is equivalent to

minimizing the time until the functioning state (1, 1, . . . , 1) is reached.

(3) The optimal policy is irrespective of the repair rates µi, 1 ≤ i ≤ n, and is the policy that

assigns the repairman to the failed component with the smallest failure rate λi

(SFR policy), i.e. the failed component with the longest expected lifetime, which is 1
λi

.

The results (1) and (2) are intuitively clear; however, result (3) is rather counterintuitive.

1.3.6 Production control

Consider a production process of a certain item over a planning horizon of T periods. Let the

demand in period t be known and deterministic, say Dt, 1 ≤ t ≤ T . The production in period t

has a capacity bt, and let ct(a) denote the production cost for the production of a units in period

t, 1 ≤ t ≤ T . In each period the demand has to be fulfilled, so shortages are not allowed and

there is no backlogging. There are inventory costs ht(i) in period t, when the inventory at the

end of period t is equal to i, 1 ≤ t ≤ T .

The aim is to determine the production in the various periods so as to satisfy the demands

at minimum total costs.

The definition of the states is a little tricky for this model. We use a two-dimensional

description, namely (i, t) to denote the situation of having i units inventory at the beginning

of period t. Actions correspond to production. When in state (i, t) action a is selected, then this

action has to satisfy the following three conditions:

(1) 0 ≤ a ≤ bt: the capacity constraint.

(2) Dt ≤ i+ a: the demand requirement.

(3) i+ a ≤∑T
s=t Ds: the total production may not exceed the total demand for the

remaining periods.

Hence, the MDP model for this production problem is:

S = {(i, t) | 0 ≤ i ≤∑T
s=1 Ds; 1 ≤ t ≤ T};

A[(i, t)] = {a | 0 ≤ a ≤ bt; Dt ≤ i+ a ≤∑T
s=t Ds}, (i, t) ∈ S;

p(i,t)(j,s(a) =

{

1 if j = i+ a−Dt and s = t+ 1

0 otherwise
(i, t), (j, s) ∈ S, a ∈ A[(i, t)];

r(i,t)(a) = −{ct(a) + ht(i+ a−Dt)}, (i, t) ∈ S, a ∈ A[(i, t)].

1.3. EXAMPLES 21

1.3.7 Optimal control of queues

Consider a single server queueing system where customers arrive according to a Poisson process

and where the service time of a customer is exponentially distributed: the so-called M/M/1

queue. Suppose that the arrival and service rates can be controlled by a finite number of actions.

We say that the system is in state i when there are i customers in the system. Action a

in state i means that the arrival and the service rates are λi(a) and µi(a), respectively. Any

customer has waiting cost c per time unit and when a customer enters the system a reward r is

incurred.

For this model several variations can be considered, changing the assumptions about the

decision time points, for example. We discuss two models, continuous control and semi-Markov

control

Continuous control

In continuous control the parameters can be controlled at any time. If the system is in state i and

action a is chosen, then the expectation of the interarrival time between new customers is 1
λi(a)

and the expectation of the service time equals 1
µi(a) . It follows from the lack-of-memory property

of the exponential distribution that this yields a valid stochastic decision model.

One can approach this model by time discretization. Then, a discrete MDP approximation

scheme can be obtained by using time points t · h, t ∈ N0, where h is a sufficiently small positive

number, called the step-size. Sufficiently small means

0 < h < min(i,a)

{

min
{ 1

λi(a)
,

1

µi(a)

}

}

,

in which case the so-called first order approximation of the transition probabilities is allowed. In

doing so, we obtain the following MDP model:

S = N0; A(i) = {1, 2, . . . , m}; ri(a) = {r · λi(a)− c · i} · h, i ∈ S, a ∈ A(i);

pij(a) =

λi(a) · h j = i+ 1

δ(i) · µi(a) · h j = i− 1

1− λi(a) · h− δ(i) · µi(a) · h j = i

0 otherwise

i ∈ S, a ∈ A(i),where δ(i) =

{

1 if i ≥ 1

0 if i = 0

Semi-Markov control

Another natural model can be obtained by using the arrival and departure times as the decision

time points. Then, we have a semi-Markov decision problem in which the time until the next

decision is a random variable which depends only on the current state and the chosen action. In

our model the time until the next decision time point is the minimum of two negative exponential

distributions, which time has also a negative exponential distribution with as rate the sum of the

two negative exponential distributions. Hence, if i is the current state and action a is chosen,

then this exponential distribution has parameter

νi(a) = λi(a) + δ(i) · µi(a).

22 CHAPTER 1. INTRODUCTION

The transition probabilities satisfy

pij(a) =

δ(i)µi(a)
νi(a)

j = i− 1
λi(a)
νi(a)

j = i+ 1

0 j 6= i− 1, j − 1

i ∈ S, a ∈ A(i)

Let ri(a) be the expected reward until the next decision time point. Then,

ri(a) =
r · λi(a)− c · i

νi(a)
, i ∈ S, a ∈ A(i).

By the technique of uniformization, a semi-Markov model can be transformed into an equivalent

MDP with equidistant decision epochs. Define

ν = maxi,a νi(a)

and define the transition probabilities p′ and the one-step reward r′ for the MDP by

p′ij(a) =

{

νi(a)pij(a)
ν j 6= i

ν−νi(a)
ν j = i

i ∈ S, a ∈ A(i); r′i(a) =
ri(a)νi(a)

ν
, i ∈ S, a ∈ A(i).

It can be shown that these models are equivalent.

1.3.8 Stochastic scheduling

In a scheduling problem, jobs have to be processed on a number of machines. Each machine

can only process one job at a time. Each job i has a given processing time Tij on machine j.

In stochastic scheduling, these processing times are random variables. At certain time points

decisions have to be made, e.g. which job is assigned to which machine. There is a utility

function by which different policies can be measured, and we want to find a policy that optimizes

the utility function.

There are two types of models: customer assignment models, in which each arriving customer

has to be assigned to one of the queues and server assignment models, where servers have to be

assigned to one of the queues of customers.

We do not explicitly present the MDP model for these general stochastic scheduling models.

We confine ourselves to the formulation of some variants for which the optimal policy has a nice

structure.

One server allocation to parallel queues with preemption: µc-rule

Customers arrive at a system ofm parallel queues and one server. The system operates at discrete

time points, i.e. arrival times and service times take values in the set {1, 2, . . .}. Furthermore,

the arrival times are arbitrary and the service time Ti, for a customer in queue i, is geometrically

distributed with rate µi, i.e.

P{Ti = n} = (1− µi)
n−1 · µi, n ∈ N, with µi ∈ (0, 1), 1 ≤ i ≤ m.

1.3. EXAMPLES 23

Then,

E{Ti} =

∞
∑

n=1

P{Ti = n} · n = µi ·
∞
∑

n=1

(1− µi)
n−1 · n = µ−1

i .

At any time point t = 1, 2, . . . the server chooses a customer from one of the queues: this is

an example of a server assignment model. Services may be interrupted and resumed later on

(preemption). For each customer in queue i, a cost ci is charged per unit of time that this

customer is in the system. A policy is a rule to assign each server to one of the queues. As

optimization problem we consider: which policy minimizes the total cost in T periods?

Let N t
i (R) be the number of customers in period t in queue i, if policy R is used. Then, the

performance measure is

minR E

{

T
∑

t=1

m
∑

i=1

ci ·N t
i (R)

}

.

It can be shown that the so-called µc-rule is an optimal policy. This rule assigns the server to

queue k, where k is a nonempty queue satisfying

µkck = maxi{µici | queue i is nonempty}.

Note that µici is the expected cost per unit of service time for a customer in queue i, and by

using the µc-rule, the largest reduction of the expected cost in the next period is obtained.

Poisson arrivals and two servers: threshold policy

Consider a system with two servers where the customers arrive according to a Poisson process

with rate λ, and where there is only one queue. The service times are assumed to be exponentially

distributed with the respective rates µ1 (for server 1) and µ2 (for server 2), where µ1 ≥ µ2. When

one of the servers becomes available, the decision has to be taken whether or not to send the

customer to this server.

This is a customer assignment model. The model is not discrete, but continuous in time. For

policy R, let N t(R) be the number of customers in the system at time t. As performance measure

the total discounted costs are used, i.e.

minR E

{∫ ∞

0
e−αtN t(R)dt

}

,

where α > 0, which is the continuous analogon of the total discounted costs in the discrete case.

For this model an optimal threshold policy exists, namely server 1 will always be used when

it becomes available, and the slower server, server 2, is only used when the total number of

customers in the queue exceeds some threshold number n.

1.3.9 Multi-armed bandit problem

The multi-armed bandit problem is a model for dynamic allocation of a resource to one of n

independent alternative projects. The terminology ‘multi-armed bandit’ comes from the inter-

pretation of the projects as arms of a gambling machine.

24 CHAPTER 1. INTRODUCTION

Any project may be in one of a finite number of states, say project j in the set Sj, j = 1, 2, . . . , n.

Hence, the state space S is the Cartesian product

S = S1 × S2 × · · · × Sn.

Each state i = (i1, i2, . . . , in) has the same action set A = {1, 2, . . . , n}, where action a means

that project a is chosen, a = 1, 2, . . . , n. So, at each stage one can be working on exactly one of

the projects.

When project a is chosen in state i - the chosen project is called the active project - the

immediate reward and the transition probabilities only depend on the active project, whereas

the states of the remaining projects are frozen. As utility function the total discounted reward is

chosen.

There are many applications of this model, e.g. in machine scheduling, in the control of

queueing systems and in medicine, when dealing with the selection of decision trials.

It can be shown that an optimal policy is the policy that selects project a in state i =

(i1, i2, . . . , in), where a satisfies

Ga(ia) = max1≤k≤n Gk(ik)

for certain numbers Gk(ik), ik ∈ Sk, 1 ≤ k ≤ n. Such a policy is called an index policy.

Surprisingly, these numbers Gk(ik) only depend on project k and not on the other projects. This

result is a fundamental contribution made by Gittins and therefore these indices are called the

Gittins indices.

As a consequence, the multi-armed bandit problem can be solved by a sequence of n one-armed

bandit problems. This is a decomposition result by which the dimensionality of the problem is

reduced considerably. Algorithms with complexity O
(
∑n

k=1 n
3
k

)

, where nk = |Sk|, 1 ≤ k ≤ n, do

exist for the computation of all indices.

1.4 Bibliographic notes

Bellman’s book [17] can be considered as the starting point for the study of Markov decision

processes. However, as early as 1953, Shapley’s paper [267] on stochastic games includes as

a special case the discounted Markov decision process. Around 1960 the basics for solution

methods for MDPs were developed in publications as Howard [134], De Ghellinck [51], d’Epenoux

[67], Manne [193] and Blackwell [29]. Since the early sixties, many results on MDPs have been

published in numerous journals, monographs, books and proceedings. Around 1970 a first series

of books was published, e.g. Derman [69], Mine and Osaki [200] and Ross [236]. In 1994, the

rather comprehensive book by Puterman was published ([227]).

The result mentioned in Corollary 1.1 on the sufficiency of Markov policies for performance

measures that only depend on the marginal distributions is due to Derman and Strauch ([71]).

The extension to Theorem 1.1 was given by Strauch and Veinott ([286]).

1.4. BIBLIOGRAPHIC NOTES 25

The relation between the four criteria for average rewards and the result that these four

criteria are equivalent for stationary policies is due to Bierth ([28]).

In a fundamental paper Blackwell ([29]) introduced the concepts of bias optimality (Blackwell

called it nearly optimal) and Blackwell optimality. An algorithm for finding a Blackwell optimal

policy was constructed by Miller and Veinott ([199]). The n-discount optimality criterion was

proposed in Veinott [311]. He also showed that Blackwell optimality is equivalent to n-discount

optimality for all n ≥ |S| − 1.

The concept of n-average optimality was announced in Veinott [310], which is an abstract of

a preliminary report. This report was never published. In Sladky [273] a proof is given of the

equivalence between n-average optimality and n-discount optimality.

The criterion of overtaking optimality was proposed by Denardo and Rothblum ([66]). For

this criterion no optimal policy may exist. Denardo and Rothblum also provided conditions under

which an optimal policy exists. The concept of average overtaking optimality was proposed by

Veinott ([308]), where he used the terminology optimal. He presented an algorithm for finding

a bias-optimal policy, showed that an average overtaking policy is bias-optimal and conjectured

that the converse was also true. This conjecture has been proven by Denardo and Miller ([65]).

There is an extensive literature on examples of MDP models. Seminal papers on inventory

models are written by Scarf ([251],[252]), Iglehart ([138],[139]) and Veinott ([309]).

A standard reference on gambling is Dubins and Savage [75], who have shown for example

that the bold policy is optimal if p ≤ 1
2 . The optimality of the timid policy for p ≥ 1

2 is due to

Ross ([238] and [239]). The example of the tennis game is due to Norman ([206]) and Prussing

([226]).

A dynamic programming approach for optimal stopping problems can be found in Breiman

[32], who showed the optimality of control-limit policies. The house selling example (Example

1.5) comes from Ross ([236]).

There are a lot of references on replacement and repair models. The survey of Sherif and

Smithn ([269]) contains over 500 references. Results on the optimality of control-limit policies

can be found in Derman [68], Kolesar [170], Derman [69], Ross [236] and Kao [154]. Our presen-

tation of the n-component series system with exponential distributions is based on Katehakis and

Derman [159]. They showed the optimality of the SFR-policy. This result was first conjectured

by Smith ([275]).

There is a close relation between production control problems and flows in networks. For

more detailed information about this subject we refer the reader to Chapter 5 in Denardo [63].

The literature on optimal control of queues is also quite extensive. Markov decision processes

with continuous time parameter were introduced by Bellmann ([17], Chapter 11). For time

discretization we refer to Hordijk and Van Dijk [133]. The technique of uniformization was

already suggested by Howard ([134], page 113). Schweitzer [256] has generalized this idea for

general non-exponential mean holding times and has explicitly given the data transformations

mentioned at the end of Section 1.3.7.

For reviews on stochastic scheduling we refer to Weiss [321], Walrand [318] (Chapter 8), and

26 CHAPTER 1. INTRODUCTION

Righter [235]. The optimality of the µc-rule is due to Baras, Ma and Makowsky ([9]), see also

Buyukkoc, Varaiya and Walrand [36]. The structural result of an optimal threshold policy in the

two server model with Poisson arrivals is from Lin and Kumar ([180]).

The most fundamental contribution on multi-armed bandit problems has been made by Gittins

([105], [104]). The importance of Gittins’ work had not been recognized in the seventies. The

re-discovery is due to Whittle ([332]) who has given an easier and more natural proof. Other

proofs are given by Ross ([239]), Varaiya, Walrand and Buyukkoc ([306]), Tsitsiklis ([291]) and

Weber ([320]). Several methods are developed for the computation of the Gittins indices: Varaiya,

Walrand and Buyukkoc [306], Chen and Katehakis [38], Kallenberg [149], Katehakis and Veinott

[162], Ben-Israel and Fl̊am [20], and Liu and Liu [184].

1.5 Exercises

Exercise 1.1 Inventory model without backlogging

Consider a finite horizon nonstationary inventory model. If demands exceed the supply, then

there is no backlogging. For this model we have the following notations:

T = the number of periods in the planning horizon;

pj(t) = the probability of demand j in period t, j = 0, 1, . . . ;

c = the cost price of an item;

h = the holding cost of an item that is unsold at the end of a period;

p = the penalty cost of an item that cannot be delivered during a period;

B = the finite inventory capacity.

The optimization problem is: which inventory strategy minimizes the total expected costs?

Formulate this model as a Markov decision model.

Exercise 1.2 Number of Markov policies

Let N = |S| and mi = |A(i)|, i ∈ S.

What is the number of nonrandomized Markov policies in this finite horizon MDP with T periods?

Exercise 1.3 n-discount optimality

Show that n-discount optimality implies (n − 1)-discount optimality for n = 0, 1,

Exercise 1.4 Red-black gambling with p = 1
2

Consider the red-black gambling model with p = 1
2 . Let f∞1 be the deterministic policy betting

1 euro in every round of the game. Show that policy f∞1 satisfies vi(f
∞
1) = i

N , 0 ≤ i ≤ N.
Hint:

Derive a recurrence relation for vi(f
∞
1) and show that vi(f

∞
1) = i

N , 0 ≤ i ≤ N . is the unique

solution of this recurrence relation.

1.5. EXERCISES 27

Exercise 1.5 Automobile replacement problem

Suppose that we review a car every month and that the decision is made either to keep the present

car or to trade in the car for another car of a certain age. The age of a car is measured in months.

In order to keep the state space finite, we assume that there is a largest age N , i.e. a car of age N

will always be reset by another car. Furthermore, we assume that a car of age i has a probability

pi of a breakdown in which case it ends up in state N .

Suppose that we have the following costs and rewards:

bi = cost of buying a car of age i;

ti = trade-in value of a car of age i;

ci = expected maintenance cost in the next month for a car of age i.

Formulate this automobile replacement problem as an MDP.

Exercise 1.6 Production problem

Consider the following variant of the production problem. Let the demand Dt in period t be

stochastic with pj(t) = P{Dt = j}, j = 0, 1, . . . , Nt and 1 ≤ t ≤ T. Because of the uncertainties

it is no longer possible to satisfy the demands with probability 1. Therefore, we require that the

demand in period t has to be satisfied with probability at least αt, 1 ≤ t ≤ T . The production in

period t has a capacity of bt, 1 ≤ t ≤ T . Let ct(a) denote the production cost for the production

of a units in period t, 1 ≤ t ≤ T . There are also inventory costs ht(i) in period t, when the

inventory at the end of period t is equal to i, 1 ≤ t ≤ T .

Formulate the MDP model for this variant of the production problem.

Exercise 1.7 Queueing problem

Consider a single server queueing system with a finite capacity N . The service time is a negative

exponential distribution with parameter µ. The system manager can control the system by

increasing or decreasing the price he charges for the service facility in order to encourage or

discourage the arrival of customers.

Assume that the manager must choose one of a finite number of prices, say p1, p2, · · · , pm, where

0 < p1 < p2 < · · · < pm. If there are i customers in the system and he chooses pa, then the

arriving process is a Poisson process with parameter λa, an arriving customer has to pay pa and

the system manager has ci as waiting cost per time unit.

It is quite natural to assume that:

(1) λ1 > λ2 > · · ·> λm (lower prices give more arrivals).

(2) 0 ≤ c0 ≤ c1 ≤ · · · ≤ cN (more costs for more customers).

(3) pm > cN (positive net reward for the manager for each arriving customer).

a. Give the specifications for the time discretization approach.

b. Give the specifications for the semi-Markov approach. Apply uniformization to obtain

an equivalent MDP model.

28 CHAPTER 1. INTRODUCTION

Exercise 1.8 Stochastic scheduling: µc-rule

Assume that m customers are present at the service station and have to be processed nonpre-

emptively by one server. Let µ−1
i be the expected service time and ci the cost per unit time for

customer i. Show, by an interchanging argument, that the µc-rule is optimal for scheduling the

jobs in order to minimize the total expected costs.

Chapter 2

Finite Horizon

2.1 Introduction

2.2 Backward induction

2.3 An equivalent stationary infinite horizon model

2.4 Monotone optimal policies

2.5 Bibliographic notes

2.6 Exercises

2.1 Introduction

A system with rewards rt
i(a) and transition probabilities pt

ij(a) has to be controlled over a planning

horizon of T periods. As you see in the notation, these rewards and transition probabilities may

be nonstationary, i.e. may depend on the period t. As utility function the total expected reward

is considered as defined in (1.9).

In section 2.2 we shown that an optimal Markov policy with deterministic but in general

nonstationary decision rules exists. Furthermore, we show that such an optimal policy can be

computed by backward induction., based on the principle of optimality.

In section 2.3 an alternative stationary substochastic model over an infinite horizon is de-

scribed. The utility function of this model is the total expected reward. This infinite horizon

stationary model is equivalent to the finite horizon nonstationary model in the sense that there

is equivalence between the policies in both models such that equivalent policies have the same

value of their utility functions. Hence, results of the infinite horizon model, which is discussed in

Chapter 4, can be applied to the finite horizon model.

In section 2.4 we study under which conditions optimal policies are monotone, i.e. nonde-

creasing or nonincreasing. Such a concept is worthwhile if there is a natural ordering in the state

space. Knowledge about the monotone structure of optimal policies enables us to find such policy

with less computational effort than without the monotone structure.

We close this chapter with bibliographic notes (section 2.5) and exercises (section 2.6).

29

30 CHAPTER 2. FINITE HORIZON

2.2 Backward induction

In this section we show how to compute an optimal policy by backward induction. Backward

induction is an iterative procedure. Starting at the end of the planning horizon one computes

iteratively the values for the previous periods. Then, after T iterations, where T is the number

of periods in the planning horizon, an optimal policy is found.

The notation r(f t) and P (f t), as defined in (1.5) and (1.4) respectively, is used for the reward

vector and transition matrix of a deterministic decision rule f t at decision time point t. In a

finite planning horizon with T periods only the decision rules for the first T decision time points

are relevant. Hence, we write R = (π1, π2, . . . , πT).

Theorem 2.1

Let xT+1
i = 0 for all i ∈ S. Let for t = T, T −1, . . . , 1 consecutively, respectivelely a deterministic

decision rule f t and a vector xt be defined as

{

r(f t)
}

i
+
{

P (f t)xt+1
}

i
= maxa∈A(i)

{

rt
i(a) +

∑

j

pt
ij(a)x

t+1
j

}

, for all i ∈ S (2.1)

and

xt = r(f t) + P (f t)xt+1.

Then, R∗ = (f1, f2, . . . , fT) is an optimal policy and x1 is the value vector vT .

Proof

We use induction on T . Let R = (π1, π2, . . . , πT) be an arbitrary policy.

For T = 1, we obtain

vT
i (R) =

∑

j,a P{X1 = j, Y1 = a} · r1j (a) =
∑

a r1i (a)π
1
ia

≤ maxa∈A(i) r
1
i (a) = x1

i = v1
i (R∗), i ∈ S.

Assume that the result has been shown for T = 1, 2, . . . , t. Take an arbitrary state i.

From Corollary 1.1 it follows that there exists a Markov policy R such that vt+1
i (R) = vt+1

i (R).

Let R = (σ1, σ2, . . . , σt+1). Define the Markov policy R′ = (ρ1, ρ2, . . . , ρt) by ρk
ja = σk+1

ja for all

(j, a) ∈ S × A and for k = 1, 2, . . . , t. From the induction assumption it follows that vt
j(R

′) ≤ x2
j

for all j ∈ S, because for a planning horizon of t+ 1 periods x2 is the same as x1 for a planning

horizon of t periods. Hence,

vt+1
i (R) = vt+1

i (R) =
∑

a σ
1
ia{r1i (a) +

∑

j p
1
ij(a)v

t
j(R

′)}

≤ ∑

a σ
1
ia{r1i (a) +

∑

j p1
ij(a)x

2
j} ≤ maxa {r1i (a) +

∑

j p1
ij(a)x

2
j} = x1

i .

On the other hand,

x1 = r(f1) + P (f1)x2 = r(f1) + P (f1){r(f2) + P (f2)x3}

= · · · =∑t+1
s=1 {P (f1)P (f2) · · ·P (fs−1)r(fs)} = vt+1(R∗),

i.e. vt+1(R∗) = x1 ≥ vt+1(R), i.e. R∗ is an optimal policy and x1 is the value vector.

2.2. BACKWARD INDUCTION 31

Algorithm 2.1 Determination of an optimal policy for a nonstationary MDP over T periods

Input: Instance of a finite nonstationary MDP and the time horizon T .

Output: Optimal Markov policy R∗ = (f1, f2, . . . , fT) and the value vector vT .

1. x := 0

2. for t = T, T − 1, . . . , 1 do

begin

(1) take f t such that
{

r(f t) + P (f t)x
}

i
= maxa∈A(i)

{

rt
i(a) +

∑

j pt
ij(a)xj

}

for all i ∈ S
(2) x := r(f t) + P (f t)x

end

3. R∗ := (f1, f2, . . . , fT) is an optimal policy and x is the value vector.

Example 2.1

Consider an MDP with the following data:

S = {1, 2}; A(1) = A(2) = {1, 2}; T = 3.

p11(1) = 1
2 ; p12(1) = 1

2 ; r1(1) = 1;

p11(2) = 1
4 ; p12(2) = 3

4 ; r1(2) = 0;

p21(1) = 2
3 ; p22(1) = 1

3 ; r2(1) = 2;

p21(2) = 1
3 ; p22(2) = 2

3 ; r2(2) = 5.

s s
&%
'$

&%
'$

��
��

��
��

666
? ??

-

--

�

��

1 2
1
2

1
4

3
4

1
2

2
3

1
3

1
3

2
3

Start with x1 = x2 = 0.

t = 3 : i = 1 : max{1, 0} = 1; f3(1) = 1; x1 = 1.

i = 2 : max{2, 5} = 5; f3(2) = 2; x2 = 5.

t = 2 : i = 1 : max{1 + 1
2 · 1 + 1

2 · 5, 0 + 1
4 · 1 + 3

4 · 5} = 4; f2(1) = 1 (or 2); x1 = 4.

i = 2 : max{2 + 2
3 · 1 + 1

3 · 5, 5 + 1
3 · 1 + 2

3 · 5} = 26
3 ; f2(2) = 2; x2 = 26

3 .

t = 1 : i = 1 : max{1 + 1
2 · 4 + 1

2 · 26
3 , 0 + 1

4 · 4 + 3
4 · 26

3 } = 15
2 ; f1(1) = 2; x1 = 15

2 .

i = 2 : max{2 + 2
3 · 4 + 1

3 · 26
3 , 5 + 1

3 · 4 + 2
3 · 26

3 } = 109
9 ; f1(2) = 2; x2 = 109

9 .

R∗ = (f1, f2, f3) is an optimal policy and x = (15
2 ,

109
9) is the value vector.

Application 2.1 Scheduling

Suppose that N jobs have to be processed on one machine. Assume that the machine can process

at most one job at a time, that job j has processing time pj and that cj(t) is the cost if job j is

completed at time t.

A strategy R corresponds to a permutation of the N jobs, say R = {i1, i2, . . . , iN}. Given

strategy R = {i1, i2, . . . , iN}, job ik has completion time
∑k

j=1 pij . Hence, the corresponding

cost is cik(
∑k

j=1 pij) and the total costs of this policy are
∑N

k=1 cik(
∑k

j=1 pij). Which order of

the jobs minimizes the total costs?

32 CHAPTER 2. FINITE HORIZON

This problem can be modeled as a finite horizon MDP with a layered state space. The states are

the 2N subsets of {1, 2, . . . , N}. Layer 1 consists of the single state {1, 2, . . . , N}, layer 2 has the

N states {1, 2, . . . , N}\{j}, 1 ≤ j ≤ N , and so on until layer N + 1, which consists of the empty

state ∅. Any path from {1, 2, . . . , N} to ∅ corresponds to a permutation: at each stage, the job

which is deleted from the state is chosen as scheduled at this stage on the machine.

When job j is chosen, i.e. deleted from a subset J ⊆ {1, 2, . . . , N}, the jobs from {1, 2, . . . , N}\J
are already scheduled on the machine. Hence, the completion time of job j is

∑

i/∈J pi + pj with

costs cj(
∑

i/∈J pi + pj). Therefore, this scheduling problem is equivalent to a layered shortest path

problem, which can be solved as an MDP with finite horizon (see Exercise 2.1).

Formally, in state J ⊆ {1, 2, . . . , N} the action set A(J) satisfies A(J) = {j | j ∈ J} and, if action

j is chosen, the immediate costs are cj(
∑

i/∈J pi + pj) and there is a deterministic transition to

state J\{j} in the next layer.

2.3 An equivalent stationary infinite horizon model

In this section we present a stationary infinite horizon model which is equivalent to the standard

nonstationary finite horizon model. The reason behind the infinite model is to copy the state

space for each period, to make transitions from a period to the next period and to take in the last

period only absorbing states without rewards. Therefore, consider the following stationary MDP

with infinite horizon for which the state space, action sets, immediate rewards and transition

probabilities, denoted by S∗, A∗, r∗ and p∗ respectively, are given by:

S∗ = {(i, t) | i ∈ S, t = 1, 2, . . . , T + 1}

A∗{(i, t)} =

{

A(i) i ∈ S, t = 1, 2, . . . , T

{1} i ∈ S, t = T + 1

r∗(i,t)(a) =

{

rt
i(a) i ∈ S, t = 1, 2, . . . , T, a ∈ A(i)

0 i ∈ S, t = T + 1, a = 1

p∗(i,t)(j,s)(a) =

{

pt
ij(a) i ∈ S, t = 1, 2, . . . , T, a ∈ A(i), j ∈ S, s = t+ 1

0 elsewhere

p∗(i,T+1)(j,s)(1) =

{

1 i ∈ S, j = i, s = T + 1

0 elsewhere

Hence, this new infinite horizon model has a layered state space - as in Application 2.1 with

transitions from (i, t) to (j, t+ 1) until we reach a state in layer (·, T + 1). All states of this last

layer are absorbing. This infinite horizon model is a so-called transient MDP (see Chapter 4).

For initial state (i, t) and policy R the total expected reward over the infinite horizon is denoted

by v(i.t)(R). Any Markov policy R = (π1, π2, . . . , πT) of the finite horizon model corresponds to

a stationary policy π∞ of the infinite horizon model by

π(i.t)(a) =

{

πt
i(a) i ∈ S, t = 1, 2, . . . , T, a ∈ A(i)

1 i ∈ S, t = T + 1, a = 1

2.4. MONOTONE OPTIMAL POLICIES 33

The next Lemma shows that for these corresponding policies the respective utility functions have

the same value.

Lemma 2.1

Let R = (π1, π2, . . . , πT) be a Markov policy of the finite horizon model with corresponding

stationary policy π∞ of the infinite horizon model. Then, vT
i (R) = v(i,1)(π

∞) for all i ∈ S.

Proof

By induction on t it is easy to show that for all i, j, t
{

[P ∗(π)]t−1
}

(i,1)(j,t)
= {P (π1)P (π2) · · ·P (πt−1)}ij and r∗(j,t)(π) = rj(π

t), t ≤ T.
∑

j

{

[P ∗(π)]T
}

(i,1)(j,T+1)
= 1 and r∗(j,T+1)(π) = 0.

Hence,

v(i,1)(π
∞) =

∑∞
t=1

{

[P ∗(π)]t−1r∗π)
}

(i,1)
=
∑T

t=1

{

[P ∗(π)]t−1r∗(π)
}

(i,1)

=
∑T

t=1

∑

j∈S {[P ∗(π)]t−1}(i,1)(j,t)r
∗
(j,t)(π)

=
∑T

t=1

∑

j∈S [P (π1)P (π2) · · ·P (πt−1)]ijrj(π
t)

=
∑T

t=1

{

P (π1)P (π2) · · ·P (πt−1)r(πt)
}

i
= vT

i (R), i ∈ S.

Since the finite horizon model has an optimal policy in the class of Markov policies with deter-

ministic decision rules, the corresponding infinite horizon transient MDP model has an optimal

policy in the class of deterministic policies. By the method of linear programming for MDPs (see

the next chapters), MDPs with additional constraints on the state-action frequencies can also be

handled.

2.4 Monotone optimal policies

In this section we study under which conditions optimal policies are monotone, i.e. nondecreasing

or nonincreasing, in the ordering of state space. Such concept is worthwhile if there is a natural

ordering in the state space. Knowlegde about the structure of optimal policies enables us to find

such policies with less computational effort. In section 1.3 we have encountered several examples

of special models with structured optimal policies, e.g. control-limit policies.

For the proof of the optimality of monotone policies, the following lemma is important.

Lemma 2.2

Let y, z : S → R+ satisfy
∑N

j=k yj ≥
∑N

j=k zj , 2 ≤ k ≤ N and
∑N

j=1 yj =
∑N

j=1 zj, and

let v : S → R satisfy vj+1 ≥ vj , j = 1, 2, . . . , N − 1. Then,
∑N

j=1 vjyj ≥
∑N

j=1 vjzj .

Proof

Define v0 := 0. Then,

34 CHAPTER 2. FINITE HORIZON

∑N
j=1 vjyj =

∑N
j=1 yj

{
∑j

k=1(vk − vk−1)
}

=
∑N

k=1(vk − vk−1)
{
∑N

j=k yj

}

= v1
∑N

j=1 yj +
∑N

k=2(vk − vk−1)
{
∑N

j=k yj

}

≥ v1
∑N

j=1 zj +
∑N

k=2(vk − vk−1)
{
∑N

j=k zj
}

=
∑N

j=1 vjzj.

Let X and Y be ordered sets and let f(x, y) a real-valued function on X × Y . The function f

is said to be supermodular (also called superadditive) if for any x1, x2 ∈ X and y1, y2 ∈ Y with

x1 ≥ x2 and y1 ≥ y2
f(x1, y1) + f(x2, y2) ≥ f(x1, y2) + f(x2, y1).

If the reverse inequality holds, i.e. if for any x1, x2 ∈ X and y1, y2 ∈ Y with x1 ≥ x2 and y1 ≥ y2

f(x1, y1) + f(x2, y2) ≤ f(x1, y2) + f(x2, y1),

the function f is called submodular or subadditive.

If X = Y = R and f(x, y) is twice differentiable and supermodular, then ∂2f(x,y)
∂x∂y ≥ 0 for all x

and y (see Exercise 2.8).

Examples of supermodular functions on R×R are (see Exercise 2.6):

(1) f(x, y) = (x+ y)2.

(2) f(x, y) = xy.

(3) f(x, y) = g(x+ y) for any convex function g.

Argmax stands for the argument of the maximum, i.e. the set of points of the given argument for

which the given function attains its maximum value. For example, argmaxx∈R (1 − |x|) = {0}.
For a fixed x ∈ X , we say that Y (x) = {y ∈ Y | y ∈ argmax f(x, y)} and y(x) = max{y ∈ Y (x)}.

Lemma 2.3

Suppose f is supermodular on X × Y and for each x ∈ X maxy∈Y f(x, y) exists. Then, y(x) is

nondecreasing in x.

Proof

Let x1 ≥ x2 and choose y ≤ y(x2). Then,

f
(

x1, y(x2)
)

+ f(x2, y) ≥ f(x1, y) + f
(

x2, y(x2)
)

,

i.e.

f
(

x1, y(x2)
)

≥ f(x1, y) + {f
(

x2, y(x2)
)

− f(x2, y)} ≥ f(x1, y),

the last inequality by the definition of y(x2). Hence, f(x1, y(x2)) ≥ f(x1, y) for all y ≤ y(x2). By

the definition of y(x1), we have y(x1) ≥ y(x2), implying that y(x) is nondecreasing in x.

Lemma 2.4

Suppose f is submodular on X × Y and for each x ∈ X maxy∈Y f(x, y) exists. Then, y(x) is

nonincreasing in x.

2.4. MONOTONE OPTIMAL POLICIES 35

Proof

Let x1 ≥ x2 and choose y ≤ y(x1). Then,

f
(

x2, y(x1)
)

+ f(x1, y) ≥ f(x2, y) + f
(

x1, y(x1)
)

,

i.e.

f
(

x2, y(x1)
)

≥ f(x2, y) + {f
(

x1, y(x1)
)

− f(x1, y)} ≥ f(x2, y),

the last inequality by the definition of y(x1). Hence, f(x2, y(x1)) ≥ f(x2, y) for all y ≤ y(x1). By

the definition of y(x2), we have y(x2) ≥ y(x1), implying that y(x) is nonincreasing in x.

We will show the existence of optimal monotone policies under certain assumption. Firstly, we

consider the nondecreasing case.

Assumption 2.1

(A1) S = {1, 2, . . . , N}, ordered in the natural way;

(A2) rt
i(a) is nondecreasing in i for all a and t;

(A3)
∑N

j=k p
t
ij(a) is nondecreasing in i for all k, a and t.

Theorem 2.2

Under Assumption 2.1, the function xt
i, defined in Theorem 2.1, is nondecreasing in i for all t.

Proof

Apply backward induction on t. For t = T + 1 : xT+1
i = 0 for all i, so the result is true.

Assume that the result holds for t+ 1 and consider xt = r(f t) + P (f t)xt+1.

Let i1 ≥ i2, and let yj = pt
i1j(f

t(i2)) and zj = pt
i2j(f

t(i2)).

From Assumption 2.1 (A3), we obtain for all k

N
∑

j=k

yj =

N
∑

j=k

pt
i1j

(

f t(i2)
)

≥
N
∑

j=k

pt
i2j

(

f t(i2)
)

=

N
∑

j=k

zj.

Notice that
∑N

j=1 yj =
∑N

j=1 zj = 1 and that, by induction hypothesis, xt+1
j+1 ≥ xt+1

j for

j = 1, 2, . . . , N − 1. Applying Lemma 2.2 yields

N
∑

j=1

pt
i1j(f

t(i2))x
t+1
j ≥

N
∑

j=1

pt
i2j(f

t(i2))x
t+1
j .

Hence, using Assumption 2.1 (A2),

xt
i1

= maxa∈A{rt
i1
(a) +

∑N
j=1 pt

i1j(a)x
t+1
j } ≥ rt

i1
(f t(i2)) +

∑N
j=1 pt

i1j(f
t(i2))x

t+1
j

≥ rt
i2

(f t(i2)) +
∑N

j=1 pt
i2j(f

t(i2))x
t+1
j = xt

i2
.

36 CHAPTER 2. FINITE HORIZON

Assumption 2.2

(A4) The action set A(i) = A = {1, 2, . . . ,M}, i ∈ S, where A is ordered in the natural way;

(A5) rt
i(a) is supermodular on S × A for t = 1, 2, . . . , T ;

(A6)
∑N

j=k p
t
ij(a) is supermodular on S ×A for t = 1, 2, . . . , T and for all k ∈ S.

Theorem 2.3

Let Assumption 2.1 and 2.2 hold. Then, there exists an optimal policy R∗ = (f1, f2, . . . , fT),

where f t(i) is nondecreasing in i for t = 1, 2, . . . , T .

Proof

Take any 1 ≤ t ≤ T . We first prove that sti(a) := rt
i(a) +

∑N
j=1 p

t
ij(a)x

t+1
j is supermodular on

S × A. Let i1 ≥ i2, a1 ≥ a2, and let yj = pt
i1j(a1) + pt

i2j(a2), zj = pt
i1j(a2) + pt

i2j(a1), j ∈ S.
By Assumption 2.2 (A6), for all k ∈ S, we have

∑N
j=k yj ≥

∑N
j=k zj . Since

∑N
j=1 yj =

∑N
j=1 zj = 2,

and because xt+1
i is nondecreasing in i (see Theorem 2.2), applying Lemma 2.2 yields

N
∑

j=1

{pt
i1j(a1) + pt

i2j(a2)}xt+1
j ≥

N
∑

j=1

{pt
i1j(a2) + pt

i2j(a1)}xt+1
j ,

implying the supermodularity of
∑N

j=1 pt
ij(a)x

t+1
j . Because rt

i(a) is supermodular by Assumption

2.2 (A5) and because the sum of supermodular functions is also supermodular (see Exercise 2.5),

sti(a) is a supermodular function on S×A. If the action f t(i) in formula (2.1) is not unique, take

the largest optimal action. Then, applying Lemma 2.3 yields the result that f t(i) is nondecreasing

in i.

Algorithm 2.2 Determination of an optimal policy with monotone decision rules for a nonsta-

tionary MDP over T periods under the assumptions 2.1 and 2.2.

Input: Instance of a finite nonstationary MDP, which satisfies assumptions 2.1 and 2.2, and

the time horizon T .

Output: Optimal Markov policy R∗ = (f1, f2, . . . , fT) with nondecreasing decision rules f t(i),

i ∈ S, 1 ≤ t ≤ T , and the value vector vT .

1. x := 0.

2. for t = T, T − 1, . . . , 1 do

begin A := {1, 2, . . . ,M}
for i = 1, 2, . . . , N do

begin (1) take f t(i) such that
{

r(f t) + P (f t)x
}

i
= maxa∈A

{

rt
i(a) +

∑

j pt
ij(a)xj

}

(if there is more than one optimizing action, take the largest)

(2) yi :=
{

r(f t) + P (f t)x
}

i

(3) A := {a | f t(i) ≤ a ≤M}
end

x := y

end

2.4. MONOTONE OPTIMAL POLICIES 37

3. R∗ = (f1, f2, . . . , fT) is an optimal policy with nondecreasing decision rules f t(i), i ∈ S,

1 ≤ t ≤ T , and the value vector vT := x.

Remark

The advantage of this algorithm is that the maximization can be carried out over action sets

which become smaller in the order of the states. If for some state i the action set consists of a

singleton no optimization is needed in higher states.

Next, we consider the case in which the rewards are nonincreasing and submodular.

Assumption 2.3

(B1) S = {1, 2, . . . , N}, ordered in the natural way;

(B2) rt
i(a) is nonincreasing in i for all a and t;

(B3)
∑N

j=k p
t
ij(a) is nondecreasing in i for all k, a and t.

Theorem 2.4

Under Assumption 2.3, the function xt
i, defined in Theorem 2.1, is nonincreasing in i for all t.

Proof

Apply backward induction on t. For t = T + 1 : xT+1
i = 0 for all i, so the result is true.

Assume that the result holds for t+ 1 and consider xt = r(f t) + P (f t)xt+1.

Let i1 ≥ i2, and let yj = pt
i1j(f

t(i1)) and zj = pt
i2j(f

t(i1)).

From Assumption 2.3 (B3), we obtain for all k

N
∑

j=k

yj =

N
∑

j=k

pt
i1j

(

f t(i1)
)

≥
N
∑

j=k

pt
i2j

(

f t(i1)
)

=

N
∑

j=k

zj.

Notice that
∑N

j=1 yj =
∑N

j=1 zj = 1 and that, by induction hypothesis, −xt+1
j+1 ≥ −xt+1

j

for j = 1, 2, . . . , N − 1. Applying Lemma 2.2 yields

N
∑

j=1

pt
i1j(f

t(i1)){−xt+1
j } ≥

N
∑

j=1

pt
i1j(f

t(i2)){−xt+1
j }

i.e.
N
∑

j=1

pt
i2j(f

t(i1))x
t+1 ≥

N
∑

j=1

pt
i1j(f

t(i1))x
t+1
j .

Hence, using Assumption 2.3 (B2),

xt
i2

= maxa∈A{rt
i2
(a) +

∑N
j=1 p

t
i2j(a)x

t+1
j } ≥ rt

i2
(f t(i1)) +

∑N
j=1 p

t
i2j(f

t(i1))x
t+1
j

≥ rt
i1

(f t(i1)) +
∑N

j=1 p
t
i1j(f

t(i1))x
t+1
j = xt

i1
.

38 CHAPTER 2. FINITE HORIZON

Assumption 2.4

(B4) The action set A(i) = A = {1, 2, . . . ,M}, i ∈ S, where A is ordered in the natural way;

(B5) rt
i(a) is submodular on S ×A for t = 1, 2, . . . , T ;

(B6)
∑N

j=k p
t
ij(a) is supermodular on S ×A for t = 1, 2, . . . , T and for all k ∈ S.

Theorem 2.5

Let Assumption 2.3 and 2.4 hold. Then, there exists an optimal policy R∗ = (f1, f2, . . . , fT),

where f t(i) is nonincreasing in i for t = 1, 2, . . . , T .

Proof

Take any 1 ≤ t ≤ T . We first prove that sti(a) := rt
i(a) +

∑N
j=1 p

t
ij(a)x

t+1
j is submodular on

S × A. Let i1 ≥ i2, a1 ≥ a2, and let yj = pt
i1j(a1) + pt

i2j(a2), zj = pt
i1j(a2) + pt

i2j(a1), j ∈ S.

By Assumption 2.4 (B6), for all k ∈ S, we have
∑N

j=k yj ≥
∑N

j=k zj. Since
∑N

j=1 yj =
∑N

j=1 zj = 2,

and because −xt+1
i is nondecreasing in i (see Theorem 2.4), applying Lemma 2.2 yields

N
∑

j=1

{pt
i1j(a1) + pt

i2j(a2)}{−xt+1
j } ≥

N
∑

j=1

{pt
i1j(a2) + pt

i2j(a1)}{−xt+1
j },

i.e.
N
∑

j=1

{pt
i1j(a1) + pt

i2j(a2)}xt+1
j ≤

N
∑

j=1

{pt
i1j(a2) + pt

i2j(a1)}xt+1
j .

This implies the submodularity of
∑N

j=1 pt
ij(a)x

t+1
j . Because rt

i(a) is submodular by Assumption

2.4 (B5) and because the sum of submodular functions is also submodular, sti(a) is a submodular

function on S × A. If the action f t(i) in formula (2.1) is not unique, take the largest optimal

action. Then, applying Lemma 2.4 yields the result that f t(i) is nonincreasing in i.

Algorithm 2.3 Determination an optimal policy with monotone decision rules for a nonstation-

ary MDP over T periods under the assumptions 2.3 and 2.4.

Input: Instance of a finite nonstationary MDP, which satisfies assumptions 2.3 and 2.4, and

the time horizon T .

Output: Optimal Markov policy R∗ = (f1, f2, . . . , fT) with nonincreasing decision rules f t(i),

i ∈ S, 1 ≤ t ≤ T , and the value vector vT .

1. x := 0.

2. for t = T, T − 1, . . . , 1 do

2.5. BIBLIOGRAPHIC NOTES 39

begin A := {1, 2, . . . ,M}
for i = 1, 2, . . . , N do

begin (1) take f t(i) such that
{

r(f t) + P (f t)x
}

i
= maxa∈A

{

rt
i(a) +

∑

j pt
ij(a)xj

}

(if there is more than one optimizing action, take the largest)

(2) yi :=
{

r(f t) + P (f t)x
}

i

(3) A := {a | 1 ≤ a ≤ f t(i)}
end

x := y

end

3. R∗ = (f1, f2, . . . , fT) is an optimal policy with nonincreasing decision rules f t(i), i ∈ S,

1 ≤ t ≤ T , and the value vector vT := x.

Finally, we provide alternative conditions which lead to a nondecreasing optimal policy and for

which Algorithm 2.2 can be used.

Assumption 2.5

(C1) S = {1, 2, . . . , N}, ordered in the natural way;

(C2) rt
i(a) is nonincreasing in i for all a and t;

(C3)
∑N

j=k p
t
ij(a) is nondecreasing in i for all k, a and t.

(C4) The action set A(i) = A = {1, 2, . . . ,M}, i ∈ S, where A is ordered in the natural way;

(C5) rt
i(a) is supermodular on S ×A for t = 1, 2, . . . , T ;

(C6)
∑N

j=1 p
t
ij(a)uj is supermodular on S × A for t = 1, 2, . . . , T and for every nonincreasing

function u on S.

Theorem 2.6

Let Assumption 2.5 hold. Then, there exists an optimal policy R∗ = (f1, f2, . . . , fT), where f t(i)

is nondecreasing in i for t = 1, 2, . . . , T .

Proof

Take any 1 ≤ t ≤ T . By Theorem 2.5, xt+1 is nonincreasing on S. Hence, by condition (C6),
∑N

j=1 p
t
ij(a)x

t+1
j is supermodular on S × A. Because rt

i(a) is also supermodular by Assumption

2.5 (C5), sti(a) := rt
i(a) +

∑N
j=1 p

t
ij(a)x

t+1
j is a supermodular function on S × A. If the action

f t(i) in formula (2.1) is not unique, take the largest optimal action. Then, applying Lemma 2.3

yields the result that f t(i) is nondecreasing in i.

2.5 Bibliographic notes

The principles of optimality and backward induction were presented in Bellman’s book [17]. This

book had an enormous impact in the field of dynamic programming. Hordijk ([124]) has shown

40 CHAPTER 2. FINITE HORIZON

that the principle of optimality together with the validity of backward induction may be viewed

as a consequence of the duality theory of linear programming.

The equivalence between the standard nonstationary finite horizon and a stationary inifinite

horizon model was presented in Kallenberg ([146], [147]). A related paper is due to Derman and

Klein ([70]).

The development of monotone optimal policies is provided by the work of Serfozo ([263]) and

Topkis ([289]). Our presentation follows Puterman ([227], section 4.7). Other contributions are

given e.g. by Ross ([239]) and Heyman and Sobel ([117]).

2.6 Exercises

Exercise 2.1

Consider a layered network: i.e. the set of vertices V = V1 ∪ V2 ∪ · · · ∪ Vp, where V1 = {1},
Vp = {N}, and all arcs (i, j) satisfy if i ∈ Vk, then j ∈ Vk+1 for some k = 1, 2, . . . , p − 1. Let

arc (i, j) has length lij. Show that the problem of finding the shortest path (and its length) from

vertex 1 to vertex N can be modeled as an MDP over a finite horizon.

Exercise 2.2

Consider a scheduling problem as in Application 2.1 with the data:

N = 4; p1 = 1, p2 = 2, p3 = 3, p4 = 4; c1(t) = max(0, t− 2), c2(t) = max(0, t− 7),

c3(t) = max(0, t− 5) and c4(t) = max(0, t− 6).

a. Draw the layered network for this scheduling problem;

b. Compute an optimal ordering of the jobs by backward induction.

Exercise 2.3

Suppose you have an employee and at the beginning of each month you can decide on his salary

for that month: either a low salary ($ 2300) or a high salary ($ 3000). Knowing his salary, the

employee can decide to send in his resignation immediately.

The probability that he sends in his resignation depends on his salary: 40% for a low salary

and 20% for a high salary. When the employee quits, a temporary employee has to be hired

immediately for $ 4000 per month. When you have a temporary employee you will advertise each

month for a new permanent employee.

The probability to find a new permanent employee (who can start at the beginning of the fol-

lowing month and will receive the same salary conditions as he original employee) depends on

the advertising budget: 70% for advertising budget $ 300 and 90% for advertising budget $ 600.

Each month you have to decide which salary is offered to an employee and if the employee resigns

you have to choose the advertising budget. What is for you an optimal policy if only the next six

months are considered?

2.6. EXERCISES 41

Exercise 2.4

Construct the corresponding infinite horizon model for the finite horizon MDP of Exercise 2.3.

Exercise 2.5

Show that the sum of supermodular functions is supermodular.

Exercise 2.6

Show that the following functions on R
1 × R

1 are supermodular:

a. f(x, y) = (x+ y)2.

b. f(x, y) = xy.

c. f(x, y) = g(x+ y) for any convex function g.

Exercise 2.7

Let f(x, y) be a function on X × Y , where X = Y = Z+, and suppose

f(i+ 1, a+ 1) + f(i, a) ≥ f(i, a+ 1) + f(i+ 1, a) for all i ∈ X and a ∈ Y.

Show that f(x, y) is superadditive.

Exercise 2.8

Let f(x, y) be a twice differential function on R
1 ×R

1. Show that f(x, y) is superadditive if and

only if
∂2f(x,y)

∂x∂y is a nonnegative function.

Hint: Consider
∫ y1

y2

{

∫ x1

x2

∂2f(x,y)
∂x∂y dx

}

dy.

Exercise 2.9

Let X and Y be ordered sets. Suppose f(x, y) is a superadditive function on X ×Y and for each

x ∈ X , min f(x, y) exists. For a fixed x ∈ X , define Y (x) = {y ∈ Y | y ∈ argmin f(x, y)} and

y(x) = min{y ∈ Y (x)}. Show that y(x) is nonincreasing in x.

42 CHAPTER 2. FINITE HORIZON

Chapter 3

Discounted rewards

3.1 Introduction

3.2 Monotone contraction mappings

3.3 The optimality equation

3.4 Policy iteration

3.5 Linear programming

3.6 Value iteration

3.7 Value iteration and bisection

3.8 Modified policy iteration

3.9 Monotone optimal policies

3.10 Bibliographic notes

3.11 Exercises

3.1 Introduction

This chapter deals with the total expected discounted reward over an infinite planning horizon.

We assume that the model is stationary. The criterion of the total expected discounted reward

is quite natural when the planning horizon is rather large and returns at the present time are

of more value than returns which are earned later in time. We recall that the total expected

α-discounted reward, given initial state i, policy R and discount factor α ∈ (0, 1), is denoted by

vα
i (R) and defined by

vα
i (R) :=

∞
∑

t=1

Ei,R{αt−1 · rXt(Yt)} =

∞
∑

t=1

αt−1
∑

j,a

Pi,R{Xt = j, Yt = a} · rj(a). (3.1)

As already mentioned in section 1.2.2, by the theorem of dominated convergence, the expected

total α-discounted reward, i.e.

Ei,R

{

∞
∑

t=1

αt−1 · rXt(Yt)
}

,

gives the same expression as (3.1). Hence, the expected total discounted reward criterion and the

total expected discounted reward criterion are equivalent. We also recall that a stationary policy

43

44 CHAPTER 3. DISCOUNTED REWARDS

π∞ satisfies

vα(π∞) =

∞
∑

t=1

αt−1P (π)t−1r(π). (3.2)

Since
{

I−αP (π)
}

·
{

I+αP (π)+· · ·+{αP (π)}t−1
}

= I−{αP (π)}t and {αP (π)}t→ 0 for t→∞,
we obtain

∞
∑

t=1

{

αP (π)
}t−1

=
{

I − αP (π)
}−1

and vα(π∞) =
{

I − αP (π)
}−1

r(π).

The α-discounted value vector vα is defined by

vα := supR vα(R). (3.3)

A policy R∗ is an optimal policy if vα(R∗) = vα.

From the mathematical point of view, the discounted reward criterion is good manageable: there

is a very complete general theory. In this chapter we only discuss the case of finite state space

and finite action sets, but the results can be extended to a much higher level of generality.

In this chapter, we first discuss the theory of monotone contraction mappings in the context

of MDPs. Then, the optimality equation, bounds for the value vector and suboptimal actions are

considered. Next, the classical methods (policy iteration, linear programming, value iteration)

and the hybrid method of modified policy iteration are studied. Then, we discuss under which

conditions monotone optimal policies exist (section 3.9). We close this chapter with bibliographic

notes and exercises.

3.2 Monotone contraction mappings

To find an optimal policy and the α-discounted value vector vα, the optimality equation

xi = maxa∈A(i)

{

ri(a) + α
∑

j

pij(a)xj

}

, i ∈ S, (3.4)

plays a central role. In the next section we will show that vα is the unique solution of this

equation. For the moment, we give the following intuitive argumentation. Suppose that at time

point t = 1, given that the system is in state i, action a ∈ A(i) is chosen; furthermore, suppose

that from t = 2 on an optimal policy is followed. Then, the total expected α-discounted reward

is equal to ri(a) +α
∑

j pij(a)v
α
j . Since any optimal policy obtains at least this amount, we have

vα
i ≥ maxa∈A(i)

{

ri(a) + α
∑

j

pij(a)v
α
j

}

, i ∈ S.

On the other hand, let ai be the action chosen in state i by an optimal policy. Then,

vα
i = ri(ai) + α

∑

j

pij(ai)v
α
j ≤ maxa∈A(i)

{

ri(a) + α
∑

j

pij(a)v
α
j

}

, i ∈ S.

3.2. MONOTONE CONTRACTION MAPPINGS 45

Hence,

vα
i = maxa∈A(i)

{

ri(a) + α
∑

j

pij(a)v
α
j

}

, i ∈ S,

i.e. vα is a solution of (3.4) and vα is a fixed-point of the mapping U : R
N → R

N , defined by

(Ux)i := maxa∈A(i)

{

ri(a) + α
∑

j

pij(a)xj

}

, i ∈ S. (3.5)

We will show that U is a contraction mapping. Hence, by the general theory of contracting

mappings, vα is the unique solution of (3.4) and can be computed by value iteration.

Contraction mappings

Let X be a Banach space 1 with norm ‖ · ‖, and let B be a mapping on X to itself. B is called a

contraction mapping if for some β ∈ (0, 1)

‖Bx− By‖ ≤ β · ‖x− y‖ for all x, y ∈ X. (3.6)

The number β is called the contraction factor of B. An element x ∈ X is said to be a fixed-point

of B if Bx∗ = x∗. The next theorem 2 ensures the existence of a unique fixed-point for contraction

mappings in a Banach space.

Theorem 3.1 Banach Fixed-point Theorem

Let X be a Banach space and suppose B : X → X is a contraction mapping. Then,

(1) x∗ = limn→∞Bnx exists for every x ∈ X and x∗ is a fixed-point of B.

(2) x∗ is the unique fixed-point of B.

The next theorem provides bounds on the distance between the fixed-point x∗ and the elements

Bnx for n = 0, 1, 2,

Theorem 3.2

Let X be a Banach space and suppose B : X → X is a contraction mapping with contraction

factor β and fixed-point x∗. Then,

(1) ‖x∗ −Bnx‖ ≤ β(1− β)−1 · ‖Bnx−Bn−1x‖ ≤ βn(1− β)−1 · ‖Bx − x‖ ∀x ∈ X, n ∈ N.

(2) ‖x∗ − x‖ ≤ (1− β)−1 · ‖Bx− x‖ ∀x ∈ X .

Proof

(1) For m > n ≥ 1, we have

‖Bmx−Bnx‖ ≤ β · ‖Bm−1x−Bn−1x‖

≤ β · {‖Bm−1x− Bm−2x‖+ ‖Bm−2x− Bm−3x‖+ · · ·+ ‖Bnx−Bn−1x‖}
≤ β · {βm−n−1 + βm−n−2 + · · ·+ 1} · ‖Bnx− Bn−1x‖
≤ β(1− β)−1 · ‖Bnx−Bn−1x‖.

1For a definition of Banach space, see textbooks on Functional Analysis or Appendix C in Puterman [227].
2For a proof of the theorem, see textbooks on Functional Analysis or Puterman [227], p.150.

46 CHAPTER 3. DISCOUNTED REWARDS

Hence, since Bmx∗ = x∗, we obtain

‖x∗ −Bnx‖ = ‖Bmx∗ −Bnx‖ ≤ ‖Bmx∗ −Bmx‖+ ‖Bmx− Bnx‖
≤ βm · ‖x∗ − x‖+ β(1− β)−1 · ‖Bnx−Bn−1x‖ for m > n ≥ 1.

Letting m→∞ yields ‖x∗ −Bnx‖ ≤ β(1− β)−1 · ‖Bnx −Bn−1x‖.
Because ‖Bnx− Bn−1x‖ ≤ βn−1 · ‖Bx− x‖, we obtain the second inequality

β(1− β)−1 · ‖Bnx− Bn−1x‖ ≤ βn(1− β)−1 · ‖Bx− x‖.
(2) Apply the triangle inequality and part (1) for n = 1:

‖x∗ − x‖ ≤ ‖x∗ −Bx‖ + ‖Bx − x‖ ≤ β(1− β)−1 · ‖Bx − x‖+ ‖Bx− x‖

= (1− β)−1 · ‖Bx− x‖.

Remark:

The above theorem implies that the convergence rate of Bnx to the fixed-point x∗ is at least

linear (cf. Stoer and Bulirsch ([283] p.251)). This kind of convergence is also called geometric

convergence.

Monotonicity

Let X be a partially ordered set and B : X → X . The mapping B is called monotone if x ≤ y

implies Bx ≤ By.

Theorem 3.3

Let X be a partially ordered Banach space. Suppose that B : X → X is a monotone contraction

mapping with fixed-point x∗. Then,

(1) Bx ≤ x implies x∗ ≤ Bx ≤ x.
(2) Bx ≥ x implies x∗ ≥ Bx ≥ x.

Proof

(1) By the monotonicity of B, with induction on n, it can easily be verified that

x ≥ Bx ≥ · · · ≥ Bnx, n ∈ N. Therefore, we have x∗ = limn→∞Bnx ≤ Bx ≤ x.
(2) The proof is similar to the proof of part (1).

It is easy to verify that the Euclidian N -space RN with norm ‖x‖∞ := max1≤i≤N |xi| (supremum

norm) and with ordering x ≤ y if xi ≤ yi for all 1 ≤ i ≤ N is a partially ordered Banach space.

Also, for x ∈ R
N , we have x ≤ ‖x‖∞ · e, where e is the vector with all elements equal to 1.

Lemma 3.1

(1) Let B : RN → RN be a monotone contraction mapping with contraction factor β, and let

d be a scalar. Then, x ≤ y + d · e implies Bx ≤ By + β · |d| · e.
(2) Let B : RN → RN be a mapping with the property that x ≤ y + d · e implies

Bx ≤ By + β · |d| · e for some 0 ≤ β < 1 and for all scalars d. Then, with respect to the

supremum norm, B is a monotone contraction with contraction factor β.

3.2. MONOTONE CONTRACTION MAPPINGS 47

Proof

(1) From the monotonicity of B it follows that

Bx ≤ B(y + d · e) = B(y + d · e)− By +By ≤ ‖B(y + d · e)− By‖∞ · e +By

≤ β · ‖(y + d · e)− y‖∞ · e+By = β · |d| · e +By.

(2) Taking d = 0 yields the monotonicity. Since x− y ≤ ‖x− y‖∞ · e and y − x ≤ ‖x− y‖∞ · e,
the property of B, mentioned in part (2) of the theorem, implies that Bx−By ≤ β ·‖x−y‖∞ ·e
and By −Bx ≤ β · ‖x− y‖∞ · e, which yields ‖Bx −By‖∞ ≤ β · ‖x− y‖∞.

Lemma 3.2

Let B : R
N → R

N be a monotone contraction mapping with respect to the supremum norm and

with contraction factor +β and fixed-point x∗. Suppose that there exist scalars a and b such that

a · e ≤ Bx − x ≤ b · e for some x ∈ R
N . Then,

x− (1− β)−1|a| · e ≤ Bx − β(1− β)−1|a| · e ≤ x∗ ≤ Bx + β(1− β)−1|b| · e ≤ x+ (1− β)−1|b| · e.

Proof

Since Bx ≤ x+ b · e ≤ x + |b| · e, it follows from the monotonicity of B that

B2x ≤ B(x+ |b| · e) = B(x+ |b| · e)− Bx +Bx ≤ Bx+ ‖B(x+ |b| · e)− Bx‖∞ · e
≤ Bx + β|b| · e ≤ x+ (1 + β)|b| · e.

Using the same arguments it can be shown (with induction on n) that

Bnx ≤ Bx + (β + · · ·+ βn−1)|b| · e ≤ x+ (1 + β + · · ·+ βn−1)|b| · e, n ∈ N.

By letting n→∞,

x∗ ≤ Bx+ β(1− β)−1|b| · e ≤ x+ (1− β)−1|b| · e.
Because Bx ≥ x+ a · e ≥ x− |a| · e, an analogous reasoning shows that

x∗ ≥ Bx− β(1− β)−1|a| · e ≤ x− (1− β)−1|a| · e.

Corollary 3.1

Let B be a monotone contraction in RN with respect to the supremum norm and with contraction

factor β and fixed-point x∗. Then,

x− (1− β)−1‖Bx − x‖∞ · e ≤ Bx − β(1− β)−1‖Bx− x‖∞ · e ≤ x∗

≤ Bx + β(1− β)−1‖Bx− x‖∞ · e ≤ x + (1− β)−1‖Bx− x‖∞ · e.

Proof

Notice that −‖Bx − x‖∞ · e ≤ Bx − x ≤ ‖Bx− x‖∞ · e and apply Lemma 3.2.

Lemma 3.3

Let B : R
N → R

N be a monotone contraction mapping with respect to the supremum norm and

with contraction factor β, fixed-point x∗ and with the property that B(x+ c · e) = Bx + βc · e for

every x ∈ R
N and scalar c.

Suppose that there exist scalars a and b such that a · e ≤ Bx − x ≤ b · e for some x ∈ R
N . Then,

x+ (1− β)−1a · e ≤ Bx + β(1− β)−1a · e ≤ x∗ ≤ Bx + β(1− β)−1b · e ≤ x+ (1− β)−1b · e.

48 CHAPTER 3. DISCOUNTED REWARDS

Proof

By the monotonicity of B it follows from Bx ≤ x+ b · e that

B2x ≤ B(x + b · e) = Bx + β · e ≤ x+ (1 + β)b · e.
By induction on n, we obtain

Bnx ≤ Bx + (β + β2 + · · ·+ βn−1)b · e ≤ x+ (1 + β + β2 + · · ·+ βn−1)b · e.
Taking the limit for n→∞ gives,

x∗ ≤ Bx+ β(1− β)−1b · e ≤ x+ (1− β)−1b · e.
The proof of the lower bounds is similar.

3.3 The optimality equation

In this section we discuss the optimality equation (3.4) for the α-discounted value vector vα. We

show that vα is the unique solution of (3.4). Furthermore, we will derive bounds for the value

vector. By these bounds suboptimality tests can be formulated to exclude nonoptimal actions.

The results are obtained by applying the theory of monotone contraction mappings, as presented

in Section 3.2. Besides the mapping U , defined in (3.5), we introduce a mapping Lπ : RN → RN

for any randomized decision rule π, defined by

Lπx := r(π) + αP (π)x. (3.7)

Let fx(i) be such that

ri
(

fx(i)
)

+ α
∑

j

pij

(

fx(i)
)

xj = maxa

{

ri(a) + α
∑

j

pij(a)xj

}

, i ∈ S.

Then,

Lfxx = Ux = maxf Lfx,

where the maximization is taken over all deterministic decision rules f . Let ‖P (π)‖∞ be the

subordinate matrix norm3, then ‖P (π)‖∞ satisfies (see e.g. Stoer and Boelirsch [283], p. 178)

‖P (π)‖∞ = maxi

∑

j

pij(π) = 1.

Theorem 3.4

The mappings Lπ and U are monotone contraction mappings with respect to the supremum norm

and with contraction factor α.

Proof

Suppose that x ≥ y. Let π be any stationary decision rule. Because P (π) ≥ 0,

Lπx = r(π) + αP (π)x ≥ r(π) + αP (π)y = Lπy, (3.8)

3Given a vector norm ‖x‖, the corresponding subordinate matrix norm for a square matrix A is defined by

‖A‖ = max{x | ‖x‖=1}‖Ax‖.

3.3. THE OPTIMALITY EQUATION 49

i.e. Lπ is monotone. U is also monotone, since Ux = maxf Lfx ≥ Lfyx ≥ Lfyy = Uy.

Furthermore, we obtain

‖Lπx− Lπy‖∞ = ‖αP (π)(x− y)‖∞ ≤ α · ‖P (π)‖∞ · ‖x− y‖∞ = α · ‖x− y‖∞,

i.e. Lπ is a contraction with contraction factor α. For the mapping U we have,

Ux − Uy = Lfxx− Lfyy ≤ Lfxx− Lfxy = α · P (fx)(x− y) ≤ α · ‖x− y‖∞ · e. (3.9)

Interchanging x and y yields

Uy − Ux ≤ α · ‖x− y‖∞ · e. (3.10)

From (3.9) and (3.10) it follows that ‖Ux − Uy‖∞ ≤ α · ‖x − y‖∞, i.e. U is a contraction with

contraction factor α.

The next theorem shows that for any randomized decision rule π, the total expected α-discounted

reward of the policy π∞ is the fixed-point of the mapping Lπ.

Theorem 3.5

vα(π∞) is the unique solution of the functional equation Lπx = x.

Proof

Theorem 3.1 and Theorem 3.4 imply that it is sufficient to show that Lπv
α(π∞) = vα(π∞).

We have

Lπv
α(π∞)− vα(π∞) = r(π)− {I − αP (π)}vα(π∞)

= r(π)− {I − αP (π)}{I − αP (π)}−1r(π) = r(π)− r(π) = 0.

Corollary 3.2

vα(π∞) = limn→∞ Ln
πx for any x ∈ R

N .

The next theorem shows that the value vector v∞ is the fixed-point of the mapping U . The proof

of this result is more complicated than the proof of Theorem 3.5

Theorem 3.6

vα is the unique solution of the functional equation Ux = x.

Proof

It is sufficient to show that Uvα = vα. Let R = (π1, π2, . . .) be an arbitrary Markov policy. Then,

vα(R) = r(π1) +
∑∞

t=2 αt−1P (π1)P (π2) · · ·P (πt−1)r(πt)

= r(π1) + αP (π1)
∑∞

s=1 αs−1P (π2)P (π3) · · ·P (πs)r(πs+1)

= r(π1) + αP (π1)vα(R2) = Lπ1vα(R2),

50 CHAPTER 3. DISCOUNTED REWARDS

where R2 = (π2, π3, . . .). From the monotonicity of Lπ1 and the definition of U , we obtain

vα(R) = Lπ1vα(R2) ≤ Lπ1vα ≤ Uvα, R ∈ C(M).

Hence, vα = supR∈C(M) v
α(R) ≤ Uvα.

In order to show the reverse inequality vα ≥ Uvα, take any ε > 0. Since vα = supR∈C(M) v
α(R),

for any j ∈ S there exists a Markov policy Rε
j = (π1(j), π2(j), . . .) such that vα

j (Rε
j) ≥ vα

j − ε.
Let ai ∈ A(i) be such that ri(ai) + α

∑

j pij(ai)v
α
j = maxa {ri(a) + α

∑

j pij(a)v
α
j }, i ∈ S.

Consider the policy R∗ = (π1, π2, . . .) defined by

π1
ia :=

{

1 if a = ai

0 otherwise
and πt

i1a1···ita := πt−1
ita

(i2), a ∈ A(it), t ≥ 2.

So, R∗ is the policy that chooses ai in state i at time point t = 1, and if the state at time t = 2

is i2, then the policy follows Rε
i2

, where the process is considered to be originating in state i2.

Therefore,

vα
i ≥ vα

i (R∗) = ri(ai) + α
∑

j pij(ai)v
α
j (Rε

j) ≥ ri(ai) + α
∑

j pij(ai)(v
α
j − ε)

= maxa {ri(a) + α
∑

j pij(a)v
α
j } − α · ε = (Uvα)i − α · ε, i ∈ S.

Since ε > 0 is arbitrarily chosen, vα ≥ Uvα.

Because vα = Uvα = Lfvαvα, it follows from Theorem 3.5 that vα = vα(f∞vα), i.e. f∞vα is an

optimal policy. If f∞ ∈ C(D) satisfies

ri(f) + α
∑

j

pij(f)vα
j = maxa {ri(a) + α

∑

j

pij(a)v
α
j }, i ∈ S,

then f∞ is called a conserving policy. Conserving policies f∞ satisfy Lfv
α = Uvα = vα and are

optimal policies. Therefore, the equation Ux = x is called the optimality equation.

Corollary 3.3

(1) There exists a deterministic α-discounted optimal policy.

(2) vα = limn→∞ Unx for any x ∈ R
N .

(3) Any conserving policy is α-discounted optimal.

As already mentioned, we will derive bounds for the value vector vα. These bounds can be

obtained by using Lemma 3.3. Notice that the mappings Lπ and U satisfy, for any x ∈ RN and

any scalar c, Lf (x+ c · e) = Lfx+ αc · e and U(x+ c · e) = Ux+ αc · e.

Theorem 3.7

For any x ∈ RN , we have

(1) x− (1− α)−1‖Ux− x‖∞ · e ≤ Ux− α(1− α)−1‖Ux− x‖∞ · e ≤ vα(f∞x) ≤ vα ≤
Ux+ α(1− α)−1‖Ux− x‖∞ · e ≤ x+ (1− α)−1‖Ux− x‖∞ · e.

(2) ‖vα − x‖∞ ≤ (1− α)−1‖Ux− x‖∞.
(3) ‖vα − vα(f∞x)‖∞ ≤ 2α(1− α)−1‖Ux− x‖∞.

3.3. THE OPTIMALITY EQUATION 51

Proof

Take an arbitrary x ∈ R
N . By Lemma 3.3, for a = −‖Ux − x‖∞, b = ‖Ux− x‖∞ and B = Lfx ,

and by the definition of vα, we obtain (notice that Bx = Lfxx = Ux),

x − (1− α)−1‖Ux− x‖∞ · e ≤ Ux− α(1− α)−1‖Ux− x‖∞ · e ≤ vα(f∞x) ≤ vα.

Next, applying Lemma 3.3 with B = U , gives the remaining part of (1), i.e.

vα ≤ Ux+ α(1− α)−1‖Ux− x‖∞ · e ≤ x+ (1− α)−1‖Ux− x‖∞ · e.

The parts (2) and (3) follow directly from part (1).

The next theorem provides a stronger bound for ‖vα − vα(f∞x)‖∞. This theorem uses the span

of a vector y ∈ RN , which is defined by span (y) := maxi yi −mini yi.

Theorem 3.8

For any x ∈ R
N , we have

(1) x+ (1− α)−1mini (Ux− x)i · e ≤ Ux+ α(1− α)−1mini (Ux− x)i · e ≤ vα(f∞x) ≤ vα ≤
Ux+ α(1− α)−1maxi (Ux− x)i · e ≤ x+ (1− α)−1maxi Ux− x)i · e.

(2) ‖vα − vα(f∞x)‖∞ ≤ α(1− α)−1span (Ux− x).

Proof

Note that mini (Ux− x)i · e ≤ Ux− x ≤ maxi (Ux− x)i · e. It is easy to verify that for

a = mini (Ux− x)i and b = maxi (Ux− x)i the proof is similar to the proof of Theorem 3.7.

Remark

Since mini (Ux − x)i ≤ ‖Ux − x‖∞ and maxi (Ux − x)i ≤ ‖Ux − x‖∞, we have the inequality

span (Ux−x) ≤ 2 ·‖Ux−x‖∞. Consequently, the bound given by Theorem 3.8 part (2) is stronger

than the bound given by Theorem 3.7 part (3).

Next, we discuss the elimination of suboptimal actions. An action a ∈ A(i) is called suboptimal

if there doesn’t exist an α-discounted optimal policy f∞ ∈ C(D) with f(i) = a. Because f∞ is

α-discounted optimal if and only if vα(f∞) = vα, and because vα = Uvα, an action a ∈ A(i) is

suboptimal if and only if

vα
i > ri(a) + α

∑

j

pij(a)v
α
j . (3.11)

Suboptimal actions can be disregarded. Notice that formula (3.11) is in some sense useless,

because vα is unknown. However, by upper and lower bounds on vα as given in Theorems 3.7

and 3.8, suboptimality tests can be derived, as illustrated in the following theorem.

Theorem 3.9

Suppose that x ≤ vα ≤ y. If ri(a) + α
∑

j pij(a)yj < (Ux)i, then action a ∈ A(i) is suboptimal.

52 CHAPTER 3. DISCOUNTED REWARDS

Proof

vα
i = (Uvα)i ≥ (Ux)i > ri(a) + α

∑

j pij(a)yj ≥ ri(a) + α
∑

j pij(a)v
α
j . The first inequality is

justified by the monotonicity of U .

Corollary 3.4

Suppose that for some scalars b and c, we have x+ b · e ≤ vα ≤ x+ c · e. If

ri(a) + α
∑

j

pij(a)xj < (Ux)i − α(c− b), (3.12)

then action a ∈ A(i) is suboptimal.

Proof

ri(a) + α
∑

j pij(a)(xj + c) = ri(a) + α
∑

j pij(a)xj + α · c < (Ux)i + α · b = {U(x+ b · e)}i.

Applying Corollary 3.4 on the bounds of vα, derived in the Theorems 3.7 and 3.8, gives the

following tests for the elimination of a suboptimal action a ∈ A(i):

ri(a) + α
∑

j

pij(a)xj < (Ux)i − 2α(1− α)−1‖Ux− x‖∞. (3.13)

ri(a) + α
∑

j

pij(a)(Ux)j < (U2x)i − 2α2(1− α)−1‖Ux− x‖∞. (3.14)

ri(a) + α
∑

j

pij(a)xj < (Ux)i − α(1− α)−1span (Ux− x). (3.15)

ri(a) + α
∑

j

pij(a)(Ux)j < (U2x)i − α2(1− α)−1span (Ux− x). (3.16)

A suboptimality test T1 is said to be stronger than a suboptimality test T2 if every action that is

excluded as being suboptimal by test T2 is also excluded as suboptimal by test T1. The following

theorem is intuitively obvious.

Theorem 3.10

Suboptimality tests based on stronger bounds yield stronger tests.

Proof

Suppose that x1 ≤ x2 ≤ vα ≤ y2 ≤ y1. Assume that an action a ∈ A(i) is suboptimal by a test

based on x1 and y1, i.e. ri(a) +
∑

j pij(a)y
1
j < (Ux1)i. Then,

ri(a) +
∑

j

pij(a)y
2
j ≤ ri(a) +

∑

j

pij(a)y
1
j < (Ux1)i ≤ (Ux2)i,

i.e. a is also suboptimal by the test based on x2 and y2.

Corollary 3.5

Suboptimality test (3.16) is stronger than any other test; both the tests (3.15) and (3.14) are

stronger than test (3.13), but are not mutually comparable.

3.4. POLICY ITERATION 53

Proof

Since −‖Ux − x‖∞ ≤ mini (Ux− x)i ≤ maxi (Ux− x)i ≤ ‖Ux− x‖∞, we have

(1) x− (1− α)−1‖Ux− x‖∞ · e ≤ x + (1− α)−1mini (Ux− x)i · e ≤ vα

≤ x + (1− α)−1maxi (Ux− x)i · e
≤ x + (1− α)−1‖Ux− x‖∞ · e,

implying that suboptimality test (3.15) is stronger that test (3.13).

(2) Ux− α(1− α)−1‖Ux− x‖∞ · e ≤ Ux+ α(1− α)−1mini (Ux− x)i · e ≤ vα

≤ Ux+ α(1− α)−1maxi (Ux− x)i · e
≤ Ux+ α(1− α)−1‖Ux− x‖∞ · e,

implying that suboptimality test (3.16) is stronger that test (3.14).

(3) x− (1− α)−1‖Ux− x‖∞ · e ≤ Ux+ α(1− α)−1‖Ux− x‖∞ · e ≤ vα

≤ Ux+ α(1− α)−1‖Ux− x‖∞ · e
≤ x + (1− α)−1‖Ux− x‖∞ · e,

implying that suboptimality test (3.14) is stronger that test (3.13).

(4) x+ (1− α)−1mini (Ux− x)i · e ≤ Ux+ α(1− α)−1mini (Ux− x)i · e ≤ vα

≤ Ux+ α(1− α)−1maxi (Ux− x)i · e
≤ x+ (1− α)−1maxi (Ux− x)i · e,

implying that suboptimality test (3.16) is stronger that test (3.15).

Remark

In order to apply the tests (3.14) and (3.16) we need U2x. However, in that case it is better to

use the tests (3.13) and (3.15) with Ux instead of x, since ‖U2x− Ux‖∞ ≤ α · ‖Ux− x‖∞ and

span (U2x− Ux) ≤ α · span (Ux− x) (see Exercise 3.9).

3.4 Policy iteration

In the method of policy iteration a sequence of deterministic policies f∞1 , f∞2 , . . . is constructed

such that

vα(f∞k+1) > vα(f∞k) for k = 1, 2, . . . (3.17)

where x > y, for x, y ∈ RN , means that xi ≥ yi for every i and xi > yi for at least one i. Because

C(D) is finite, the method of policy iteration is also finite. We will show that the method gives

an α-discounted optimal policy upon termination.

For every i ∈ S and f∞ ∈ C(D), the action set A(i, f) is defined by

A(i, f) := {a ∈ A(i) | ri(a) + α
∑

j

pij(a)v
α
j (f∞) > vα

i (f∞)}. (3.18)

The intuitive idea of the policy iteration method is that if action f(i) is replaced by an action

a ∈ A(i, f), the resulting policy improves the total α-discounted rewards. Therefore, A(i, f) are

called the set of improving actions. In the next theorem we show the correctness of this notion.

54 CHAPTER 3. DISCOUNTED REWARDS

Theorem 3.11
(1) If A(i, f) = ∅ for every i ∈ S, then f∞ is an α-discounted optimal policy.

(2) If A(i, f) 6= ∅ for some i ∈ S, then vα(g∞) > vα(f∞) for any g∞ ∈ C(D) with g 6= f

and g(i) ∈ A(i, f) when g(i) 6= f(i).

Proof

(1) Since A(i, f) = ∅, we have for every i ∈ S, Lgv
α(f∞) = r(g) + αP (g)vα(f∞) ≤ vα(f∞)

for every deterministic decision rule g. By Theorem 3.3, this implies that

vα(g∞) ≤ Lgv
α(f∞) ≤ vα(f∞) for every g∞ ∈ C(D), i.e. f∞ is optimal.

(2) Take any g 6= f such that g(i) ∈ A(i, f) if g(i) 6= f(i). Then, if g(i) 6= f(i),

ri(g) + α
∑

j

pij(g)v
α
j (f∞) > vα

i (f∞). (3.19)

If g(i) = f(i),

ri(g) + α
∑

j

pij(g)v
α
j (f∞) = ri(f) + α

∑

j

pij(f)vα
j (f∞) = vα

i (f∞), (3.20)

the last equation by Theorem 3.5. From (3.19) and (3.20) it follows that

Lgv
α(f∞) = r(g) + αP (g)vα(f∞) > vα(f∞).

Hence, again by Theorem 3.3, we have vα(g∞) ≥ Lgv
α(f∞) > vα(f∞).

Algorithm 3.1 Policy iteration algorithm

Input: Instance of a discounted MDP.

Output: Optimal deterministic policy f∞ and the value vector vα.

1. Start with any f∞ ∈ C(D)

2. Compute vα(f∞) as the unique solution of the linear system Lf x = x

3. a. Compute sia(f) := ri(a) + α
∑

j pij(a)v
α
j (f∞)− vα

i (f∞) for all (i, a) ∈ S × A

b. Determine A(i, f) := {a ∈ A(i) | sia(f) > 0} for all i ∈ S

4. if A(i, f) = ∅ for all i ∈ S then go to step 6

otherwise take any g 6= f with g(i) ∈ A(i, f) when g(i) 6= f(i).

5. f := g and return to step 2.

6. f∞ is an α-discounted optimal policy and vα(f∞) is the value vector vα (STOP).

Remark

There is some freedom for the choice of g in step 4. A usual choice is to take g such that

sig(i)(f) = maxa sia(f), i ∈ S. (3.21)

Then, for each i ∈ S: g(i) = f(i) when A(i, f) = ∅ and g(i) ∈ A(i, f) when A(i, f) 6= ∅.

3.4. POLICY ITERATION 55

Example 3.1

α = 1
2 ; S = {1, 2, 3}; A(1) = A(2) = A(3) = {1, 2, 3};

r1(1) = 1, r1(2) = 2, r1(3) = 3; r2(1) = 6, r2(2) = 4, r2(3) = 5; r3(1) = 8, r3(2) = 9, r3(3) = 7;

p11(1) = 1; p12(1) = 0; p13(1) = 0; p11(2) = 0; p12(2) = 1; p13(2) = 0;

p11(3) = 0; p12(3) = 0; p13(3) = 1; p21(1) = 1; p22(1) = 0; p23(1) = 0;

p21(2) = 0; p22(2) = 1; p23(2) = 0; p21(3) = 0; p22(3) = 0; p23(3) = 1;

p31(1) = 1; p32(1) = 0; p33(1) = 0; p31(2) = 0; p32(2) = 1; p33(2) = 0;

p31(3) = 0; p32(3) = 0; p33(3) = 1.

Start with the policy f , with f(1) = 3, f(2) = 2 and f(3) = 1.

In step 4 of the algorithm we will take g such that sig(i)(f) = maxa sia(f), i ∈ S.

Iteration 1

The system Lf x = x becomes:

x1 − 1
2x3 = 3

1
2x2 = 4

−1
2x1 + x3 = 8

→

solution: vα(f∞) = (28
3 , 8,

38
3).

s11(f) = −11
3 , s12(f) = −10

3 , s13(f) = 0.

s21(f) = 8
3 , s22(f) = 0, s23(f) = 10

3 .

s31(f) = 0, s32(f) = 1
3 , s33(f) = 2

3 .

A(1, f) = ∅; A(2, f) = {1, 3}; A(3, f) = {2, 3}.
g(1) = g(2) = g(3) = 3, which becomes the new policy: f(1) = f(2) = f(3) = 3.

Iteration 2

The system Lf x = x becomes:

x1 − 1
2x3 = 3

x2 − 1
2x3 = 5
1
2x3 = 7

→

solution: vα(f∞) = (10, 12, 14).

s11(f) = −4, s12(f) = −2, s13(f) = 0.

s21(f) = −1, s22(f) = −2, s23(f) = 0.

s31(f) = −1, s32(f) = 1, s33(f) = 0.

A(1, f) = ∅; A(2, f) = ∅; A(3, f) = {2}.
g(1) = g(2) = 3 and g(3) = 2, which becomes the new policy: f(1) = f(2) = 3 and f(3) = 2.

Iteration 3

The system Lfx = x becomes:

x1 − 1
2x3 = 3

x2 − 1
2x3 = 5

− 1
2x2 + x3 = 9

→

solution: vα(f∞) = (32
3 ,

38
3 ,

46
3).

s11(f) = −11
3 , s12(f) = −7

3 , s13(f) = 0.

s21(f) = −4
3 , s22(f) = −7

3 , s23(f) = 0.

s31(f) = −2, s32(f) = 0, s33(f) = −2
3 .

A(1, f) = ∅; A(2, f) = ∅; A(3, f) = ∅}.
f∞ with f(1) = f(2) = 3 and f(3) = 2 is an optimal policy and vα(f∞) = vα = (32

3 ,
38
3 ,

46
3) is

the value vector.

We now discuss the elimination of suboptimal actions with test (3.15) and x = vα(f∞). Since

(Ux− x)i = maxa {ri(a) +
∑

j

pij(a)v
α
j (f∞)} − vα

i (f∞) = maxa sia(f), i ∈ S,

56 CHAPTER 3. DISCOUNTED REWARDS

and span(Ux− x) = maxi {maxa sia(f)} −mini {maxa sia(f)}, (3.15) becomes

sia(f) < maxa sia(f)− α(1− α)−1
{

maxi{maxa sia(f)} −mini {maxa sia(f)}
}

,

resulting in the following theorem.

Theorem 3.12 (Suboptimality test)

If siai
(f) < maxa sia(f) − α(1 − α)−1

{

maxi {maxa sia(f)} − mini {maxa sia(f)}
}

, then action

ai ∈ A(i) is a suboptimal action.

Remark

Since sif(i)(f) = 0, i ∈ S, we have maxi{maxasia(f)} ≥ mini{maxasia(f)} ≥ minisif(i)(f) = 0.

Algorithm 3.2 Policy iteration algorithm with suboptimality test (3.15) and using (3.21)

Input: Instance of a discounted MDP.

Output: Optimal deterministic policy f∞ and the value vector vα.

1. Start with any f∞ ∈ C(D).

2. Compute vα(f∞) as the unique solution x of the linear system Lfx = x.

3. a. Compute sia(f) := ri(a) + α
∑

j pij(a)v
α
j (f∞)− vα

i (f∞) for all (i, a) ∈ S ×A.

b. Determine A(i, f) := {a ∈ A(i) | sia(f) > 0} for every i ∈ S.

4. if A(i, f) = ∅ for all i ∈ S then go to step 7.

otherwise take g such that sig(i)(f) = maxa sia(f), i ∈ S.

5. A(i) :=
{

a
∣

∣ sia(f) ≥ maxa sia(f)−α(1−α)−1
{

maxi {maxa sia(f)}−mini {maxa sia(f)}
}

for all i ∈ S.

6. f := g and return to step 2.

7. f∞ is an α-discounted optimal policy and vα(f∞) is the value vector vα (STOP).

Example 3.1 (continued)

Start with the policy f , with f(1) = 3, f(2) = 2 and f(3) = 1.

Iteration 1

The system Lf x = x becomes:

x1 − 1
2x3 = 3

1
2x2 = 4

−1
2x1 + x3 = 8

→

solution: vα(f∞) = (28
3 , 8,

38
3).

s11(f) = −11
3 , s12(f) = −10

3 , s13(f) = 0.

s21(f) = 8
3 , s22(f) = 0, s23(f) = 10

3 .

s31(f) = 0, s32(f) = 1
3 , s33(f) = 2

3 .

A(1, f) = ∅; A(2, f) = {1, 3}; A(3, f) = {2, 3}.

3.4. POLICY ITERATION 57

g(1) = g(2) = g(3) = 3, which becomes the new policy: f(1) = f(2) = f(3) = 3.

α(1− α)−1
{

maxi {maxa sia(f)} −mini {maxa sia(f)}
}

= 10
3 .

In state 1, action 1 is excluded, because −11
3 = s11(f) < maxa s1a(f)− 10

3 = −10
3 .

A(1) = {2, 3}; A(2) = {1, 2, 3}; A(3) = {1, 2, 3}.
Iteration 2

The system Lf x = x becomes:

x1 − 1
2x3 = 3

x2 − 1
2x3 = 5
1
2x3 = 7

→

solution: vα(f∞) = (10, 12, 14).

s12(f) = −2, s13(f) = 0.

s21(f) = −1, s22(f) = −2, s23(f) = 0.

s31(f) = −1, s32(f) = 1, s33(f) = 0.

A(1, f) = ∅; A(2, f) = ∅; A(3, f) = {2}.
g(1) = g(2) = 3 and g(3) = 2, which becomes the new policy: f(1) = f(2) = 3 and f(3) = 2.

α(1− α)−1
{

maxi {maxa sia(f)} −mini {maxa sia(f)}
}

= 1.

In state 1, action 2 is excluded, because −2 = s12(f) < maxa s1a(f)− 1 = −1.

In state 2, action 2 is excluded, because −2 = s22(f) < maxa s2a(f)− 1 = −1.

In state 3, action 1 is excluded, because −1 = s31(f) < maxa s3a(f)− 1 = 0.

A(1) = {3}; A(2) = {1, 3}; A(3) = {2, 3}.
Iteration 3

The system Lfx = x becomes:

x1 − 1
2x3 = 3

x2 − 1
2x3 = 5

− 1
2x2 + x3 = 9

→

solution: vα(f∞) = (32
3 ,

38
3 ,

46
3).

s13(f) = 0.

s21(f) = −4
3 , s23(f) = 0.

s32(f) = 0, s33(f) = −2
3 .

A(1, f) = ∅; A(2, f) = ∅; A(3, f) = ∅.
f∞ with f(1) = f(2) = 3 and f(3) = 2 is an optimal policy and vα(f∞) = vα = (32

3 ,
38
3 ,

46
3) is

the value vector.

Next, we show that the policy iteration algorithm with (3.21) for the following policy is equivalent

to Newton’s method for solving the optimality equation Ux = x. Furthermore, we can make a

statement about the convergence rate.

The choice (3.21) implies that r(g) + αP (g)vα(f∞)− vα(f∞) = Uvα(f∞)− vα(f∞), i.e.

Lgv
α(f∞) = Uvα(f∞) and g = fvα(f∞). (3.22)

Define the operator F by

F : R
N → R

N by Fx = Ux− x. (3.23)

Hence, vα is the unique solution of the equation Fx = 0. Since Lfxx = Ux, it follows that

Fx = Lfxx− x = r(fx) + αP (fx)x− x. (3.24)

58 CHAPTER 3. DISCOUNTED REWARDS

Suppose that Newton’s method is applied to solve the equation Fx = 0. This method works as

follows: starting with the vector x1, the successive values x2, x3, . . . are computed by the formula

xn+1 = xn − {∇Fxn}−1Fxn, (3.25)

where ∇F is the Jacobian of F , i.e. ∇Fxn is an N ×N matrix defined by

{

∇Fxn
}

ij
=
{∂(Fx)i

∂xj

}

x=xn
.

From (3.24) it follows that ∇Fxn = αP (fxn) − I , where we assume that r(fx) and P (fx) are

constant in a small neighbourhood of xn. Hence, (3.25) can be written as

xn+1 = xn +{I−αP (fxn)}−1
{

r(fxn)−{I−αP (fxn)}xn
}

= xn +vα(f∞xn)−xn = vα(f∞xn). (3.26)

Theorem 3.13

Suppose that f∞1 , f∞2 , . . . , f∞p are the policies obtained by the policy iteration algorithm with (3.21)

for the following policy. On the other hand, suppose that Newton’s method is applied in order to

solve the equation Fx = 0 with starting vector x1 = vα(f∞1). Then,

(1) xn = vα(f∞n), n = 1, 2, . . . , p.

(2) ‖vα − vα(f∞n+1)‖∞ ≤ 2α(1− α)−1‖vα − vα(f∞n)‖∞, n = 1, 2, . . . , p− 1.

Proof

(1) We apply induction on n (the result is obvious for n = 1). Suppose that xn = vα(f∞n), then

we have to show that xn+1 = vα(f∞n+1). By (3.26) and the induction hypothesis,

xn+1 = vα(f∞xn) = vα(f∞vα(f∞
n)). (3.27)

It follows from (3.22) that fn+1 = fvα(f∞
n). Hence, by (3.27),

xn+1 = vα(f∞vα(f∞
n)) = vα(f∞n+1). (3.28)

(2) 0 ≤ vα − vα(f∞n+1) = vα − xn+1 = vα − xn − {I − αP (fxn)}−1Fxn, and

Fxn = Uxn − xn = Uxn − xn − Uvα + vα ≥ Lfvαx
n − xn − Uvα + vα

= Lfvαxn − xn − Lfvαvα + vα = {I − αP (fvα)}(vα− xn).

Hence,

0 ≤ vα − vα(f∞n+1) ≤ vα − xn − {I − αP (fxn)}−1{I − αP (fvα)}(vα− xn)

= {I − αP (fxn)}−1{I − αP (fxn)}(vα − xn)− {I − αP (fxn)}−1{I − αP (fvα)}(vα − xn)

= {I − αP (fxn)}−1{αP (fvα)− αP (fxn)}(vα− xn)

= α · {I − αP (fxn)}−1{P (fvα)− P (fxn)}(vα − xn).

Consequently,

3.4. POLICY ITERATION 59

‖vα − vα(f∞n+1)‖∞ ≤ α · ‖{I − αP (fxn)}−1‖∞ · ‖P (fvα)− P (fxn)‖∞ · ‖vα − vα(f∞n)‖∞
= α · ‖∑∞

t=0 [αP (fxn)]t‖∞ · ‖P (fvα)− P (fxn)‖∞ · ‖vα − vα(f∞n)‖∞
≤ α(1− α)−1‖P (fvα)− P (fxn)‖∞ · ‖vα − vα(f∞n)‖∞
= 2α(1− α)−1‖vα − vα(f∞n)‖∞.

Remark

In the last line of the proof the inequality ‖P (fvα)−P (fxn)‖∞ ≤ 2 is used. This is a theoretical

bound. Usually, ‖P (fvα)− P (fxn)‖∞ is much smaller and for large n this norm tends to zero.

In general, the solution of the linear system Lfx = x by Gauss elimination in step 2 of the

policy iteration algorithm needs O(N 3) operations (cf. Stoer and Bulirsch ([283] pp. 169-172).

However, by applying the next theorem, we will show that this evaluation can be done inO(mN 2)

operations, where m is the number of states i in which g(i) 6= f(i) with g the decision rule in

step 4 of the policy iteration algorithm 3.1 or 3.2.

Theorem 3.14

(B + UV t)−1 = B−1 − B−1U(I + V tB−1U)−1V tB−1, assuming each of the inverses exists and

that the matrices have the appropriate dimensions. In this expression, V t denotes the transpose

of matrix V .

Proof

Let T = (I + V tB−1U)−1, then

(B + UV t)(B−1 − B−1UTV tB−1) = I − UTV tB−1 + UV tB−1 − UV tB−1UTV tB−1

= I − UTV tB−1 + UV tB−1 − U(T−1 − I)TV tB−1

= I − UTV tB−1 + UV tB−1 − UV tB−1 + UTV tB−1

= I.

Let {i | g(i) 6= f(i)} = {i1, i2, . . . , im}, U the N ×m matrix {ei1, ei2, . . . , eim}, where

eik is the ik-th unit vector in RN , and V is the N ×m matrix {v1, v2, . . . , vm}, where

vk
l = −α{pik l(g)− pikl(f)}, 1 ≤ k ≤ m, 1 ≤ l ≤ N . Then,

(UV t)kj =
∑

l uklvjl =

vk
j = −α{pikj(g)− pikj(f)} k = i1, i2, . . . , im, j ∈ S;

0 k 6= i1, i2, . . . , im, j ∈ S.

Hence, I − αP (g) = I − αP (f) + UV t. Applying Theorem 3.14 yields the next result.

Theorem 3.15

If I + V t{I − αP (f)}−1U is nonsingular, then

{I−αP (g)}−1 = {I−αP (f)}−1−{I−αP (f)}−1U{I+V t{I−αP (f)}−1U}−1V t{I−αP (f)}−1.

60 CHAPTER 3. DISCOUNTED REWARDS

Corollary 3.6

If {I − αP (f)}−1 is known, then {I − αP (g)}−1 can be computed in O(mN 2) operations.

Proof

‘Given {I − αP (f)}−1, {I − αP (g)}−1 can be computed as follows:

1. Y1 = V t{I − αP (f)}−1 : mN 2 operations; 5. Y5 = Y4Y1 : m2N operations;

2. Y2 = Y1U : m2N operations; 6. Y6 = {I − αP (f)}−1U : mN 2 operations;

3. Y3 = I + Y2 : m operations; 7. Y7 = Y6Y5 : mN 2 operations;

4. Y4 = Y −1
3 : m3 operations; 8. Y8 = {I − αP (f)}−1 − Y7 : N 2 operations.

Hence, the overall complexity is O(mN 2).

Remark

By Corollary 3.6, the computation of vα(g∞) = {I−αP (g)}−1r(g) (step 2 of the policy iteration

algorithm) requires also O(mN 2) operations. Because the computation of one sia(f) in step 3

of the algorithm requires O(N) operations, one iteration of the policy iteration algorithm has

complexity O
(

N (mN +M)
)

, where M := maxi |A(i)|.

3.5 Linear programming

The value vector vα is the unique solution of the optimality equation (3.4), i.e.

vα
i = maxa∈A(i) {ri(a) + α

∑

j pij(a)v
α
j }, i ∈ S.

Hence, vα satisfies

vα
i ≥ ri(a) + α

∑

j

pij(a)v
α
j for all (i, a) ∈ S ×A. (3.29)

Intuitively it is clear that vα is the smallest vector satisfying (3.29). This is the key property

for the linear programming approach towards computing the value vector. It turns out that

an optimal policy can be obtained from the dual linear program. We also show a one-to-one

correspondence between the stationary policies and the feasible solutions of the dual program,

such that the extreme points correspond to deterministic policies. Furthermore, we show that the

linear programming method for discounted MDPs can be considered as equivalent to the policy

iteration method, and that exclusion of suboptimal actions can also be included in the linear

programming method.

A vector v ∈ R
N is said to be α-superharmonic if

vi ≥ ri(a) + α
∑

j

pij(a)vj for all (i, a) ∈ S ×A. (3.30)

Theorem 3.16

vα is the smallest α-superharmonic vector (componentwise).

3.5. LINEAR PROGRAMMING 61

Proof

Since

vα
i = maxa∈A(i){ri(a) + α

∑

j pij(a)v
α
j } ≥ ri(a) + α

∑

j pij(a)v
α
j for all (i, a) ∈ S × A,

vα is α-superharmonic. Suppose that v ∈ R
N is also α-superharmonic. Then,

v ≥ r(f) + αP (f)v for every f∞ ∈ C(D),

which implies {I − αP (f)}v ≥ r(f). Since {I − αP (f)}−1 =
∑∞

t=0 αtP t(f) ≥ 0, we obtain

v ≥ {I − αP (f)}−1r(f) = vα(f∞) for all f∞ ∈ C(D).

Hence, vα
i = maxf v

α(f∞) ≤ v, i.e. vα is the smallest α-superharmonic vector.

Corollary 3.7

vα is the unique optimal solution of the linear programming problem

min

∑

j

βjvj

∣

∣

∣

∣

∣

∣

∑

j

{δij − αpij(a)}vj ≥ ri(a), (i, a) ∈ S ×A

(3.31)

where βj is any strictly positive number for every j ∈ S.

Proof

From Theorem 3.16 it follows that vα is a feasible solution of (3.31) and that vα ≤ v for every

feasible solution v of (3.31). Hence, vα is the unique optimal solution of (3.31).

By Corollary 3.7, the value vector vα can be found as optimal solution of the linear program

(3.31). This program does not give an optimal policy. However, the next theorem verifies that

an optimal policy can be obtained from the solution of the dual program, which is:

max

∑

(i,a)

ri(a)xi(a)

∣

∣

∣

∣

∣

∑

(i,a) {δij − αpij(a)}xi(a) = βj, j ∈ S
xi(a) ≥ 0, (i, a) ∈ S ×A

}

. (3.32)

Theorem 3.17

(1) Any feasible solution x of (3.32) satisfies
∑

a xj(a) > 0 for all j ∈ S.

(2) The dual program (3.32) has a finite optimal solution, say x∗.

(3) Any f∞∗ ∈ C(D) with x∗i
(

f∗(i)
)

> 0 for every i ∈ S is an α-discounted optimal policy.

Proof

(1) Let x be a feasible solution of (3.32). From the constraints of (3.32) it follows that

∑

a

xj(a) = βj + α
∑

(i,a)

pij(a)xi(a) ≥ βj > 0 for all j ∈ S.

(2) Since the primal program (3.31) has a finite optimal solution, namely the value vector vα,

62 CHAPTER 3. DISCOUNTED REWARDS

it follows from the theory of linear programming that the dual program (3.32) also has a

finite optimal solution.

(3) Take any f∞∗ ∈ C(D) with x∗i
(

f∗(i)
)

> 0 for every i ∈ S (such policy exists by part (1)).

Because x∗i
(

f∗(i)
)

> 0, i ∈ S, the complementary slackness property of linear programming

implies
∑

j

{δij − αpij(f∗)}vα
j = ri(f∗), i ∈ S.

Hence, in vector notation,

{I − αP (f∗)}vα = r(f∗), which implies vα = {I − αP (f∗)}−1r(f∗) = vα(f∞∗),

i.e. f∞∗ is an α-discounted optimal policy.

Observe that the primal program has N columns and
∑

i |A(i)| rows, while the dual program

has
∑

i |A(i)| rows and N columns.

If the simplex method is used, then the programs (3.31) and (3.32) are solved simultaneously.

Hence, by the simplex method both the value vector vα and an optimal policy are computed.

Next, we show the one-to-one correspondence between the feasible solutions of (3.32) and the set

C(S) of stationary policies. For π∞ ∈ C(S) the vector xπ with components xπ
i (a), (i, a) ∈ S×A,

is defined by

xπ
i (a) :=

{

βT{I − αP (π)}−1
}

i
· πia, (i, a) ∈ S ×A. (3.33)

Define, for any t ∈ N and (i, a) ∈ S × A, a random variable n
(t)
ia by

n
(t)
ia :=

{

1 if (Xt, Yt) = (i, a)

0 otherwise

Then, the total discounted number of times that (Xt, Yt) = (i, a) equals
∑∞

t=1 α
t−1 n

(t)
ia . The next

lemma shows that xπ
i (a) can be interpreted as the expected total discounted number of times

that (Xt, Yt) = (i, a), given initial distribution β, i.e. P{X1 = j} = βj for every j ∈ S, and policy

π∞.

Lemma 3.4

Given initial distribution β and a stationary policy π∞, xπ
i (a) satisfies xπ

i (a) = Eβ,π

{
∑∞

t=1 α
t−1n

(t)
ia

}

for all (i, a) ∈ S ×A.

Proof

Since {I − αP (π)}−1 =
∑∞

t=1 α
t−1P t−1(π), we have

xπ
i (a) =

∑

j βj · {
∑∞

t=1 α
t−1P t−1(π)}ji · πia =

∑∞
t=1 α

t−1
{
∑

j βj · Pπ{Xt = i | X1 = j}
}

· πia

=
∑∞

t=1 α
t−1
{∑

j βj · Pπ{Xt = i, Yt = a | X1 = j}
}

=
∑∞

t=1 α
t−1 · Eβ,π

{

n
(t)
ia

}

= Eβ,π

{∑∞
t=1 α

t−1n
(t)
ia

}

.

3.5. LINEAR PROGRAMMING 63

Conversely, for a feasible solution x of (3.32), define πx with elements πx
ia by

πx
ia :=

xi(a)
∑

a xi(a)
, (i, a) ∈ S ×A. (3.34)

Theorem 3.18

The mapping (3.33) is a one-to-one mapping of the set of stationary policies onto the set of

feasible solutions of the dual program (3.32) with (3.34) as the inverse mapping; furthermore, the

set of extreme feasible solutions of (3.32) corresponds to the set C(D) of deterministic policies.

Proof

First, we show that xπ is a feasible solution of (3.32).

∑

(i,a) {δij − αpij(a)}xπ
i (a) =

∑

(i,a) {δij − αpij(a)}
{

βT{I − αP (π)}−1
}

i
· πia

=
∑

i

{

βT {I − αP (π)}−1
}

i
·∑a {δij − αpij(a)} · πia

=
∑

i

{

βT {I − αP (π)}−1
}

i
· {I − αP (π)}ij

=
{

βT {I − αP (π)}−1 · {I − αP (π)}
}

j
= βj, j ∈ S.

Since {I − αP (π)}−1 =
∑∞

t=0{αP (π)}t ≥ 0, xπ
i (a) ≥ 0 for all (i, a) ∈ S × A.

Next, we prove the one-to-one correspondence. Let x be a feasible solution of (3.32). Then, (3.34)

yields xi(a) = πx
ia · xi, where xi :=

∑

a xi(a), i ∈ S. Therefore, we can write

βj =
∑

(i,a) {δij − αpij(a)}xi(a) =
∑

(i,a) {δij − αpij(a)} · πx
ia · xi

=
∑

i {δij − αpij

(

πx
)

} · xi, j ∈ S.

Hence, in vector notation, βT = xT{I−αP
(

πx
)

}, i.e. xT = βT {I−αP
(

πx)
)

}−1, and consequently

xi = xπx

i , i ∈ S. This implies xi(a) = xi · πx
ia = xπx

i · πx
ia = xπx

i (a) for all (i, a) ∈ S × A.

Conversely,

πxπ

ia =
xπ

i (a)
∑

a x
π
i (a)

= πia for all (i, a) ∈ S ×A. (3.35)

Therefore, we have shown the one-to-one correspondence and the fact that (3.34) is the inverse

of (3.33). Finally, we show the correspondence between the extreme points of (3.32) and the set

C(D). Let f∞ ∈ C(D). Then, for every i ∈ S,

xf
i (a) =

{

βT {I − αP (f)}−1
}

i
, a = f(i)

0 , a 6= f(i)

Suppose xf is not an extreme feasible solution. Then, there exist feasible solutions x1 and x2 of

(3.32) and a real number λ ∈ (0, 1) such that x1 6= x2 and xf = λx1 + (1− λ)x2.

Since xf
i (a) = 0, a 6= f(i), i ∈ S, we have x1

i (a) = x2
i (a) = 0, a 6= f(i), i ∈ S.

Hence, the N -vectors x1 :=
(

x1
i (f(i)

)

and x2 :=
(

x2
i (f(i)

)

are solutions of the linear system

xT{I −αP (f)} = βT . However, this linear system has a unique solution xT = βT{I −αP (f)}−1.

This implies x1 = x2 = βT {I−αP (f)}−1, which contradicts x1 6= x2. Hence, we have shown that

64 CHAPTER 3. DISCOUNTED REWARDS

xf is an extreme solution.

Conversely, let x be an extreme feasible solution of program (3.32). Since (3.32) has N constraints,

x has at most N positive components. On the other hand, Theorem 3.17, part (1), implies that

in each state there is at least one positive component. Consequently, x has exactly one positive

component in each state i, i.e. the corresponding stationary policy is deterministic.

Algorithm 3.3 Linear programming algorithm

Input: Instance of a discounted MDP.

Output: Optimal deterministic policy f∞ and the value vector vα.

1. Take any vector β with βj > 0 for every j ∈ S.

2. Use the simplex method to compute optimal solutions v∗ and x∗ of the dual pair

of linear programs:

min

∑

j

βjvj

∣

∣

∣

∣

∣

∣

∑

j

{δij − αpij(a)}vj ≥ ri(a), (i, a) ∈ S ×A

and

max

∑

(i,a)

ri(a)xi(a)

∣

∣

∣

∣

∣

∑

(i,a) {δij − αpij(a)}xi(a) = βj, j ∈ S
xi(a) ≥ 0, (i, a) ∈ S × A

}

.

3. Take f∞∗ ∈ C(D) such that x∗i (f∗(i)) > 0 for every i ∈ S.

v∗ is the value vector vα and f∞∗ is an α-discounted optimal policy (STOP).

Example 3.2

Consider the model of Example 3.1 and let β1 = β2 = β3 = 1
3 .

The dual linear program (3.32) becomes:

max x1(1) + 2x1(2) + 3x1(3) + 6x2(1) + 4x2(2) + 5x2(3) + 8x3(1) + 9x3(2) + 7x3(3)

subject to
1
2x1(1) + x1(2) + x1(3) − 1

2x2(1) −1
2x3(1) = 1

3

− 1
2x1(2) + x2(1) + 1

2x2(2) + x2(3) − 1
2x3(2) = 1

3

− 1
2x1(3) − 1

2x2(3) + x3(1) + x3(2) + 1
2x3(3) = 1

3

x1(1), x1(2), x1(3), x2(1), x2(2), x2(3), x3(1), x3(2), x3(3) ≥ 0

We start with phase I of the simplex method to obtain a first feasible basic solution corresponding

to policy f∞ where f(1) = 3, f(2) = 2 and f(3) = 1. Therefore, we take the columns of

x1(3), x2(2) and x3(1) as pivot columns in the first three iterations. The pivot element is the

bold number in the tableau. Next, in phase II, the usual choice of the pivot column is taken, i.e.

the column with the most negative element in the transformed objective function (last row in the

3.5. LINEAR PROGRAMMING 65

tableau, also called the row of the reduced costs). We write the linear programming tableaus in

the so-called contracted form (cf. [341]).

Iteration 1

x1(1) x1(2) x1(3) x2(1) x2(2) x2(3) x3(1) x3(2) x3(3)

z1
1
3

1
2 1 1 −1

2 0 0 −1
2 0 0

z2
1
3 0 −1

2 0 1 1
2 1 0 −1

2 0

z3
1
3 0 0 −1

2 0 0 −1
2 1 1 −1

2

I −1 −1
2 −1

2 −1
2 −1

2 −1
2 −1

2 −1
2 −1

2 −1
2

II 0 −1 −2 −3 −6 −4 −5 −8 −9 −7

Iteration 2

x1(1) x1(2) z1 x2(1) x2(2) x2(3) x3(1) x3(2) x3(3)

x1(3) 1
3

1
2 1 1 −1

2 0 0 −1
2 0 0

z2
1
3 0 −1

2 0 1 1

2
1 0 −1

2 0

z3
1
2

1
4

1
2

1
2 −1

4 0 −1
2

3
4 1 1

2

I −5
6 −1

4 0 1
2 −3

4 −1
2 −1

2 −3
4 −1

2 −1
2

II 1 1
2 1 3 −15

2 −4 −5 −19
2 −9 −7

Iteration 3

x1(1) x1(2) z1 x2(1) z2 x2(3) x3(1) x3(2) x3(3)

x1(3) 1
3

1
2 1 1 −1

2 0 0 −1
2 0 0

x2(2) 2
3 0 −1 0 2 2 2 0 −1 0

z3
1
2

1
4

1
2

1
2 −1

4 0 −1
2

3

4
1 1

2

I −1
2 −1

4 −1
2

1
2

1
4 1 1

2 −3
4 −1 −1

2

II 11
3

1
2 −3 3 1

2 8 3 −19
2 −13 −7

Iteration 4

x1(1) x1(2) z1 x2(1) z2 x2(3) z3 x3(2) x3(3)

x1(3) 2
3

2
3

4
3

4
3 −2

3 0 −1
3

2
3

2
3

1
3

x2(2) 2
3 0 −1 0 2 2 2 0 −1 0

x3(1) 2
3

1
3

2
3

2
3 −1

3 0 −2
3

4
3

4
3

2
3

I 0 0 0 1 0 1 0 1 0 0

II 10 11
3

10
3

28
3 −8

3 8 −10
3

38
3 −1

3 −2
3

Iteration 5

x1(1) x1(2) z1 x2(1) z2 x2(2) z3 x3(2) x3(3)

x1(3) 7
9

2
3

7
6

4
3 −1

3
1
3

1
6

2
3

1
2

1
3

x2(3) 1
3 0 −1

2 0 1 1 1
2 0 −1

2 0

x3(1) 8
9

1
3

1
3

2
3

1
3

2
3

1
3

4
3 1 2

3

II 100
9

11
3

5
3

28
3

2
3

34
3

5
3

38
3 −2 −2

3

66 CHAPTER 3. DISCOUNTED REWARDS

Iteration 6

x1(1) x1(2) z1 x2(1) z2 x2(2) z3 x3(1) x3(3)

x1(3) 1
3

1
2 1 1 −1

2 0 0 0 −1
2 0

x2(3) 7
9

1
6 −1

3
1
3

7
6

4
3

2
3

2
3

1
2

1
3

x3(2) 8
9

1
3

1
3

2
3

1
3

2
3

1
3

4
3 1 2

3

II 116
9

13
3

7
3

32
3

4
3

38
3

7
3

46
3 2 2

3

The last tableau is an optimal simplex tableau corresponding to the following optimal solution:

x∗1(1) = 0, x∗1(2) = 0, x∗1(3) = 1
3 ; x∗2(1) = 0, x∗2(2) = 0, x∗2(3) = 7

9 ; x∗3(1) = 0, x∗3(2) = 8
9 , x

∗
3(3) = 0.

The optimal solution of the primal problem is: v∗1 = 32
3 , v

∗
2 = 38

3 and v∗3 = 46
3 .

Hence, the value vector vα = (32
3 ,

38
3 ,

46
3) and the α-discounted optimal policy is f∞∗ with

f∗(1) = 3, f∗(2) = 3 and f∗(3) = 2.

We now show the equivalence between the policy iteration method and the linear programming

method. Consider a deterministic policy f∞. We have seen that xf is an extreme point of (3.32)

and that xf
i (f(i)) > 0 for every i ∈ S. By introducing slack variables yi(a), (i, a) ∈ S ×A in the

primal problem (3.31), this program becomes

min

∑

j

βjvj

∣

∣

∣

∣

∣

∣

∑

j{δij − αpij(a)}vj − yi(a) = ri(a), (i, a) ∈ S × A
yi(a) ≥ 0, (i, a) ∈ S × A

. (3.36)

Let
(

vf , yf
)

be the dual solution corresponding to xf . Then, by the complementary slackness

property of linear programming, we have

xf
i (a) · yf

i (a) = 0 for every (i, a) ∈ S ×A.

Since xf
i

(

f(i)
)

> 0 for every i ∈ S, yf
i

(

f(i)
)

= 0 for every i ∈ S. Hence, from the constraints of

(3.36), we obtain in vector notation {I − αP (f)}vf = r(f), implying

vf = {I − αP (f)}−1r(f) = vα(f∞),

and

yf
i (a) =

∑

j

{δij − αpij(a)}vα
j (f∞)− ri(a) = −sia(f), (i, a) ∈ S ×A, (3.37)

where sia(f) is defined in the policy iteration algorithms 3.1 and 3.2.

In any simplex tableau, possible choices for the pivot column are those columns of nonbasic xi(a)-

variables which have negative reduced costs (also called shadow prices): yf
i (a) < 0, i.e. sia(f) > 0.

Hence, the possible pivot columns in state i are exactly the columns corresponding to the actions

of A(i, f), where A(i, f) is defined in (3.18).

Consider in the policy iteration method two subsequent policies, say f∞ and g∞, and let

E(f, g) = {i ∈ S | f(i) 6= g(i)}. If we exchange in an iteration of the simplex method the nonbasic

variables xf
i (a) and xg

i (a) for every i ∈ E(f, g), then we obtain a linear programming algorithm in

3.5. LINEAR PROGRAMMING 67

which (in general) more than one pivot step is executed in one iteration, and in which subsequent

basic solutions correspond to subsequent policies of the policy iteration method. An algorithm in

which in one iteration more than one pivot step can be executed is called a block-pivoting simplex

algorithm (cf. [48] p. 201).

On the other hand, suppose that the usual simplex algorithm is applied with only one pivot

step in one iteration and that we choose as entering variable a nonbasic variable xf
i (a) corre-

sponding to a variable sia(f) > 0, i.e. a ∈ A(i, f). Since such a choice is allowed in the policy

iteration method, the usual simplex method is a special implementation of the policy iteration

method. We summarize the above statements in the following theorem.

Theorem 3.19

(1) Any policy iteration algorithm is equivalent to a particular block-pivoting simplex algorithm.

(2) Any simplex algorithm is equivalent to a particular policy iteration algorithm.

Example 3.2 (continued)

Start with the simplex tableau corresponding to the first feasible solution. Consider an iteration

and let the basic solution corresponds to policy f∞. Then, choose in each state i for which

mina y
f
i (a) < 0 as pivot column the column corresponding to xf

i

(

g(i)
)

, where g(i) is such that

yf
i

(

g(i)
)

= mina y
f
i (a). In subsequent tableaus we execute the block-pivoting algorithm where

in each iteration the pivot steps correspond to the nonbasic variables xf
i

(

g(i)
)

. The pivots are

again indicated by bold numbers.

Iteration 1

x1(1) x1(2) z1 x2(1) z2 x2(3) z3 x3(2) x3(3)

x1(3) 2
3

2
3

4
3

4
3 −2

3 0 −1
3

2
3

2
3

1
3

x2(2) 2
3 0 −1 0 2 2 2 0 −1 0

x3(1) 2
3

1
3

2
3

2
3 −1

3 0 −2
3

4
3

4
3

2

3

10 11
3

10
3

28
3 −8

3 8 −10
3

38
3 −1

3 −2
3

Iteration 2

x1(1) x1(2) z1 x2(1) z2 x2(2) z3 x3(2) x3(1)

x1(3) 1
3

1
2 1 1 −1

2 0 0 0 0 −1
2

x2(3) 1
3 0 −1

2 0 1 1 1
2 0 −1

2 0

x3(3) 4
3

1
2

1
2 1 1

2 1 1
2 2 3

2

3
2

108
9 4 2 10 1 12 2 14 −1 1

Iteration 3

x1(1) x1(2) z1 x2(1) z2 x2(2) z3 x3(3) x3(1)

x1(3) 1
3

1
2 1 1 −1

2 0 0 0 0 −1
2

x2(3) 7
9

1
6 −1

3
1
3

7
6

4
3

2
3

2
3

1
3

1
2

x3(2) 8
9

1
3

1
3

2
3

1
3

2
3

1
3

4
3

2
3 1

116
9

13
3

7
3

32
3

4
3

38
3

7
3

46
3

2
3 2

68 CHAPTER 3. DISCOUNTED REWARDS

This is the optimal tableau which gives the value vector vα = (32
3 ,

38
3 ,

46
3) and the α-discounted

optimal policy f∞∗ with f∗(1) = 3, f∗(2) = 3 and f∗(3) = 2.

Next, we discuss the elimination of suboptimal actions. Since the linear programming method is

equivalent to the policy iteration method, we can copy the results of section 3.4, in particular

Theorem 3.12. Instead of the numbers sia(f), we use in linear programming the dual slack

variables yf
i (a), where yf

i (a) = −sia(f), (i, a) ∈ S ×A. Hence, we obtain following result.

Theorem 3.20

If yf
i (ai) > mina y

f
i (a)−α(1−α)−1{minimina y

f
i (a)−maximina y

f
i (a)}, then action ai ∈ A(i)

is suboptimal.

Example 3.2 (continued)

We consider the usual simplex method without block-pivoting and start with the first feasible

tableau (iteration 4).

Iteration 4

α(1− α)−1{minimina y
f
i (a)−maximina y

f
i (a)} = −10

3 .

In state 1, action 1 is excluded, because 11
3 = yf

1 (1) > mina y
f
1 (a) + 10

3 = 10
3 .

Iteration 5

α(1− α)−1{minimina y
f
i (a)−maximina y

f
i (a)} = −2.

In this iteration, no suboptimal actions are found.

A second method for eliminating suboptimal actions is based on a general LP property, due to

Cheng [39] and presented in Theorem 3.21. Consider the linear programming problem formulated

as

max{pTx | Ax = b; x ≥ 0}, (3.38)

where A is am m × n matrix. Assume that rank (A) = m and that this LP has a finite optimal

value z∗0 . The dual of (3.38) is

min{bTu | ATu− v = p; v ≥ 0}. (3.39)

Let B be a feasible basis matrix of (3.38) with corresponding basic solution xB = B−1b ≥ 0,

xN = 0. The corresponding dual basic solution is uT = pTB−1, vT = pTB−1A− pT = uTA− pT ,

which indeed satisfies ATu − v = p. Note that v ≥ 0 is not required for the corresponding dual

basic solution; v ≥ 0 if and only if x = (xB, xN) and (u, v) are optimal feasible solutions of (3.38)

and (3.39), respectively. The corresponding value of the primal problem (and also of the dual

problem) is z0 := pT
BB

−1b.

A basis matrix B and the corresponding basic solution x are called nondegenerated if we have

(B−1b)i > 0 for all 1 ≤ i ≤ m. Denote the jth column of A by Aj.

3.5. LINEAR PROGRAMMING 69

Theorem 3.21

Let B be a nondegenerate basis of the linear program (3.38) with corresponding basic solutions x

and (u, v), respectively. Let xj be a nonbasic variable with reduced cost vj = pT
BB

−1Aj − pj > 0.

Then, we have

(1) If B−1Aj ≥ 0, then x∗j = 0 in any optimal basic solution x∗.

(2) If B−1Aj 6≥ 0 and vj + θ · {z − z0) > 0, where θ := mini
{B−1Aj}i

{B−1b}i
and z is an upper bound

of the optimum, then x∗j = 0 in any optimal basic solution x∗.

Proof

Let B∗ be an optimal basis matrix with x∗ and (u∗, v∗) as corresponding basic optimal solutions.

Then, v∗ ≥ 0, implying (u∗)TA ≥ pT and consequently (u∗)TB ≥ pT
B .

(1) v∗j = (u∗)TAj − pj = {(u∗)TB]}{B−1Aj} − pj ≥ pT
BB

−1Aj − pj = uTAj − pj = vj > 0.

where the inequality is verified by the property B−1Aj ≥ 0. From the complementary slackness

property of linear programming we have x∗j · v∗j = 0 for all j, implying x∗j = 0.

(2) Note that θ is a well-defined and finite number by the property that B is a nondegenerate basis matrix.

Since B−1Aj 6≥ 0, we have θ < 0. Furthermore, by the definition of θ, B−1Aj − θ · B−1b ≥ 0. Hence,

we can write

v∗j = (u∗)TAj − pj = {(u∗)TB}{B−1Aj − θ · B−1b+ θ · B−1b} − pj

= {(u∗)TB}{B−1Aj − θ ·B−1b}+ θ · (u∗)T b− pj

≥ pT
B{B−1Aj − θ ·B−1b}+ θ · (u∗)T b− pj

= vj + θ · {(u∗)T b− pT
BB

−1b = vj + θ · (z∗0 − z0) ≥ vj + θ · (z − z0) > 0.

As in part (1), from the complementary slackness property of linear programming, we have x∗j · v∗j = 0,

implying x∗j = 0.

Notice that, by part (1) of Theorem 3.17, the linear program (3.32) for discounted MDPs is nondegenerated.

In order to apply Theorem 3.21, we need an (easily) computable upper bound for the optimum of program

(3.32). Such a bound is provided by the next lemma.

Lemma 3.5

vα(f∞) − (1− α)−1 ·min(i,a) y
f
i (a) · e is an upper bound of the value vector vα.

Proof

Take any deterministic policy g∞. Since yf
i (a) =

∑

j{δij − αpij(a)}vα
j (f∞) − ri(a), (i, a) ∈ S × A, we

obtain

min(i,a) y
f
i (a) · e ≤ {I − αP (g)}vα(f∞) − r(g).

Hence,

vα(f∞) ≥ {I − αP (g)}−1r(g) +min(i,a) y
f
i (a) · {I − αP (g)}−1 · e

= vα(g∞) +min(i,a) y
f
i (a) ·∑∞

t=0 α
tP (g)t · e

= vα(g∞) +min(i,a) y
f
i (a) ·

{∑∞
t=0 α

t
}

· e
= vα(g∞) +min(i,a) y

f
i (a) · (1 − α)−1 · e

Let g∞ be an optimal policy. Then, vα = vα(g∞) ≤ vα(f∞)− (1− α)−1 ·min(i,a) y
f
i (a) · e.

70 CHAPTER 3. DISCOUNTED REWARDS

Corollary 3.8

βT vα(f∞)− {βT e} · (1− α)−1 ·min(i,a) y
f
i (a) is an upper bound of the optimum of program (3.32).

Proof

The optimal value of (3.32) is equal to the optimum of program (3.31) which is βT vα. By Lemma 3.5,

βT vα ≤∑k βk

{

vα
k (f∞)− (1− α)−1 ·min(i,a) y

f
i (a)

}

= βT vα(f∞) − {βT e} · (1− α)−1 ·min(i,a) y
f
i (a).

The next theorem is a direct consequence of Corollary 3.8 and Theorem 3.21.

Theorem 3.22

Let Aj,a(f) and B(f) be the columns of the nonbasic variable xf
i (a) and the basis matrix, respectively, in

the simplex tableau corresponding to policy f∞, and let yf
i (a) > 0.

Then, action a ∈ A(j) is suboptimal if either one of the following conditions is satisfied:

(1) B(f)−1Aj,a(f) ≥ 0.

(2) B(f)−1Aj,a(f) 6≥ 0 and yf
j (a)−mini

{B(f)−1Aj,a(f)}i

{B(f)−1β}i
· {βT e} · (1− α)−1 ·min(i,a) y

f
i (a) > 0.

Example 3.2 (continued)

Again, we start with the first feasible tableau (iteration 4).

Iteration 4

(1− α)−1 ·min(i,a) y
f
i (a) = −20

3
.

In state 1, action 1 is excluded, because condition (1) of Theorem 3.22 is satisfied.

Iteration 5

(1− α)−1 ·min(i,a) y
f
i (a) = −4.

In state 2, action 2 is excluded, because condition (1) of Theorem 3.22 is satisfied.

Let B(f) be the basis matrix corresponding to policy f∞. Then, we have B(f) = {I −αP (f)}T , implying

x(f)T = βT {I − αP (f)}−1, where x(f) is the N -dimensional vector with elements xi(f) := xf
i

(

f(i)
)

for

all i ∈ S. The next two lemmata present interesting formulas.

Lemma 3.6

βT {vα(g∞) − vα(f∞)} = x(g)T {r(g) − r(f) + α[P (g)− P (f)]vα(f∞)} for every pair f∞, g∞ ∈ C(D).

Proof

x(g)T {r(g)− r(f) +α[P (g)−P (f)]vα(f∞)} = x(g)T r(g)− x(g)T {r(f)−αP (g)vα(f∞) +αP (f)vα(f∞)}.
Since r(f) + αP (f)vα(f∞) = r(f) + αP (f)

{∑∞
t=0

(

αP (f)
)t
r(f)} =

∑∞
t=0

(

αP (f)
)t
r(f) = vα(f∞) and

x(g)T r(g) = βT {I − αP (g)}−1r(g) = βT vα(g∞), we obtain

x(g)T {r(g)− r(f) + α[P (g)− P (f)]vα(f∞)} = βT vα(g∞)− x(g)T {vα(f∞) − αP (g)vα(f∞)}
= βT vα(g∞)− x(g)T {[I − αP (g)]vα(f∞)}
= βT vα(g∞)− βT {I − αP (g)}−1{[I − αP (g)]vα(f∞)}
= βT {vα(g∞)− vα(f∞)}.

Lemma 3.7

x(f)T = x(g)T {I − α[P (g)− P (f)][I − αP (f)]−1} for every pair f∞, g∞ ∈ C(D).

3.5. LINEAR PROGRAMMING 71

Proof

Since x(f) is the unique solution of the linear system xTB(f)T = βT , we have to show

x(g)T {I − α[P (g)− P (f)][I − αP (f)]−1}B(f)T = βT .

We can write

x(g)T {I − α[P (g)− P (f)][I − αP (f)]−1}B(f)T =

x(g)T {I − α[P (g)− P (f)][I − αP (f)]−1}{I − αP (f)} =

x(g)T {I − αP (f)− αP (g) + αP (f)} = x(g)T {I − αP (g)} = βT .

Consider two subsequent simplex tableaus corresponding to the policies f∞ and g∞, respectively. Then,

g∞ is a policy which is the same as f∞, except in one state, say state j, action g(j) 6= f(j). Then,

[P (g)− P (f)][I − αP (f)]−1 has zero rows, except for row j, which has as kth element

∑

l

{pjl(g) − pjl(f)}{Y (f)}lk ,

where Y (f) = [I − αP (f)]−1 = [B(f)T]−1. Hence, by Lemma 3.7,

xk(f) = xk(g)− xj(g) · α
∑

l

{pjl(g) − pjl(f)}{Y (f)}lk , k ∈ S.

Therefore,

If k 6= j, then xk(f)−xk(g)
xj(g)

= δjk + α ·∑l {pjl(f) − pjl(g)}{Y (f)}lk .

If k = j, then xk(f)
xj(g)

= δjk + α ·∑l {pjl(f) − pjl(g)}{Y (f)}lk .

Lemma 3.8

{B(f)−1Aj,a(f)}k = δjk + α ·∑l {pjl(f) − pjl(g)}{Y (f)}lk , k ∈ S.

Proof

Let q be the N -dimensional vector with elements pjl(f) − pjl(g), k ∈ S. In vector notation, we have to

show (ej)T +α·qTY (f) = {B(f)−1Aj,a(f)}T , or equivalently, (ej)TB(f)T +α·qTY (f)B(f)T = {Aj,a(f)}T .

Therefore, we have to show {B(f)}kj + α · {pjk(f) − pjk(g)} = {Aj,a(f)}k for all k ∈ S. Since

{B(f)}kj = δjk − α · pjk(f), we have {B(f)}kj + α · {pjk(f) − pjk(g)} = δjk − α · pjk(g) = {Aj,a(f)}k
for all k ∈ S.

The following theorem gives an interpretation of suboptimal actions in the sense that we have either

x(f) ≥ x(g) or x(f) 6≥ x(g) and βT {vα(g∞)− vα(f∞)} < θ · {v− x(f)T r(f)}, where θ is a negative scalar

defined by θ := mink 6=j
xk(f)−xk(g)

xj(f) and v is an upper bound of the value vector vα.

Theorem 3.23

Let Aj,a(f) and B(f) be the columns of the nonbasic variable xf
i (a) and the basis matrix, respectively, in

the simplex tableau corresponding to policy f∞, and let yf
j (a) > 0. Furthermore, let g∞ be the policy which

is the same as f∞, except in state j, where g(j) = a 6= f(j).

Then, action g(j) ∈ A(j) is suboptimal if either one of the following conditions is satisfied:

(1) x(f) ≥ x(g).
(2) x(f) 6≥ x(g) and βT {vα(g∞) − vα(f∞)} < θ · {v − x(f)T r(f)}.

72 CHAPTER 3. DISCOUNTED REWARDS

Proof

(1) By Lemma 3.8, {B(f)−1Aj,a(f)}k = δjk +α ·∑l {pjl(f)−pjl(g)}{Y (f)}lk =

xk(f)−xk(g)
xj(g) if k 6= j

xk(f)
xj(g) > 0 if k = j

Hence, if x(f) ≥ x(g), we have B(f)−1Aj,a(f) ≥ 0 and by Theorem 3.22 part (1), action g(j) ∈ A(j)

is a suboptimal action.

(2) If x(f) 6≥ x(g), θ := mink 6=j
xk(f)−xk(g)

xj(g)
< 0. The value yf

j (a) satisfies (use for the first equality

equation (3.37))

yf
j (a) =

∑

k {δjk − αpjk(g)}vα
k (f∞)− rj(g)

= {[I − αP (g)]vα(f∞)− r(g)}j
= {[I − αP (f)]vα(f∞) − r(g) + α[P (f)]− P (g)]vα(f∞)}j
= {[I − αP (f)][I − αP (f)]−1r(f) − r(g) + α[P (f)]− P (g)]vα(f∞)}j
= {r(f)− r(g) + α[P (f)]− P (g)]vα(f∞)}j

Since {r(f) − r(g) + α[P (f)]− P (g)]vα(f∞)}k = 0 for k 6= j, we obtain

x(g)T {r(f) − r(g) + α[P (f)]− P (g)]vα(f∞)} = xj(g) · {r(f) − r(g) + α[P (f)]− P (g)]vα(f∞)}j
= xj(g) · yf

j (a).

Since βT vα(f∞) = x(f)T r(f), we have by Lemma 3.7

βT vα(f∞) = x(g)T {I − α[P (g)− P (f)][I − αP (f)]−1}r(f)
= x(g)T r(f) − α · x(g)T {P (g)− P (f)}vα(f∞)

Hence, we have

βT {vα(g∞)− vα(f∞)} = x(g)T r(g) − x(g)T {r(f) − α · [P (g)− P (f)]vα(f∞)}
= x(g)T {r(g)− r(f) + α · [P (g)− P (f)]vα(f∞)}
= −xj(g) · yf

j (a).

By Theorem 3.21 part (2), we have to show yf
j (a) + θ∗ · {v − x(f)T r(f)} > 0, where the scalar θ∗ is

defined by θ∗ := mink
{B(f)−1Aj,a(f)}k

{B(f)−1β}k
. This is equivalent to

−xj(g) · yf
j (a) < xj(g) · θ∗ · {v− x(f)T r(f)}, i.e. βT {vα(g∞)− vα(f∞)} < xj(g) · θ∗ · {v− x(f)T r(f)}.

Because x(g)T = βT {I − αP (g)}−1 = βT {B(g)T }−1 = {B(g)−1β}T , we have x(g) = B(g)−1β.

Since {B(f)−1Aj,a(f)}j =
xj(f)
xj(g)

> 0 (see the proof of part (1)), also
{B(f)−1Aj,a(f)}j

{B(f)−1β}j
> 0.

Consequently, θ∗ = mink
{B(f)−1Aj,a(f)}k

{B(f)−1β}k
= mink 6=j

{B(f)−1Aj,a(f)}k

{B(f)−1β}k
= mink 6=j

xk(f)−xk(g)
xj(g)·xj(f) < 0.

Therefore, θ = mink 6=j
xk(f)−xk(g)

xj(f)
= xj(g) · θ∗, implying that the conditions x(f) 6≥ x(g) and

βT {vα(g∞)− vα(f∞)} < θ · {v − x(f)T r(f)} are sufficient for the suboptimality of the action g(j).

3.6 Value iteration

In the method of value iteration the value vector vα is successively approximated, starting with some guess

v1, by a sequence {vn}∞n=1 which converges to vα. This method is also called successive approximation. In

this method a nearly optimal policy is determined. When applying the policy iteration method (and also

in principle in the linear programming method) one has to solve a system of N linear equations in each

iteration. For a very large state space this might be prohibitive. The method of value iteration does not

3.6. VALUE ITERATION 73

have this disadvantage. An iteration of this method is quite simple. In addition, sometimes this method

can also be used to prove properties of the structure of optimal policies. On the other hand, especially for

discount factors close to 1, the convergence can be very slow.

In this section we discuss the basic value iteration method including suboptimality tests. Most of the

properties of the value iteration method are based on the theory of monotone contraction mappings and

on the optimality equation (see the sections 3.2 and 3.3).

For δ > 0 we call a vector v ∈ R
N a δ-approximation of vα if ‖vα − v‖∞ ≤ δ; for ε > 0 a policy R is

an ε-optimal policy if ‖vα − vα(R)‖∞ ≤ ε.
From Corollary 3.3, part (2), it follows that vα = limn→∞ Unx for every x ∈ R

N . Define the sequence

v1, v2, . . . by
{

v1 ∈ R
N arbitrarily chosen

vn+1 := Uvn n = 1, 2, . . .
(3.40)

with corresponding sequence f∞1 , f∞2 , . . . of policies, where fn = fvn for every n ∈ N. Then, we have

vn+1 = Uvn = Lfn
vn = r(fn) + αP (fn)vn, n ∈ N. (3.41)

The next lemma shows that f∞n is an ε-optimal policy for n sufficiently large.

Lemma 3.9

‖vα(f∞n)− vα‖∞ ≤ 2αn(1 − α)−1 · ‖v2 − v1‖∞, n ∈ N.

Proof

From Theorem 3.7, part (3), it follows that

‖vα(f∞n)− vα‖∞ ≤ 2α(1− α)−1 · ‖Uvn − vn‖∞ = 2α(1− α)−1 · ‖Uvn − Uvn−1‖∞
≤ 2α2(1− α)−1 · ‖vn − vn−1‖∞
≤ · · · ≤ 2αn(1− α)−1 · ‖v2 − v1‖∞, n ∈ N.

Algorithm 3.4 Value iteration (version 1)

Input: Instance of a discounted MDP and some scalar ε > 0.

Output: An ε-optimal deterministic policy f∞ and a 1
2ε-approximation of the value vector vα.

1. Select x ∈ R
N .

2. a. Compute y by yi := maxa{ri(a) + α
∑

j pij(a)xj}, i ∈ S.

b. Choose f(i) ∈ argmaxa{ri(a) + α
∑

j pij(a)xj}, i ∈ S.

3. if ‖y − x‖∞ ≤ 1
2
(1− α)α−1ε then

f∞ is an ε-optimal policy and y is a 1
2ε-approximation of the value vector vα (STOP)

else x := y and return to step 2.

Theorem 3.24

Algorithm 3.4 is finite and correct.

Proof

Since the sequence {Unx}∞n=1 converges to vα, the algorithm is finite. The algorithm terminates with some

x, y and f , where y = Ux and f = fx. From the proof of Lemma 3.9 it follows that ‖vα(f∞) − vα‖∞ ≤
2α(1− α)−1 · ‖y − x‖∞ ≤ ε, i.e. f∞ is an ε-optimal policy. Furthermore, ‖vα − y‖∞ = ‖Uvα − Ux‖∞ ≤
α · ‖vα − x‖∞ ≤ α(1− α)−1 · ‖y − x‖∞ ≤ 1

2ε, the second last inequality by Theorem 3.7, part (2).

74 CHAPTER 3. DISCOUNTED REWARDS

Example 3.3

Consider the model of Example 3.1 and start with x = (4, 4, 4) and ε = 0.2. The results of the computation

are summarized below. The algorithm terminates as soon as the norm of the difference of two subsequent

y-vectors is at most 0.1.

Iteration

1 2 3 4 5 6 7

y1 5.00 8.50 9.50 10.13 10.38 10.53 10.59

y2 8.00 10.50 11.50 12.13 12.38 12.53 12.59

y3 11.00 13.00 14.25 14.75 15.06 15.19 15.27

f1 3 3 3 3 3 3 3

f2 1 3 3 3 3 3 3

f3 2 2 2 2 2 2 2

Hence, f∞ with f(1) = 3, f(2) = 3 and f(3) = 2 is a 0.2-optimal policy and (10.59, 12.59, 15.27) is a

0.1-approximation of vα.

Remark

We see in the example that already after one iteration the optimal policy is found, although the approxi-

mation y is far away from vα. This phenomenon occurs often when using the method of value iteration.

We now present an algorithm with a test for the exclusion of suboptimal actions, based on (3.15).

Algorithm 3.5 Value iteration (version 2)

Input: Instance of a discounted MDP and some scalar ε > 0.

Output: An ε-optimal deterministic policy f∞ and a 1
2ε-approximation of the value vector vα.

1. Select x ∈ R
N .

2. a. Compute y by yi := maxa yi(a), where yi(a) := ri(a) + α
∑

j pij(a)xj , (i, a) ∈ S ×A.

b. Choose f(i) ∈ argmaxa yi(a), i ∈ S.

3. if ‖y − x‖∞ ≤ 1
2 (1− α)α−1ε then

f∞ is an ε-optimal policy and y is a 1
2
ε-approximation of the value vector vα (STOP)

else x := y and go to to step 4.

4. a. Compute span by span := maxi (yi − xi) −mini (yi − xi).

b. for all (i, a) ∈ S ×A do

if yi(a) < yi − α(1− α)−1 · span, then A(i) := A(i)− {a}.
c. if #A(i) = 1 for every i ∈ S then

f∞ is an optimal policy and vα := {I − P (f)}−1r(f) is the value vector (STOP).

5. x := y and return to step 2.

Theorem 3.25

Algorithm 3.5 is finite and correct.

3.6. VALUE ITERATION 75

Proof

Let A(n)(i) be the action set in state i in iteration n. Define the operator U (n) : R
N → R

N by

{U (n)x}i = maxa∈A(n)(i)

{

ri(a) + α
∑

j

pij(a)xj

}

, i ∈ S.

Algorithm 3.5 computes the sequence v1, v2, . . . where vn+1 = U (n)vn . Since the operator depends on n,

we cannot simply use the general theory for contracting operators.

We first show the finiteness of the algorithm. Let the actions b, c ∈ A(i) be such that

b ∈ argmaxa∈A(n)(i){ri(a) + α
∑

j pij(a)v
n
j } and c ∈ argmaxa∈A(n−1)(i){ri(a) + α

∑

j pij(a)v
n−1
j }.

Since A(n)(i) ⊆ A(n−1)(i), action b ∈ A(n−1)(i) ∩A(n)(i) and we can write

vn+1
i − vn

i ≤ {ri(b) + α
∑

j pij(b)v
n
j } − {ri(b) + α

∑

j pij(b)v
n−1
j }

= α
∑

j pij(b){vn
j − vn−1

j } ≤ α∑j pij(b) · ‖vn − vn−1‖∞ = α · ‖vn − vn−1‖∞.

On the other hand, because vn
i = ri(c) + α

∑

j pij(c)v
n−1
j , i.e. in the algorithm we have yi(c) = yi, action

c is not excluded in step 4b of the algorithm. Hence, c ∈ A(n)(i) and we obtain

vn
i − vn+1

i ≤ {ri(c) + α
∑

j pij(c)v
n−1
j } − {ri(c) + α

∑

j pij(c)v
n
j }

= α
∑

j pij(c){vn−1
j − vn

j } ≤ α
∑

j pij(c) · ‖vn − vn−1‖∞ = α · ‖vn − vn−1‖∞.

Consequently, we have shown ‖vn+1 − vn‖∞ ≤ α · ‖vn − vn−1‖∞ ≤ · · · ≤ αn−1 · ‖v2 − v1‖∞, i.e. the

algorithm is finite.

Next, we show by induction on n that the suboptimality test is correct. The first iteration is correct.

Suppose that the elimination is correct during the iterations 1, 2, . . . , n − 1 and consider iteration n.

Above, it was shown that U (n) is a contraction with contraction factor α. Since no optimal actions are

excluded, vα is the fixed-point of U (n). Hence, by taking U (n) and A(n)(i) instead of U and A(i), it follows

from the general theory derived in Section 3.3 that the suboptimality test is correct.

Finally, we show that the algorithm terminates with an ε-optimal policy f∞ and a 1
2ε-approximation of

vα. Let m be the last iteration of the algorithm.

If #A(i) = 1 for every i ∈ S, then obviously f∞ is optimal. Otherwise, let fx be such that y = U (m)x =

Lfx
x. Since vα and vα(f∞) are the fixed-points of U (m) and Lfx

, it follows (see Theorem 3.7) that

‖vα − vα(f∞x)‖∞ ≤ 2α(1− α)−1 · ‖U (m)x− x‖∞ = 2α(1− α)−1 · ‖y − x‖∞ ≤ ε

and

‖vα − y‖∞ = ‖U (m)vα − U (m)x‖∞ ≤ α‖vα − x‖∞ ≤ α(1− α)−1 · ‖y − x‖∞ ≤ 1
2ε.

Remarks

1. If the algorithm terminates in step 4c, then an optimal policy f∞ is obtained, but the

value vector vα is unknown. Also it is unknown how good the approximation y is.

In order to compute the exact value of vα we have to solve the linear system x = Lfx.

2. It is not necessary to execute step 4 in each iteration; it can be done, for instance,

periodically.

76 CHAPTER 3. DISCOUNTED REWARDS

Example 3.3 (continued)

Iteration 1

y1(1) = 3, y1(2) = 4, y1(3) = 5 : y1 = 5. y2(1) = 8, y2(2) = 6, y2(3) = 7 : y2 = 8.

y3(1) = 10, y3(2) = 11, y3(3) = 9 : y3 = 11. f(1) = 3, f(2) = 1, f(3) = 2. span = 6.

No actions can be excluded.

Iteration 2

y1(1) = 3.5, y1(2) = 6, y1(3) = 8.5 : y1 = 8.5.

y2(1) = 7.5, y2(2) = 8, y2(3) = 10.5 : y2 = 10.5.

y3(1) = 10.5, y3(2) = 13, y3(3) = 12.5 : y3 = 13. f(1) = 3, f(2) = 3, f(3) = 2. span = 1.5.

In state 1 the actions 1 and 2 are excluded; in state 2 the actions 1 and 2 and in state 3 action 1.

Iteration 3

y1(3) = 9.5 : y1 = 9.5. y2(3) = 11.5 : y2 = 11.5. y3(2) = 14.25, y3(3) = 13.5 : y3 = 14.25.

f(1) = 3, f(2) = 3, f(3) = 2. span = 0.25.

In state 3 actions 3 is excluded.

f∞ with f(1) = 3, f(2) = 3 and f(3) = 2 is an optimal policy and vα = (32
3 ,

38
3 ,

46
3) is the value vector.

The method of value iteration is an iterative procedure to solve the functional equation Ux = x. In this

section we discuss two variants of the standard procedure, the Pre-Gauss-Seidel and the Gauss-Seidel

variant, respectively. These variants are based on contraction mappings with fixed-point vα and with

contraction factor at most α. Hence, they may be considered as accelerations of the basic algorithm.

Variant 1 (Pre-Gauss-Seidel)

In (3.40), vn+1 is computed from vn by the formula

vn+1
i := maxa

{

ri(a) + α

N
∑

j=1

pij(a)v
n
j

}

, i = 1, 2, . . . , N.

Since, in general, vn+1 is a better approximation of vα than vn, it seems favorable to use the values

vn+1
1 , vn+1

2 , . . . , vn+1
i−1 in the computation of vn+1

i instead of vn
1 , v

n
2 , . . . , v

n
i−1. So, the following formula is

used:

vn+1
i := maxa

{

ri(a) + α

i−1
∑

j=1

pij(a)v
n+1
j + α

N
∑

j=i

pij(a)v
n
j

}

, i = 1, 2, . . . , N. (3.42)

This is the so-called Pre-Gauss-Seidel variant. Similar to the mappings Lπ and U for the standard pro-

cedure, the Pre-Gauss-Seidel variant can be described by the operators Lπ and U , respectively, which are

mappings from R
N to R

N , defined by

{Lπx}i := ri(π) + α

i−1
∑

j=1

pij(π){Lπx}j + α

N
∑

j=i

pij(π)xj, i = 1, 2, . . . , N, (3.43)

and

{Ux}i := maxa

{

ri(a) + α

i−1
∑

j=1

pij(a){Ux}j + α

N
∑

j=i

pij(a)xj

}

, i = 1, 2, . . . , N. (3.44)

For every x ∈ R
N the policy f

∞
x is the policy that satisfies Lfx

x = Ux.

Theorem 3.26

The operators Lπ and U are monotone contracting mappings with fixed-points vα(π∞) and vα, respectively,

with contraction factor α.

3.6. VALUE ITERATION 77

Proof

We apply Lemma 3.1, part (2). Therefore, suppose that x ≤ y ≤ d · e for some scalar d. With induction

on state i we will show that {Lπx}i ≤ {Lπy}i + α · |d|, i = 1, 2, . . . , N .

For i = 1, we have

{Lπx}1 = {Lπx}1 = r1(π) + α
∑N

j=1 p1j(π)xj

≤ r1(π) + α
∑N

j=1 p1j(π)yj + α · |d|∑N
j=1 p1j(π) = {Lπy}1 + α · |d|.

Suppose that {Lπx}j ≤ {Lπy}j + α · |d| for j = 1, 2, . . . , i− 1. Then, we can write

{Lπx}i = ri(π) + α
∑i−1

j=1 pij(π){Lπx}j + α
∑N

j=i pij(π)xj

≤ ri(π) + α
∑i−1

j=1 pij(π){Lπy}j + α2 · |d|∑i−1
j=1 pij(π)

+ α
∑N

j=i pij(π)yj + α · |d|∑N
j=i pij(π)

= {Lπy}i + α2 · |d|∑i−1
j=1 pij(π) + α · |d|∑N

j=i pij(π)

≤ {Lπy}i + α · |d|∑N
j=1 pij(π) = {Lπy}i + α · |d|.

Hence, by Lemma 3.1, part (2), Lπ is a monotone contraction with contraction factor α. Again by induction

on state i, one can easily show that vα(π∞) satisfies (3.43), i.e. vα(π∞) is the unique fixed-point of Lπ .

The proof for U is similar, and is left to the reader.

Lemma 3.10

(1) Ux = supπ Lπx for every x ∈ R
N .

(2) f
∞
vα is an α-discounted optimal policy.

(3) x− (1− α)−1‖Ux− x‖∞ · e ≤ Ux− α(1− α)−1‖Ux− x‖∞ · e ≤ vα(f
∞
x) ≤ vα ≤

Ux+ α(1− α)−1‖Ux− x‖∞ · e ≤ x+ (1− α)−1‖Ux− x‖∞ · e.
(4) ‖vα − x‖ ≤ (1− α)−1‖Ux− x‖∞.

(5) ‖vα(f
∞
x)− vα‖ ≤ 2α(1− α)−1‖Ux− x‖∞.

Proof

(1) By induction on i, we will show that (Lπx)i ≤ (Ux)i for i = 1, 2, . . . , N .

For i = 1 the result is obvious and the induction step is

{Lπx}i = ri(π) + α
∑i−1

j=1 pij(π)(Lπx}j + α
∑N

j=i pij(π)xj

≤ ri(π) + α
∑i−1

j=1 pij(π){Ux}j + α
∑N

j=i pij(π)xj

≤ maxa

{

ri(a) + α
∑i−1

j=1 pij(a){Ux}j + α
∑N

j=i pij(a)xj

}

= {Ux}i.

Because Lfx
= Ux, it follows that Ux = supπ Lπx.

(2) Because Lfvα
vα = Uvα = vα, vα is the fixed-point of Lfvα

, i.e. vα = vα(f
∞
vα) : Hence, f

∞
vα is an

α-discounted optimal policy.

The parts (3), (4) and (5) can be shown in a way analogously to the proof of Theorem 3.7.

Lemma 3.11

(1) U(x+ c · e) ≤ Ux+ α · c · e for every x ∈ R
N and every c ≥ 0.

(2) U(x+ c · e) ≥ Ux+ α · c · e for every x ∈ R
N and every c ≤ 0.

Proof

Using induction on the state i, the proof is straightforward.

78 CHAPTER 3. DISCOUNTED REWARDS

Theorem 3.27

If ri(a) + α
∑i−1

j=1 pij(a){Ux}j + α
∑N

j=i pij(a)xj < {Ux}i − 2α(1− α)−1‖Ux− x‖∞,
then action a is suboptimal.

Proof

By Lemma 3.10 part (3), we have

x− (1− α)−1‖Ux− x‖∞ · e ≤ Ux− α(1− α)−1‖Ux− x‖∞ · e ≤ vα ≤
≤ Ux+ α(1− α)−1‖Ux− x‖∞ · e ≤ x+ (1− α)−1‖Ux− x‖∞ · e.

Therefore, we can write

vα
i ≥ {Ux}i − α(1− α)−1‖Ux− x‖∞

> ri(a) + α
∑i−1

j=1 pij(a){Ux}j + α
∑N

j=i pij(a)xj + α(1− α)−1‖Ux− x‖∞
= ri(a) + α

∑i−1
j=1 pij(a)

{

{Ux}j + (1− α)−1‖Ux− x‖∞
}

+ α
∑N

j=i pij(a)
{

xj + (1− α)−1‖Ux− x‖∞
}

≥ ri(a) + α
∑i−1

j=1 pij(a)
{

{Ux}j + α(1− α)−1‖Ux− x‖∞
}

+ α
∑N

j=i pij(a)
{

xj + (1− α)−1‖Ux− x‖∞
}

≥ ri(a) + α
∑i−1

j=1 pij(a)v
α
j + α

∑N
j=i pij(a)v

α
j

= ri(a) + α
∑N

j=1 pij(a)v
α
j

From the previous results it follows that the following algorithm computes an ε-optimal policy whithin a

finite number of iterations.

Algorithm 3.6 Value iteration (Pre-Gauss-Seidel)

Input: Instance of a discounted MDP and some scalar ε > 0.

Output: An ε-optimal deterministic policy f∞ and a 1
2
ε-approximation of the value vector vα.

1. Select x ∈ R
N arbitrary.

2. for i = 1, 2, . . . , N do

begin

yi := maxa yi(a), where yi(a) := ri(a) + α{∑i−1
j=1 pij(a)yj +

∑N
j=i pij(a)xj}, a ∈ A(i);

choose f(i) ∈ argmaxa yi(a)

end

3. if ‖y − x‖∞ ≤ 1
2 (1− α)α−1ε then

f∞ is an ε-optimal policy and y is a 1
2ε-approximation of the value vector vα (STOP)

else go to to step 4.

4. for all (i, a) ∈ S ×A do

if yi(a) < yi − 2α(1− α)−1 · ‖y − x‖∞, then A(i) := A(i) − {a}.

5. if #A(i) = 1 for every i ∈ S then

f∞ is an optimal policy and vα := {I − P (f)}−1r(f) is the value vector (STOP).

6. x := y and return to step 2.

3.6. VALUE ITERATION 79

Example 3.3 (continued)

Start with x = (4, 4, 4). The computations can be represented by the following scheme:

y1(1) = 1 + 1
2
x1; y1(2) = 2 + 1

2
x2; y1(3) = 3 + 1

2
x3; y1 = max{y1(1), y1(2), y1(3)}.

y2(1) = 6 + 1
2
y1; y2(2) = 4 + 1

2
x2; y2(3) = 5 + 1

2
x3; y2 = max{y2(1), y2(2), y2(3)}.

y3(1) = 8 + 1
2y1; y3(2) = 9 + 1

2y2; y3(3) = 7 + 1
2x3; y3 = max{y3(1), y3(2), y3(3)}.

Iteration 1

y1(1) = 3, y1(2) = 4, y1(3) = 5 : y1 = 5; f(1) = 3.

y2(1) = 8.5, y2(2) = 6, y2(3) = 7 : y2 = 8.5; f(2) = 1.

y3(1) = 10.5, y3(2) = 13.25, y3(3) = 9 : y3 = 13.25; f(3) = 2.

x = (5, 8.5, 13.25).

Iteration 2

y1(1) = 3, y1(2) = 6.25, y1(3) = 9.61 : y1 = 9.61; f(1) = 3.

y2(1) = 10.81, y2(2) = 8.25, y2(3) = 11.61 : y2 = 11.61; f(2) = 3.

y3(1) = 12.81, y3(2) = 14.81, y3(3) = 13.61 : y3 = 14.81; f(3) = 2.

x = (9.61, 11.61, 14.81).

Iteration 3

y1(1) = 5.81, y1(2) = 7.81, y1(3) = 10.41 : y1 = 10.41; f(1) = 3.

y2(1) = 11.20, y2(2) = 9.81, y2(3) = 12.41 : y2 = 12.41; f(2) = 3.

y3(1) = 13.20, y3(2) = 15.20, y3(3) = 14.41 : y3 = 15.20; f(3) = 2.

i = 1 : the actions 1 and 2 are excluded.

i = 2 : action 2 is excluded.

i = 3 : the action 1 is excluded.

x = (10.41, 12.41, 15.20).

Iteration 4

y1(1) = 10.60 : y1 = 10.60; f(1) = 3.

y2(1) = 11.30, y2(3) = 12.60 : y2 = 12.60; f(2) = 3.

y3(2) = 15.30, y3(3) = 14.60 : y3 = 15.30; f(3) = 2.

i = 2 : action 1 is excluded.

i = 3 : action 3 is excluded.

f∞ with f(1) = 3, f(2) = 3 and f(3) = 2 is an optimal policy and vα = (32
3 ,

38
3 ,

46
3) is the value vector.

Remarks

1. The convergence to the value vector is faster in the Pre-Gauss-Seidel variant than in the

standard version. On the other side, the exclusion of suboptimal actions is, in general, not so

successful.

2. The performance of the Pre-Gauss-Seidel variant depends on the ordering of the states.

Therefore, it is worthwhile to apply the following scheme, in which the iterations are in pairs;

the states are ordered in the usual way first and then reversed. Hence, a pair of iterations has the

following scheme:
{

yi = maxa{ri(a) + α
∑i−1

j=1 pij(a)yj + α
∑N

j=i pij(a)xj}, i = 1, 2, . . . , N ;

zi = maxa{ri(a) + α
∑i

j=1 pij(a)yj + α
∑N

j=i+1 pij(a)zj}, i = N,N − 1, . . . , 1.

Variant 2 (Gauss-Seidel)

The idea of the Pre-Gauss-Seidel variant can be extended to the term with j = i. Then, formula (3.43)

becomes (with L∗ instead of L):

80 CHAPTER 3. DISCOUNTED REWARDS

(L∗
πx)i = ri(π) + α

∑i
j=1 pij(π)(L∗

πx)j + α
∑N

j=i+1 pij(π)xj, i = 1, 2, . . . , N,

i.e.

(L∗
πx)i = {1− αpii(π)}−1

{

ri(π) + α

i−1
∑

j=1

pij(π)(L∗
πx)j + α

N
∑

j=i+1

pij(π)xj

}

, i = 1, 2, . . . , N. (3.45)

The corresponding operator U∗ and the maximizing decision rule f∗x are defined by

(U∗x)i = maxa {1− αpii(a)}−1
{

ri(a) + α

i−1
∑

j=1

pij(a)(U
∗x)j + α

N
∑

j=i+1

pij(a)xj

}

, i = 1, 2, . . . , N. (3.46)

and L∗
f∗

x
x = U∗x.

Theorem 3.28

(1) The operator L∗
π is a monotone contraction with fixed-point vα(π∞) and with contraction

factor βπ := α ·maxi
1−pii(π)
1−αpii(π)

≤ α.

(2) The operator U∗ is a monotone contraction with fixed-point vα and with contraction

factor β := α ·maxi,a
1−pii(a)
1−αpii(a) .

Proof

The proof is similar to the proof of Theorem 3.26 and is left to the reader (as Exercise 3.22).

Lemma 3.12

(1) U∗x = supπ L
∗
πx for every x ∈ R

N .

(2) f∗∞vα is an α-discounted optimal policy.

(3) x− (1− β)−1‖U∗x− x‖∞ · e ≤ U∗x− β(1 − β)−1‖U∗x− x‖∞ · e ≤ vα(f∗∞x) ≤ vα ≤
U∗x+ β(1 − β)−1‖U∗x− x‖∞ · e ≤ x+ (1− β)−1‖U∗x− x‖∞ · e.

(4) ‖vα − x‖∞ ≤ (1 − β)−1‖U∗x− x‖∞.

(5) ‖vα(f∗∞x)− vα‖∞ ≤ 2β(1 − β)−1‖U∗x− x‖∞.

Proof

The proof is similar to the proof of Lemma 3.10.

Lemma 3.13
(1) U∗(x+ c · e) ≤ U∗x+ β · c · e for every x ∈ R

N and every c ≥ 0;

(2) U∗(x+ c · e) ≥ U∗x+ β · c · e for every x ∈ R
N and every c ≤ 0.

Proof

The proof is similar to the proof of Lemma 3.11

Theorem 3.29

If {1− αpii(a)}−1
{

ri(a) + α
∑i−1

j=1 pij(a)(U
∗x)j + α

∑N
j=i+1 pij(a)xj

}

< (U∗x)i − 2β(1− β)−1·
‖U∗x− x‖∞, then action a is suboptimal.

Proof

The proof is similar to the proof of Theorem 3.27 and left to the reader (as Exercise 3.23).

3.6. VALUE ITERATION 81

Algorithm 3.7 Value iteration (Gauss-Seidel)

Input: Instance of a discounted MDP and some scalar ε > 0.

Output: An ε-optimal deterministic policy f∞ and a 1
2
ε-approximation of the value vector vα.

1. Select x ∈ R
N arbitrary; β := α ·maxi,a

1−pii(a)
1−αpii(a) .

2. for i = 1, 2, . . . , N do

begin

yi := maxa yi(a), where yi(a) := {1−αpii(a)}−1
{

ri(a)+α
∑i−1

j=1 pij(a)(U
∗x)j+α

∑N
j=i+1 pij(a)xj

}

;

choose f(i) ∈ argmaxa yi(a)

end

3. if ‖y − x‖∞ ≤ 1
2 (1− β)β−1ε then

f∞ is an ε-optimal policy and y is a 1
2
ε-approximation of the value vector vα (STOP)

else go to to step 4.

4. for all (i, a) ∈ S ×A do

if yi(a) < yi − 2β(1 − β)−1 · ‖y − x‖∞, then A(i) := A(i) − {a}.

5. if #A(i) = 1 for every i ∈ S then

f∞ is an optimal policy and vα := {I − P (f)}−1r(f) is the value vector (STOP).

6. x := y and return to step 2.

Example 3.3 (continued)

Start with x = (4, 4, 4); β = 0.5. The computations are given by the following scheme:

y1(1) = 2; y1(2) = 2 + 1
2
x2; y1(3) = 3 + 1

2
x3; y1 = max{y1(1), y1(2), y1(3)};

y2(1) = 6 + 1
2y1; y2(2) = 8; y2(3) = 5 + 1

2x3; y2 = max{y2(1), y2(2), y2(3)};
y3(1) = 8 + 1

2y1; y3(2) = 9 + 1
2y2; y3(3) = 14; y3 = max{y3(1), y3(2), y3(3)};

Iteration 1

y1(1) = 2, y1(2) = 4, y1(3) = 5 : y1 = 5; f(1) = 3.

y2(1) = 8.5, y2(2) = 8, y2(3) = 7 : y2 = 8.5; f(2) = 1.

y3(1) = 10.5, y3(2) = 13.25, y3(3) = 14 : y3 = 14; f(3) = 3.

x = (5, 8.5, 14).

Iteration 2

y1(1) = 2, y1(2) = 6.25, y1(3) = 10 : y1 = 10; f(1) = 3.

y2(1) = 11, y2(2) = 8, y2(3) = 12 : y2 = 12; f(2) = 3.

y3(1) = 13, y3(2) = 15, y3(3) = 14 : y3 = 15; f(3) = 2.

x = (10, 12, 15).

Iteration 3

y1(1) = 2, y1(2) = 7, y1(3) = 10.5 : y1 = 10.5; f(1) = 3.

y2(1) = 11.25, y2(2) = 8, y2(3) = 12.5 : y2 = 12.5; f(2) = 3.

y3(1) = 13.25, y3(2) = 15.25, y3(3) = 14 : y3 = 15.25; f(3) = 2.

i = 1 : the actions 1 and 2 are excluded.

i = 2 : the actions 1 and 2 are excluded.

i = 3 : the actions 1 and 3 are excluded.

x = (10.41, 12.41, 15.20).

f∞ with f(1) = 3, f(2) = 3 and f(3) = 2 is an optimal policy and vα = (32
3 ,

38
3 ,

46
3) is the value vector.

82 CHAPTER 3. DISCOUNTED REWARDS

Variant 3 (Relaxation and one-step look-ahead)

The idea in relaxation is to replace the iterand vn+1 by v̂n+1, where v̂n+1 is a linear combination of vn+1

and vn:

v̂n+1 := ωvn+1 + (1− ω)vn = vn + ω(vn+1 − vn) = vn + ωδn+1, (3.47)

where δn+1 := vn+1 − vn; ω is called the relaxation factor. For ω = 1, we obtain the standard value

iteration algorithm, i.e. v̂n+1 = vn+1 . Furthermore, we look one-step ahead and examine an estimation of

vn+2. This estimator, denoted by wn+1, will replace vn+1 in the iteration scheme. Such an estimator has

the prospect to be closer to vn+2 than vn+1, and in this way to improve the speed of the convergence of

the algorithm.

Hence, given the approximation vn of vα obtained in iteration n, the next iteration consists of three

steps: (1) vn+1 is computed by one of the variants of value iteration; (2) the relaxation v̂n+1 := vn +ωδn+1 ,

where δn+1 := vn+1 − vn, is determined for some relaxation factor ω; (3) wn+1, an estimator of vn+2, is

computed and this wn+1 is used in the subsequent iteration as the approximation vn+1 of vα.

Case 1: The iteration scheme in step 1 is the standard value iteration.

In the standard value iteration we have vn+1 = Uvn = Lfn
vn. For wn+1 we take

wn+1 := r(fn) + αP (fn)v̂n+1 = r(fn) + αP (fn){vn + ωδn+1} = vn+1 + αωgn+1,

where gn+1 := P (fn)δn+1.

Case 2: The iteration scheme in step 1 is the Pre-Gauss-Seidel variant.

In this variant we have vn+1 = Uvn = Lfn
vn. For wn+1 we take

wn+1
i := ri(fn) + α

∑i−1
j=1 pij(fn)wn+1

j + α
∑N

j=i pij(fn)v̂n+1
j for i = 1, 2, . . . , N .

Lemma 3.14

wn+1 = vn+1 + αωgn+1, where gn+1
i = α

∑i−1
j=1 pij(fn)gn+1

j +
∑N

j=i pij(fn)δn+1
j for i = 1, 2, . . . , N .

Proof

We appy induction on the states. For i = 1, we have

wn+1
1 = r1(fn) + α

∑N
j=1 p1j(fn)v̂n+1

j

= r1(fn) + α
∑N

j=1 p1j(fn)(vn
j + ωδn+1

j)

= r1(fn) + α
∑N

j=1 p1j(fn)vn
j + αω

∑N
j=1 p1j(fn)δn+1

j

= vn+1
1 + αωgn+1

1 .

For the induction step, we obtain

wn+1
i = ri(fn) + α

∑i−1
j=1 pij(fn)wn+1

j + α
∑N

j=i pij(fn)v̂n+1
j

= ri(fn) + α
∑i−1

j=1 pij(fn){vn+1
j + αωgn+1

j }+ α
∑N

j=i pij(fn){vn
j + ωδn+1

j }
= ri(fn) + α

∑i−1
j=1 pij(fn)vn+1

j + α
∑N

j=i pij(fn)vn
j +

αω
{

α
∑i−1

j=1 pij(fn)gn+1
j +

∑N
j=i pij(fn)δn+1

j

}

= vn+1
i + αωgn+1

i .

Case 3: The iteration scheme in step 1 is the Gauss-Seidel variant.

In this variant we have vn+1 = U∗vn = L∗
fn
vn. For wn+1 we take

wn+1
i := {1− αpii(fn)}−1

{

ri(fn) + α
∑i−1

j=1 pij(fn)wn+1
j + α

∑N
j=i+1 pij(fn)v̂n+1

j for i = 1, 2, . . . , N .

3.6. VALUE ITERATION 83

Lemma 3.15

wn+1 = vn+1 + αωgn+1, where gn+1
i = {1− αpii(fn)}−1

{

α
∑i−1

j=1 pij(fn)gn+1
j +

∑N
j=i+1 pij(fn)δn+1

j

}

for

i = 1, 2, . . . , N .

Proof

The proof is similar to the proof of Lemma 3.14.

To summarize: in all three cases we have wn+1 = vn+1 + αωgn+1, where vn+1 and gn+1 are dependent

of the method which is used. In addition, we want to choose ω so that the resulting algorithm has a

considerably improved convergence. Since δn+2 = vn+2 − vn+1, as estimator of δn+2 we take wn+1− v̂n+1

and we denote this estimator by δ̂n+1. So,

δ̂n+1 := wn+1 − v̂n+1 = (vn+1 + αωgn+1)− (vn + ωδn+1) = δn+1 + ω(αgn+1 − δn+1). (3.48)

In order to find the best value of ω, we consider

D(ω) := span δ̂n+2 = M(ω) −m(ω), (3.49)

where

M(ω) = maxi δ̂
n+2
i = maxi {δn+1

i + ωhn+1
i } and m(ω) = mini δ̂

n+2 = mini {δn+1
i + ωhn+1

i }, (3.50)

with hn+1 := αgn+1 − δn+1.

Since M(ω) is the maximum of a set of linear functions in ω, M(ω) is a piecewise linear convex

function (the slopes of the line segments are nondecreasing in ω); similarly, m(ω) is a piecewise linear

concave function (the slopes of the line segments are nonincreasing in ω). Hence, D(ω) is a piecewise

linear, nonnegative function. It seems plausible to find ω such that D(ω) is minimized. Therefore, it is

sufficient to examine D(ω) only at the endpoints of the segments of the linear functions. This implies that

the optimal value ω is found in one of the breakpoints, either of M(ω) or of m(ω).

Below we present an algorithm for the computation of ω∗. In step 1 we start with the values ω∗ = 0,

M = M(ω∗) = M(0) and H , the slope of the first line segment of M(ω). In step 2, we find the endpoint

ω∗+ω1 of the first line segment of M(ω) at the right side of ω∗ and the slope hn+1
k of the first line segment

of M(ω) at the right side of ω∗ + ω1. In step 3 the slope h of the first line segment of m(ω) at the right

side of ω∗ +ω1 is determined. Next, we consider the three possible situations: (1) if H ≤ h and hn+1
k ≥ h,

then - since the slopes of the line segments of M(ω) and m(ω) are increasing and decreasing, respectively -

ω∗ +ω1 is the value of ω that minimizes D(ω) and we stop (see step 4 in the algorithm); (2) if H ≤ h and

hn+1
k < h, the minimum of D(ω) is to the right and we continue the procedure, i.e. we take ω∗ := ω∗ +ω1

and update some values (see the steps 4 and 7 in the algorithm); (3) if H > h, then the minimum of D(ω)

is in the interval [ω∗, ω∗ + ω1] and we consider m(ω) at the right side of m(ω∗), which is done in step 8

of the next algorithm. In this step 8, we use the fact that m(ω) = mini {δn+1
i + ωhn+1

i } is equivalent to

maxi {−δn+1
i + ω(−hn+1

i)}. In the algorithm below we omit the iteration index, i.e. we denote δ and h

instead of δn+1 and hn+1, respectively.

Algorithm 3.8 Computation of the relaxation factor ω∗

Input: Two vectors δ, h ∈ R
N .

Output: A scalar ω∗ such that D(ω∗) = minω D(ω), where D(ω) := M(ω) −m(ω) with

M(ω) = maxi (δi + ωh) and m(ω) = mini (δi + ωh).

1. ω∗ := 0; let k be such that δk = maxi δi (if k is not unique, select under the candidates the state

with the highest hi); M := δk and H := hk.

84 CHAPTER 3. DISCOUNTED REWARDS

2. ω1 := min{i | hi>H}
{

M−δi

hi−H

}

and let k such that ω1 = M−δk

hk−H .

3. Let r be such that mini {δi + ω1hi} = δr + ω1hr; h := hr.

4. if H ≤ h and hk ≥ h then ω∗ := ω∗ + ω1 (STOP).

else go to step 5.

5. if H ≤ h and hk < h then go to step 7.

else go to step 6.

6. if H > h then go to step 8.

7. ω∗ := ω∗ + ω1; δi := δi + ω1hi, i ∈ S; M := δk; H := hk; return to step 2.

8. δi := −δi, i ∈ S; hi := −hi, i ∈ S; let k be such that δk = maxi δi; M := δk; H := hk;

return to step 2.

We now formulate an algorithm for the value iteration method with relaxation and one-step look-ahead.

In each iteration one of the three variants of value iteration can be chosen.

Algorithm 3.9 Value iteration method with relaxation and one-step look-ahead (3 variants)

Input: Instance of a discounted MDP and some scalar ε > 0.

Output: A deterministic policy f∞ and a vector w, which are approximations of the optimal policy f∞∗
and the value vector vα, respectively.

1. Select x ∈ R
N arbitrary.

2. Make the choice which variant is used in the next iteration: variant 1 (standard value iteration),

variant 2 (Pre-Gauss-Seidel) or variant 3 (Gauss-Seidel).

3. if variant 1 is chosen in step 2 then

begin compute y and f∞ as in step 2 of Algorithm 3.4; go to step 4 end

else

begin if variant 2 is chosen in step 2 then

begin compute y and f∞ as in step 2 of Algorithm 3.6; go to step 4 end

else

begin if variant 3 is chosen in step 2 then

begin compute y and f∞ as in step 2 of Algorithm 3.7; go to step 4 end

end

end

4. δ := y − x.

5. if variant 1 is chosen in step 2 then

begin for i = 1, 2, . . . , N do gi :=
∑N

j=1 pij(f)δj ; go to step 6 end

else

begin if variant 2 is chosen in step 2 then

begin for i = 1, 2, . . . , N do gi := α
∑i−1

j=1 pij(f)gj +
∑N

j=i pij(f)δj ; go to step 6 end

else

3.7. VALUE ITERATION AND BISECTION 85

begin if variant 3 is chosen in step 2 then

begin for i = 1, 2, . . . , N do

gi := {1− αpii(f)}−1
{

α
∑i−1

j=1 pij(f)gj +
∑N

j=i+1 pij(f)δj
}

;

go to step 6

end

end

end

6. h := αg − δ; compute ω∗ by Algorithm 3.8; w := y + αω∗g.

7. if ‖w − x‖ ≤ ε then

f∞ and w are approximations of the optimal policy f∞∗ and the value vector vα (STOP)

else return to step 2.

Herzberg and Yechiali ([116]) have proposed Algorithm 3.9 and they have tested this algorithm on several

problems. Their numerical results reveal considerable reductions in computation time when compared to

other value iteration schemes.

3.7 Value iteration and bisection

The convergence of value iteration is very slow if the discount factor α is close to 1. In value iteration to

improve the accuracy of vn, the approximation of the value vector vα in iteration n, by a factor 10, we need

roughly −{log10 α}−1 additional iterations. If α = 0.999 that means about 2300 additional iterations. For

α close to 1 a rate of convergence independent of a is especially advantageous. The method of bisection is

such a computational scheme. It need log2 10 ≈ 3.32 iterations to improve the accuracy by a factor 10.

The bisection method is based to the following principles. Assume that an upper and a lower bound,

say v and v respectively, of the value vector vα are known: v ≤ vα ≤ v. Then, the interval [v, v] is

intersected into two halves (the bisection step). The procedure will be repeated with that half that includes

vα. However, the bisection method is only applicable in completely ordered Banach spaces, whereas our

problem operates in R
N , which is only a partial ordered space. For this reason the bisection method is in

this case not transferable in a straightforward manner. It can happen that vα is neither situated in the

first half nor completely in the second half.

Therefore, we must compound the method of bisection with the value iteration in a suitable way.

Moreover, we have to use the monotonicity property of the operators Lf and U . This is achieved by the

following method, which consists of five steps. In broad outlines these five steps are as follows.

1. Computation of the starting interval [v, v] such that v ≤ vα ≤ v.
2. Bisection: compute v := 1

2 (v + v).

3. Termination criterion: if ‖v − v‖∞ < ε then stop with policy f∞v as an η-optimal policy, where

η := α(1+α)
1−α

· ε, and with v as 1
2
ε-approximation of the value vector vα.

4. Test which of the following situations has happened:

a. we can conclude v ≤ vα ≤ v;
b. we can conclude v ≤ vα ≤ v;
c. none of the cases a and b.

5. Perform some iterations of the value iteration method until vn+l ≥ vn, in which case vα ≥ vn,

or vn+l ≤ vn, in which case vα ≤ vn.

86 CHAPTER 3. DISCOUNTED REWARDS

In the sequel we first elaborate some of the above steps and the we formulate the complete algorithm

Step 1: Computation of the starting interval

a. Select some v0.

b. Compute v1 := Uv0, fi := fv0 and v := vα(f∞1).

c. Compute v := v1 + α
1−α · ‖v1 − v0‖∞ · e.

Remark

Obviously v = vα(f∞1) ≤ vα. From Theorem 3.7 part (1) follows vα ≤ v1 + α
1−α
· ‖v1 − v0‖∞ · e = v.

Step 3: Termination

Since ‖vα − v‖∞ ≤ 1
2 · ‖v − v|∞ ≤ 1

2ε, v is a 1
2ε-approximation of the value vector vα. By Theorem 3.7

part (3), we also have

‖vα − vα(f∞v)‖∞ ≤ 2α(1− α)−1 · ‖Uv − v‖∞
≤ 2α(1− α)−1 · {‖Uv − vα‖∞ + ‖vα − v‖∞}
≤ 2α(1− α)−1 · {α · ‖v − vα‖∞ + ‖vα − v‖∞}
= 2α(1− α)−1(α+ 1) · ‖v − vα‖∞ ≤ η.

Therefore, f∞v as an η-optimal policy, where η := α(1+α)
1−α · ε.

Step 4: The testing procedure

To test whether v ≤ vα ≤ v is not so easy as it looks, because vα is unknown. We make use of the

monotonicity property of the operators Lf and U . Starting from the bisection point v = 1
2(v + v) we look

in which direction the value iteration method would lead. If Uv ≤ v, then we can conclude vα ≤ v and

case a is verified. Similarly, if Uv ≥ v, then we can conclude vα ≥ v and case b is verified.

Remark

In order to conclude (Uv)i ≥ vi, it is not always necessary to compute maxa {ri(a) + α
∑

j pij(a)vj}. For

instance, as soon as ri(a) + α
∑

j pij(a)vj ≥ vi for some action a ∈ A(i), we may conclude (Uv)i ≥ vi.

Therefore, we adapt the computation of Uv and the resulting vector will be denoted by Tv.

We now describe the computation of Tv. Let si(a, v) := ri(a) + α
∑

j pij(a)vj for all (i, a) ∈ S × A. The

first component (Tv)1 is defined as follows. We computed s1(a, v) for each a ∈ A(i), one at the time, until

s1(a, v) ≥ v1. As soon as s1(a, v) ≥ v1 for some a ∈ A(i), say for a = a1, we define (Tv)1 := s1(a, v). If

there does not exist such a1, we define (Tv)1 := maxa s1(a, v) < v1.

Next, we define (Tv)2 similarly. Then, there are the following 4 possibilities:

(1) (Tv)1 ≥ v1 and (Tv)2 ≥ v2;
(2) (Tv)1 ≥ v1 and (Tv)2 = (Uv)2 < v2;

(3) (Tv)1 = (Uv)1 < v1 and (Tv)2 ≥ v2;
(4) (Tv)1 = (Uv)1 < v1 and (Tv)2 = (Uv)2 < v2.

In the cases (2) and (3), we stop because bisection can not be applied. In the cases (1) and (4) we continue

similarly for i = 3, 4, . . . , N . Hence, we end with the following possibilities.

Case 1: (Tv)i ≥ vi for all i ∈ S.

In this case we have actions ai ∈ A(i) such that si(ai, v) ≥ vi for all i ∈ S. Let policy f∞ defined by

f(i) := ai, i ∈ S Then, Uv ≥ Lfv ≥ v, implying vα ≥ v, and consequently vα ∈ [v, v].

Case 2: (Tv)i ≤ vi for all i ∈ S.

In this case maxa si(a, v) ≤ vi for all i ∈ S. Then, we have Uv ≤ v, implying vα ≤ v, and consequently

vα ∈ [v, v].

3.7. VALUE ITERATION AND BISECTION 87

Case 3: This case occurs when case 1 and 2 are not satisfied. Then the testing procedure was interrupted

because bisection can not be applied.

Step 5: Value iteration

If we terminate the test procedure because we cannot use the bisection method, we execute the following

procedure.

a. Compute w := Uv.

b. If ‖w− v‖∞ ≤ 1−α
2α · ε, then stop with the ε-optimal policy f∞ := f∞v and with w as 1

2ε-approximation

of the value vector vα.

c. If w ≥ v, then vα ≥ v and consequently vα ∈ [v, v] and continue with bisection.

If w ≤ v, then vα ≤ v and consequently vα ∈ [v, v] and continue with bisection.

d. v := w and repeat the value iteration (step 4).

Remark

If ‖w− v‖∞ ≤ 1−α
2α
· ε, then by Theorem 3.7 part (3) f∞v is an ε-optimal policy. Furthermore, by Theorem

3.7 part (2), ‖vα − w‖∞ ≤ α · ‖vα − v‖∞ ≤ 1
2
ε, i.e. w is 1

2
ε-approximation of the value vector vα.

Combining the above elements yields the following algorithm.

Algorithm 3.10 Value iteration and bisection

Input: Instance of a discounted MDP and some scalar ε > 0.

Output: A deterministic policy f∞ and a vector w, which are approximations of the optimal policy f∞∗
and the value vector vα, respectively.

1. Initialization:

η := α(1+α)
1−α

· ε; select some x ∈ R
N ; y := Ux; v := vα(f∞x); v := y + α

1−α
· ‖y− x‖∞.

2. Bisection

v := 1
2
(v + v).

3. Termination criterion:

if ‖v − v‖∞ < ε then

begin determine fv such that Uv = Lfv
v;

f∞v is an η-optimal policy and v is a 1
2
ε-approximation of the value vector vα

end (STOP).

4. Testing procedure:

(a) Computation of (Tv)1:

for all a ∈ A(i) do

begin s1(a, v) := r1(a) + α
∑

j p1j(a)vj ;

if s1(a, v) ≥ v1 then begin a1 := a; (Tv)1 := s1(a, v); go to step 4(b) end

end

(Tv)1 := maxa s1(a, v)

(b) Computation of (Tv)i, i ≥ 2:

if (Tv)1 ≥ v1 then

begin for i = 2, 3, . . . , N do

begin stop := 0;

88 CHAPTER 3. DISCOUNTED REWARDS

for all a ∈ A(i) do

begin while stop = 0 do

begin si(a, v) := ri(a) + α
∑

j pij(a)vj ;

if si(a, v) ≥ vi then

begin ai := a; (Tv)i := si(a, v); stop := 1 end

end

end

if stop = 0 then go to step 5

end

v := v; go to step 2

end

if (Tv)1 < v1 then

begin for i = 2, 3, . . . , N do

begin for all a ∈ A(i) do

begin si(a, v) := ri(a) + α
∑

j pij(a)vj ;

if si(a, v) > vi then go to step 5

end

end

v := v; go to step 2

end

5. Value iteration:

(a) w := Uv.

(b) if ‖w − v‖∞ ≤ 1−α
2α
· ε then f∞v is an ε-optimal policy and w is a 1

2
ε-approximation of the

value vector vα (STOP).

(c) if w ≥ v then begin v := w; go to step 3 end

(d) if w ≤ v then begin v := w; go to step 3 end

(e) v := w; go to step 5 (a).

Remark

Computational experiments show (see [10]) that this approach is very suitable for MDPs with a discount

factor close to 1.

3.8 Modified Policy Iteration

In step 2 of the policy iteration method (see Algorithm 3.1) we determine vα(f∞) as unique solution of

the linear system Lf x = x, i.e.

{I − αP (f)}x = r(f). (3.51)

In a model with N states, this requires O(N3) elementary operations (e.g. additions and multiplications).

Hence, for large N , obtaining an exact solution of (3.51) may be computationally prohibitive. In section

3.8. MODIFIED POLICY ITERATION 89

3.4 we have shown (see (3.25)) that, for consecutive policies f∞ and g∞ in Algorithm 3.1, where g is

chosen by rule (3.21), and with x = vα(f∞) and y = vα(g∞),

y = x+ {I − αP (f)}−1{Ux− x} = x+

∞
∑

t=0

{αP (f)}t{Ux− x}. (3.52)

In the modified policy iteration method the matrix A :=
∑∞

t=0 {αP (f)}t is truncated by

A(k) :=

k−1
∑

t=0

{αP (f)}t for some 1 ≤ k ≤ ∞.

For k = 1, A(1) = I, and formula (3.52) becomes y = x+(Ux−x) = Ux, i.e. the modified policy iteration

method is value iteration; for k = ∞, A(∞) = A, and formula (3.52) is the policy iteration method. For

1 < k < ∞, the modified policy iteration method may be considered as a combination of policy iteration

and value iteration. Policy iteration may be viewed as Newton’s method for the solution of the optimality

equation Ux = x. Similarly, the modified policy iteration method can be considered as an inexact Newton

method.

We allow different values of k to be chosen in each iteration and we denote by k(n) the value of k in

iteration n. Hence, we obtain

xn+1 = xn + A(k(n)){Uxn − xn}
= xn +

∑k(n)−1
t=0 {αP (fn)}t{r(fn) + αP (fn)xn − xn}

= r(fn) + αP (fn)r(fn) + · · ·+
{

αP (fn)
}k(n)−1

r(fn) +
{

αP (fn)
}k(n)

xn

=
{

Lfn

}k(n)
xn.

The modified policy iteration method is presented in the following algorithm. The correctness of this

algorithm is shown in Theorem 3.31.

Algorithm 3.11 Modified policy iteration

Input: Instance of a discounted MDP and some scalar ε > 0.

Output: An ε-optimal deterministic policy f∞.

1. Select x ∈ R
N .

2. a. Choose any k with 1 ≤ k ≤ ∞.

b. Determine f such that Lf x = Ux.

c. if ‖Ux− x‖∞ ≤ 1
2(1− α)α−1ε then f∞ is an ε-optimal policy (STOP).

3. a. y := {Lf}k x.
b. x := y and return to step 2.

Example 3.4

Consider the model of Example 3.1, start with x = (28
3
, 8, 28

3
), let ε = 0.2 and take k = 2 in each iteration.

Notice that 1
2 (1− α)α−1ε = 0.1.

Iteration 1

Ux = (28
3 ,

34
3 ,

40
3); f(1) = f(2) = f(3) = 3.

y = (29
3 ,

35
3 ,

41
3); x = (29

3 ,
35
3 ,

41
3).

90 CHAPTER 3. DISCOUNTED REWARDS

Iteration 2

Ux = (9.833, 11.833, 14.833); f(1) = f(2) = 3, f(3) = 2.

y = (10.417, 12.417, 14.917); x = (10.417, 12.417, 14.917).

Iteration 3

Ux = (10.459, 12.459, 15.209); f(1) = f(2) = 3, f(3) = 2.

y = (10.604, 12.604, 15.229); x = (10.604, 12.604, 15.229).

Iteration 4

Ux = (10.615, 12.615, 15.302); f(1) = f(2) = 3, f(3) = 2.

y = (10.651, 12.651, 15.308); x = (10.651, 12.651, 15.308).

Iteration 5

Ux = (10.654, 12.654, 15.309); f(1) = f(2) = 3, f(3) = 2.

f∞ is an ε-optimal policy.

Let x1, x2, . . . be subsequent approximations of vα, obtained by Algorithm 3.11. Then,

xn+1 = {Lfn
}k(n)xn, n = 1, 2, (3.53)

Since the operator depends on n, it is not obvious from the general theory that this operator is mono-

tone and/or contracting. The next example shows that, in general, the operator {Lfn
}k(n) is neither a

contraction nor is it monotone.

Example 3.5

Let S = {1, 2}; A(1) = A(2) = {1, 2}; α = 3
4
. r1(1) = 1, r1(2) = 0, r2(1) = 1, r2(2) = 0.

p11(1) = 0, p12(1) = 1; p11(2) = 1, p12(2) = 0; p21(1) = 0, p22(1) = 1; p21(2) = 1, p22(2) = 0.

In an iteration, x will be transformed to {Lfx
}kx for some k, where fx satisfies Ux = Lfx

x.

Let x = (3, 0), then (Ux)1 = max{1 + α · 0, 0 + α · 3} = 9
4 , (Ux)2 = max{1 + α · 0, 0 + α · 3} = 9

4 .

Hence, fx(1) = fx(2) = 2, and consequently, r(fx) =
(

0
0

)

and P (fx) =
(

1 0
1 0

)

, so {P (fx)}t =
(

1 0
1 0

)

for all t ≥ 1. Therefore, {Lfx
}k x =

(

3
4

)k{P (fx)}kx =
(

3
4

)k(3
3

)

.

Next, let y = (0, 0), then (Uy)1 = max{1 + α · 0, 0 + α · 0} = 1, (Uy)2 = max{1 + α · 0, 0 + α · 0} = 1.

Hence, fy(1) = fy(2) = 1, and consequently, r(fy) =
(

1
1

)

and P (fy) =
(

0 1
0 1

)

, so {P (fx)}t =
(

0 1
0 1

)

for all t ≥ 1. Therefore, {Lfy
}k y =

(

1
1

)

+ α
(

1
1

)

+ · · ·+ αk−1
(

1
1

)

+ αk
(

0
0

)

= 1−αk

1−α

(

1
1

)

=
{

1−
(

3
4

)k}(4
4

)

.

Notice that x =
(

3
0

)

≥
(

0
0

)

= y, but
(

3
4

)k(3
3

)

≥
{

1−
(

3
4

)k}(4
4

)

is not valid for all k, since for k →∞,
(

3
4

)k(3
3

)

→
(

0
0

)

and
{

1−
(

3
4

)k}(4
4

)

→
(

4
4

)

, i.e. the mapping {Lfx
}k is not monotone in general.

Suppose that the operator {Lfx
}k is a contraction. Then, ‖{Lfx

}k x− {Lfy
}k y‖∞ ≤ β · ‖x− y‖∞ for

some 0 < β < 1 and for all k. Since ‖{Lfx
}∞ x− {Lfy

}∞ y‖∞ = 4 > 3 = ‖x− y‖∞, the operator is not

a contraction.

Although the operator {Lfn
}k(n) is neither a contraction nor monotone, it can be shown that {Lfn

}k(n) xn

converges to the value vector vα for any starting vector x1. In order to prove this result we need the

following lemma.

3.8. MODIFIED POLICY ITERATION 91

Lemma 3.16

Let xn+1 := {Lfn
}k(n) xn and β(n) := αk(n) · β(n − 1), n ∈ N, with β(0) := 1. Assume that

Ux1 − b · e ≤ x1 ≤ Ux1 + d · e for some b, d ≥ 0. Then, for n = 0, 1,

(1) xn+1 ≤ Uxn+1 + β(n) · d · e.
(2) xn+1 ≤ vα + β(n)

1−α · d · e.
(3) xn+2 ≥ Uxn+1 − αβ(n)

1−α
· d · e.

(4) xn+2 ≥ vα − αn+1

1−α
· {(n+ 1)d+ b} · e.

Proof

(1) We prove this result by induction on n (for n = 0 the result is obvious).

Assume that xn ≤ Uxn + β(n − 1) · d · e. Since for any fixed f∞ ∈ C(D) and any fixed k ∈ N the

operator {Lf}k is a monotone contraction with factor αk and with the additional property that

{Lf}k(x+ c · e) = {Lf}k x+ αkc · e for any x ∈ R
N and any scalar c, we obtain

xn+1 = {Lfn
}k(n)xn ≤ {Lfn

}k(n)
{

Uxn + β(n − 1) · d · e
}

= {Lfn
}k(n){Uxn}+ αk(n) · β(n − 1) · d · e = {Lfn

}k(n){Lfn
xn}+ β(n)d · e

= {Lfn
}k(n)+1 xn + β(n) · d · e = {Lfn

}{Lk(n)
fn

xn}+ β(n) · d · e
= Lfn

xn+1 + β(n) · d · e ≤ Uxn+1 + β(n) · d · e.
(2) Iterating the inequality of part (1) gives for any m ≥ 1

xn+1 ≤ Uxn+1 + β(n) · d · e
≤ U

{

Uxn+1 + β(n) · d · e
}

+ β(n)d · e = U2xn+1 + αβ(n) · d · e+ β(n) · d · e
≤ · · · ≤ Umxn+1 + (1 + α+ · · ·+ αm−1)β(n) · d · e.

Therefore, by letting m→∞, we obtain xn+1 ≤ vα + β(n)
1−α
· d · e.

(3) Also by part (1), we obtain

xn+2 = {Lfn+1}k(n+1) xn+1 = {Lfn+1}k(n+1)−1{Lfn+1 x
n+1} = {Lfn+1}k(n+1)−1{Uxn+1}

≥ {Lfn+1}k(n+1)−1{xn+1 − β(n) · d · e} = {Lfn+1}k(n+1)−1 xn+1 − αk(n+1)−1β(n) · d · e.
Iterating the inequality {Lfn+1}k(n+1) xn+1 ≥ {Lfn+1}k(n+1)−1 xn+1 − αk(n+1)−1β(n) · d · e, gives

xn+2 = {Lfn+1}k(n+1) xn+1 ≥ Lfn+1x
n+1 − {α+ α2 + · · ·+ αk(n+1)−1}β(n) · d · e

≥ Lfn+1x
n+1 − αβ(n)

1−α · d · e.
(4) Since Ux1 ≤ x1 + b · e, it follows that Un+2x1 ≤ Un+1x1 + αn+1b · e, n = −1, 0,

Hence, by iterating, Um{Un+2x1} ≤ Un+1x1 + (1 + α+ · · ·+ αm)αn+1b · e, m = 0, 1,

Therefore, vα = limm→∞Um{Un+2x1} ≤ Un+1x1 + αn+1

1−α
b · e.

For part (4), it is sufficient to show that Un+1x1 ≤ xn+2 + (n+1)αn+1

1−α
· d · e.

From part (3) it follows that for j = 0, 1, . . . we have

Un+1−jxj+1 = Un−j{Uxj+1} ≤ Un−j{xj+2 + αβ(j)
1−α · d · e}

= Un−jxj+2 + αn+1−jβ(j)
1−α · d · e.

Summing up the above inequality over j = 0, 1, . . . , n gives

Un+1x1 ≤ xn+2 + (1− α)−1
{∑n

j=0 α
n+1−jβ(j)

}

d · e.
Since β(j) = αk(j)+k(j−1)+···+k(1) ≤ αj for j = 0, 1, . . . , n, the above inequality implies that

Un+1x1 ≤ xn+2 +
(n+1)αn+1

1−α · d · e.

92 CHAPTER 3. DISCOUNTED REWARDS

Theorem 3.30

Let xn+1 = {Lfn
}k(n)xn, = 1, 2, Then, vα = limn→∞ xn.

Proof

We apply Lemma 3.16 with b = d = ‖Ux1 − x1‖∞. Since limn→∞ β(n) = 0 and limn→∞ nαn = 0, we

obtain

limsupn→∞ xn ≤ limsupn→∞ {vα +
β(n−1)

1−α · d · e}
= vα

= limn→∞
{

vα − αn−1(1− α)−1{(n− 1)d+ b} · e
}

= liminfn→∞
{

vα − αn−1(1− α)−1{(n− 1)d+ b} · e
}

≤ liminfn→∞ xn,

i.e. vα = limn→∞ xn.

Theorem 3.31

Algorithm 3.11 terminates in a finite number of iterations with an ε-optimal policy.

Proof

Since vα is the fixed-point of U , we have

‖Uxn − xn‖∞ ≤ ‖Uxn − Uvα‖∞ + ‖Uvα − xn‖∞ = ‖Uxn − Uvα‖∞ + ‖vα − xn‖∞
≤ α · ‖xn − vα‖∞ + ‖vα − xn‖∞ = (1 + α) · ‖vα − xn‖∞.

Because vα = limn→∞ xn, the stop criterion of step 2c in Algorithm 3.11 is satisfied after a finite number

of iterations. From Theorem 3.7 part (3) and the stop criterion of Algorithm 3.11 it follows that

‖vα − vα(f∞x)‖∞ ≤ 2α(1− α)−1‖Ux− x‖∞ ≤ ε,

i.e. Algorithm 3.11 terminates with an ε-optimal policy.

Convergence rate

We may assume that Ux1 ≥ x1, because for x1 := (1−α)−1mini{maxa ri(a)} · e this property is satisfied,

namely:

{Ux1}i = maxa{ri(a) + α
∑

j pij(a)x
1
j} = maxa ri(a) + α(1− α)−1mini{maxa ri(a)}

≥ mini{maxa ri(a)}+ α(1− α)−1mini{maxa ri(a)}
= (1− α)−1mini{maxa ri(a)} = x1

i , i ∈ S.
We will show that the convergence of xn to vα is at least linear, i.e. for some 0 < c < 1,

‖vα − xn+1‖∞ ≤ c · ‖vα − xn‖∞ for n = 0, 1,

Since the operator of the modified policy is neither a contraction nor is it monotone, we cannot rely on

general theorems. Therefore, we present a special treatment for the proof of this property. Consider the

related operator U (k) : R
N → R

N , defined by

U (k) x := maxf L
k
f x. (3.54)

Theorem 3.32

U (k) is a monotone contraction with contraction factor αk and with fixed-point vα.

3.8. MODIFIED POLICY ITERATION 93

Proof

Suppose that x ≥ y. From the monotonicity of Lk
f , f ∈ C(D), we obtain

U (k) x = maxf L
k
f x ≥ maxf L

k
f y = U (k) y.

Consider a fixed state i ∈ S and let fx,i be such that {U (k) x}i = {Lk
fx,i

x}i, x ∈ R
N . Then, for each i ∈ S,

we have

{U (k) x− U (k) y}i ≤ {Lk
fx,i

x− Lk
fx,i

y}i = αk{P k(fx,i)(x− y)}i ≤ αk · ‖x− y‖∞

and

{U (k) y − U (k) x}i ≤ {Lk
fy,i

y − Lk
fy,i

x}i = αk{P k(fy,i)(x− y)}i ≤ αk · ‖x− y‖∞.

Hence, ‖U (k) x− U (k) y‖∞ ≤ αk · ‖x− y‖∞, i.e. U (k) is a monotone contraction with contraction

factor αk. Finally, we show that vα is the fixed-point. Let f∗ ∈ C(D) be an α-optimal policy.

Since vα = Lk
f∗
vα ≥ Lk

f v
α for every f ∈ C(D), we obtain

vα ≥maxf L
k
f v

α = U (k) vα ≥ Lk
f∗
vα = vα,

i.e. vα is the fixed-point of U (k).

Consider, besides the sequence
{

xn
}∞

n=1
defined by (3.53), the sequence

{

yn
}∞

n=1
and

{

zn
}∞

n=1
, defined

by

y1 := z1 := x1; yn+1 := Uyn, zn+1 := U (k(n))zn, n ∈ N.

Lemma 3.17

Under the assumption Ux1 ≥ x1, we have, Uxn ≥ xn and vα ≥ zn ≥ xn ≥ yn for every n ∈ N.

Proof

We apply induction on n. Since Ux1 ≥ x1, we have vα = limn→∞ Unx1 ≥ U x1 ≥ x1 = y1 = z1; so, the

result is true for n = 1. Assume that Uxn ≥ xn and vα ≥ zn ≥ xn ≥ yn. Then,

Uxn+1 − xn+1 = U
{

{Lfn
}k(n) xn

}

− {Lfn
}k(n)xn ≥ {Lfn

}k(n)+1 xn − {Lfn
}k(n) xn

= {Lfn
}k(n) {Uxn} − {Lfn

}k(n) xn = αk(n)
{

P (fn)
}k(n){Uxn − xn} ≥ 0.

Furthermore, we have

vα = U (k(n))vα ≥ U (k(n))zn = zn+1 = maxf L
k(n)
f zn ≥ Lk(n)

fn
zn ≥ Lk(n)

fn
xn = xn+1.

Since xn+1 = xn + A(k(n)){Uxn − xn} = xn +
∑k(n)−1

t=0 {αP (fn)}t{Uxn − xn}, we obtain

xn+1 = Uxn +
∑k(n)−1

t=1 {αP (fn)}t{Uxn − xn} ≥ Uxn ≥ Uyn = yn+1.

The next corollary shows that the convergence is geometric, i.e. ‖vα − xn+1‖∞ ≤ α‖vα − xn‖∞.

Corollary 3.9

Under the assumption Ux1 ≥ x1, we have ‖vα − xn+1‖∞ ≤ α · ‖vα − xn‖∞.

Proof

From the last line of the proof of Lemma 3.17 it follows that xn+1 ≥ Uxn. Hence, also by Lemma 3.17,

we have 0 ≤ vα − xn+1 ≤ vα − Uxn = Uvα − Uxn. Consequently, we obtain

‖vα − xn+1‖∞ ≤ ‖Uvα − Uxn‖∞ ≤ α · ‖vα − xn‖∞.

94 CHAPTER 3. DISCOUNTED REWARDS

Lemma 3.17 shows that, under the assumption Ux1 ≥ x1 = y1, the iterates xn of modified policy iteration

always exceed the iterates yn of value iteration, which is modified policy iteration with k = 1. One might

conjecture that the iterates of modified policy iteration with fixed order k+m (m ≥ 1) always dominates

those of modified policy iteration with fixed k. The following example shows that this conjecture is false.

Example 3.6

Let S = {1, 2, . . . , 12}; A{1} = {1, 2}, A{i} = {1}, 2 ≤ i ≤ 12; r1(1) = 1, r5(1) = 3, r11(1) = 10 (all

other rewards are 0). The transitions are deterministic and from state i to state i + 1, 2 ≤ i ≤ 5 and

7 ≤ i ≤ 11. The states 6 and 12 are absorbing. In state 1, action 1 gives a transition to state 2 and action

2 to state 7. Let 1
81 < α < 1. Below is a picture of this model.

s
s s s s s s

s s s s s
�

�
�

��

@
@

@
@R - - - - -

- - - -

����

����

1

2 3 4 5 6

7 8 9 10 11 12 6

6
1

3

10

Firstly, consider the modified policy iteration method with k = 3 and starting vector x1
i = 0 for 1 ≤ i ≤ 12.

x2 = (1, 0, 3α2, 3α, 3, 0, 0, 0, 10α2, 10α, 10, 0).

x3 = (1 + 10α4, 3α3, 3α2, 3α, 3, 0, 10α4, 10α3, 10α2, 10α, 10, 0).

Secondly, take k = 4 and obtain (call the iterates x2 and x3):

x2 = (1, 3α3, 3α2, 3α, 3, 0, 0, 10α3, 10α2, 10α, 10, 0).

x3 = (3α4, 3α3, 3α2, 3α, 3, 0, 10α4, 10α3, 10α2, 10α, 10, 0).

Notice that x2 > x2 and x3 > x3.

Exclusion of suboptimal actions

In order to exclude suboptimal actions we need bounds on the value vector vα. The next theorem provides

appropriate bounds.

Theorem 3.33

xn + (1− α)−1mini (Uxn − xn)i · e ≤ Uxn + α(1− α)−1mini (Uxn − xn)i · e ≤
xn+1 + αk(n)(1 − α)−1mini (Uxn − xn)i · e ≤ vα ≤ xn + (1− α)−1maxi (Uxn − xn)i · e.

Proof

We start with the upper bound. Let f∞ = f∞vα . Then, we have

Uxn − xn ≥ Lf x
n − xn = r(f) + αP (f)xn − xn = r(f) + αP (f)vα + αP (f)(xn − vα) − xn

= Lf v
α + αP (f)(xn − vα)− xn = (vα − xn) + αP (f)(xn − vα)

= {I − αP (f)}(vα − xn).

Hence,

vα − xn ≤ {I − αP (f)}−1{Uxn − xn} ≤ {I − αP (f)}−1maxi (Uxn − xn)i · e
= (1− α)−1maxi (Uxn − xn)i · e.

For the lower bounds, we can write

3.8. MODIFIED POLICY ITERATION 95

vα − xn = Uvα − xn ≥ Lfn
vα − xn = r(fn) + αP (fn)vα − xn

= r(fn) + αP (fn)xn − xn + αP (fn)(vα − xn)

= Lfn
xn − xn + αP (fn)(vα − xn),

implying {I − αP (fn)}(vα − xn) ≥ Lfn
xn − xn. Therefore,

vα − xn ≥ {I − αP (fn)}−1{Lfn
xn − xn} = {I − αP (fn)}−1{U xn − xn}

=
∑∞

t=0 {αP (fn)}t(Uxn − xn).

Since

xn+1 = xn +
∑k(n)−1

t=0 {αP (fn)}t(Uxn − xn) = Uxn +
∑k(n)−1

t=1 {αP (fn)}t(Uxn − xn),

we obtain

vα ≥ xn +
∑k(n)−1

t=0 {αP (fn)}t(Uxn − xn) +
∑∞

t=k(n) {αP (fn)}t(Uxn − xn)

= xn+1 +
∑∞

t=k(n) {αP (fn)}t(Uxn − xn)

≥ xn+1 + αk(n)(1 − α)−1mini (Uxn − xn)i · e

= Uxn +
∑k(n)−1

t=1 {αP (fn)}t(Uxn − xn) + αk(n)(1− α)−1mini (Uxn − xn)i · e

≥ Uxn +
∑k(n)−1

t=1 αtmini (Uxn − xn)i · e+ αk(n)(1− α)−1mini (Uxn − xn)i · e

= Uxn + α · {1− αk(n)−1}(1− α)−1mini (Uxn − xn)i · e+ αk(n)(1− α)−1mini (Uxn − xn)i · e

= Uxn + α(1− α)−1mini (Uxn − xn)i · e

= xn + (Uxn − xn) + α(1− α)−1mini (Uxn − xn)i · e

≥ xn +mini (Uxn − xn)i · e+ α(1− α)−1mini (Uxn − xn)i · e

= xn + (1− α)−1mini (Uxn − xn)i · e.

Theorem 3.34

If

ri(a)+α
∑

j

pij(a)x
n
j < xn+1

i +αk(n)(1−α)−1mink (Uxn−xn)k−α(1−α)−1maxk (Uxn−xn)k (3.55)

then action a is suboptimal.

Proof
ri(a) + α

∑

j pij(a)v
α
j ≤ ri(a) + α

∑

j pij(a){xn
j + (1− α)−1maxk (Uxn − xn)k}

= ri(a) + α
∑

j pij(a)x
n
j + α(1− α)−1maxk (Uxn − xn)k

< xn+1
i + αk(n)(1 − α)−1mink (Uxn − xn)k ≤ vα

i .

Algorithm 3.12 Modified policy iteration with exclusion of suboptimal actions

Input: Instance of a discounted MDP and some scalar ε > 0.

Output: An ε-optimal deterministic policy f∞.

1. Select x ∈ R
N .

2. a. Choose any k with 1 ≤ k ≤ ∞.

b. Compute yi(a) := ri(a) + α
∑

j pij(a)xj , (i, a) ∈ S ×A.

c. Determine f such that Lf x = Ux.

d. if ‖Ux− x‖∞ ≤ 1
2 (1− α)α−1ε then f∞ is an ε-optimal policy (STOP).

e. max := maxk (Ux− x)k and min := mink (Ux− x)k.

96 CHAPTER 3. DISCOUNTED REWARDS

3. a. y := {Lf}k x.
b. A(i) := {a | yi(a) ≥ yi + αk(1− α)−1min − α(1− α)−1max}, i ∈ S.

c. if |Ai)| = 1 for all i ∈ S then f∞ is an optimal policy (STOP).

d. x := y and return to step 2.

Example 3.4 (continued)

Iteration 1

y1(1) = 17
3
, y1(2) = 6, y1(3) = 28

3
; y2(1) = 32

3
, y2(2) = 8, y2(3) = 34

3
;

y3(1) = 38
3 , y3(2) = 13, y3(3) = 40

3 . Ux = (28
3 ,

34
3 ,

40
3); f(1) = f(2) = f(3) = 3.

max = 4, min = 0; y = (29
3 ,

35
3 ,

41
3); A{1} = {3}, A{2} = {1, 3}, A{3} = {1, 2, 3}.

x = (29
3
, 35

3
, 41

3
).

Iteration 2

y1(3) = 9.833; y2(1) = 10.833, y2(3) = 11.833; y3(1) = 12.833, y3(2) = 14.633, y3(3) = 13.833.

Ux = (9.833, 11.833, 14.833); f(1) = f(2) = 3, f(3) = 2; max = 1.166, min = 0.166.

y = (10.417, 12.417, 14.917). A{1} = {3}, A{2} = {3}, A{3} = {2, 3}.
x = (10.417, 12.417, 14.917).

Iteration 3

y1(3) = 10.459; y2(3) = 12.459; y3(2) = 15.209, y3(3) = 14.459; Ux = (10.459, 12.459, 15.209).

f(1) = f(2) = 3, f(3) = 2; max = 0.292, min = 0.042; y = (10.604, 12.604, 15.229).

A{1} = {3}, A{2} = {3}, A{3} = {2}; f∞ is an optimal policy.

3.9 Monotone optimal policies

In this section we study under which conditions optimal policies are monotone for discounted MDPs. A

policy f∞ ∈ C(D) is a monotone policy if either f(i + 1) ≥ f(i) for 1, 2, . . . , N − 1 (nondecreasing) or

f(i+1) ≤ f(i) for 1, 2, . . . , N − 1 (nonincreasing). The analysis is similar to section 2.4 in which an MDP

with finite horizon is studied. Also in the present section we assume that A(i) = A = {1, 2, . . . ,M}, i ∈ S,

and that S and A be ordered in the usual way. On S × A we consider the functions r and p(k) with

components ri(a) and
∑N

j=k pij(a), respectively. We show the existence of optimal monotone policies

under the following assumptions:

Assumption 3.1

(A1) ri(a) is nondecreasing in i for all a;

(A2)
∑N

j=k pij(a) is nondecreasing in i for all k and a.

(A3) ri(a) is supermodular on S × A;

(A4)
∑N

j=k pij(a) is supermodular on S ×A for all k.

The proof of the structure of the optimal policy is based on the value iteration scheme v0 = 0, vn = Uvn−1,

n = 1, 2, . . . for which we know limn→∞ vn = vα.

Lemma 3.18

Under the assumptions A1 and A2, vn
i is nondecreasing in i for n = 0, 1,

3.9. MONOTONE OPTIMAL POLICIES 97

Proof

Apply induction on n. For n = 0 we have vn
i = 0 for all i ∈ S, so the result holds. Assume that the

result holds for n. Since, by assumption A2,
∑N

j=k pi+1,j(a) ≥
∑N

j=i pij(a) for all k and a, and because
∑N

j=1 pi+1,j(a) =
∑N

j=1 pij(a) = 1, we obtain from Lemma 2.2

∑N
j=1 pi+1,j(a)v

n
j ≥

∑N
j=1 pi,j(a)v

n
j for all i = 1, 2, . . . , N − 1 and all a = 1, 2, . . . ,M .

By assumption A1, we get

ri+1(a) + α ·∑N
j=1 pi+1,j(a)v

n
j ≥ ri(a) + α ·∑N

j=1 pi,j(a)v
n
j

for all i = 1, 2, . . . , N − 1 and all a = 1, 2, . . . ,M .

Therefore,

vn+1
i+1 = maxa {ri+1(a) + α ·∑N

j=1 pi+1,j(a)v
n
j } ≥ maxa {ri(a) + α ·∑N

j=1 pi,j(a)v
n
j } = vn+1

i

for all i = 1, 2, . . . , N − 1, i.e. vn+1
i is nondecreasing in i.

Corollary 3.10

Under the assumption A1 and A2, vα
i is nondecreasing in i.

Proof

The result follows directly from Lemma 3.18 and the property vα
i = limn→∞ vn

i , i ∈ S.

Theorem 3.35

Under the assumptions A1, A2, A3 and A4, there exists an optimal policy f∞ ∈ C(D), where f(i) is

nondecreasing in i.

Proof

We first prove that si(a) := ri(a) +α ·∑N
j=1 pi,j(a)v

α
j is supermodular on S×A. Let i1 ≥ i2 and a1 ≥ a2.

Define yj := pi1j(a1) + pi2j(a2) and zj := pi1j(a2) + pi2j(a1) for all j ∈ S. By Assumption A4, for all

1 ≤ k ≤ N , we have
∑N

j=k yj ≥
∑N

j=k zj . Since
∑N

j=1 yj =
∑N

j=1 zj = 2, and because vα
i is nondecreasing

in i (see Corollary 3.10), applying Lemma 2.2 yields

N
∑

j=1

{pi1j(a1) + pi2j(a2)}vα
j ≥

N
∑

j=1

{pi1j(a2) + pi2j(a1)}vα
j ,

i.e.
∑N

j=1 pij(a)v
α
j is supermodular. Because the sum of supermodular functions is supermodular, si(a)

is also supermodular on S ×A. If an optimal action f(i) in state i is not unique, take the largest optimal

action. Then, applying Lemma 2.3 yields the result that f(i) is nondecreasing in i.

Next, we will present other assumptions under which an optimal nondecreasing policy exists. These

assumptions are stated below.

Assumption 3.2

(B1) ri(a) is nonincreasing in i for all a;

(B2)
∑N

j=k pij(a) is nondecreasing in i for all k and a.

(B3) ri(a) is supermodular on S × A;

(B4)
∑N

j=k pij(a) is submodular on S × A for all k.

98 CHAPTER 3. DISCOUNTED REWARDS

Note

B1 and B4 are the ’reverse’ versions of A1 and A4, and B2 and B3 are the same conditions as A2 and A3.

Lemma 3.19

Under the assumptions B1 and B2, vn
i , for n = 0, 1, . . . , and vα

i are nonincreasing in i.

Proof We first prove vn
i is nondecreasing in i for n = 0, 1, Apply induction on n. For n = 0 we have

vn
i = 0 for all i ∈ S, so the result holds. Assume that the result holds for n. Since, by assumption B2,
∑N

j=k pi+1,j(a) ≥
∑N

j=i pij(a) for all k and a, and because
∑N

j=1 pi+1,j(a) =
∑N

j=1 pij(a) = 1, we obtain

from Lemma 2.2, with v = −vn ,
∑N

j=1 pi+1,j(a)v
n
j ≤

∑N
j=1 pi,j(a)v

n
j for all i = 1, 2, . . . , N − 1 and all a = 1, 2, . . . ,M .

By assumption B1, we get

ri+1(a)+α ·
∑N

j=1 pi+1,j(a)v
n
j ≤ ri(a)+α ·

∑N
j=1 pi,j(a)v

n
j for all i = 1, 2, . . . , N−1 and all a = 1, 2, . . . ,M .

Therefore,

vn+1
i+1 = maxa {ri+1(a) + α ·∑N

j=1 pi+1,j(a)v
n
j } ≤ maxa {ri(a) + α ·∑N

j=1 pi,j(a)v
n
j } = vn+1

i

for all i = 1, 2, . . . , N − 1, i.e. vn+1
i is nondecreasing in i.

Since vα
i = limn→∞ vn

i for all i ∈ S, vα
i is also nonincreasing in i.

Theorem 3.36

Under the assumptions B1, B2, B3 and B4, there exists an optimal policy f∞ ∈ C(D), where f(i) is

nondecreasing in i.

Proof

We first prove that si(a) := ri(a) +α ·∑N
j=1 pi,j(a)v

α
j is supermodular on S×A. Let i1 ≥ i2 and a1 ≥ a2.

Define yj := pi1j(a2) + pi2j(a1) and zj := pi1j(a1) + pi2j(a2) for all j ∈ S. By Assumption B4, for all

1 ≤ k ≤ N , we have
∑N

j=k yj ≥
∑N

j=k zj . Since
∑N

j=1 yj =
∑N

j=1 zj = 2, and because −vα
i is nondecrea-

sing in i (see Lemma 3.19), applying Lemma 2.2 yields

N
∑

j=1

{pi1j(a2) + pi2j(a1)}(−vα
j) ≥

N
∑

j=1

{pi1j(a1) + pi2j(a2)}(−vα
j),

i.e.
N
∑

j=1

{pi1j(a1) + pi2j(a2)}vα
j ≥

N
∑

j=1

{pi1j(a2) + pi2j(a1)}vα
j .

i.e.
∑N

j=1 pij(a)v
α
j is supermodular. Because the sum of supermodular functions is supermodular, si(a)

is also supermodular on S ×A. If an optimal action f(i) in state i is not unique, take the largest optimal

action. Then, applying Lemma 2.3 yields the result that f(i) is nondecreasing in i.

Example 3.7

Consider a problem that is basically a machine replacement problem with 8 states (state 1 is the state

of a new machine) and two actions (action 1 corresponds to continue and action 2 to replace). So, let

S := {1, 2, . . . , 8}, A := {1, 2} and let α := 0.9. The rewards are:

ri(a) r1(a) r2(a) r3(a) r4(a) r5(a) r6(a) r7(a) r8(a)

a = 1 0 0 0 0 0 0 -1 -5

a = 2 -2 -2 -2 -2 -2 -2 -2 -2

3.9. MONOTONE OPTIMAL POLICIES 99

The transition probabilities for action 1 are:

pij(1) j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

i = 1 0.03 0.07 0.05 0.1 0.1 0.2 0.2 0.25

i = 2 0 0.02 0.03 0.1 0.1 0.2 0.2 0.35

i = 3 0 0 0.05 0.05 0.1 0.1 0.2 0.5

i = 4 0 0 0 0.05 0.05 0.1 0.2 0.6

i = 5 0 0 0 0 0.02 0.08 0.1 0.8

i = 6 0 0 0 0 0 0.05 0.1 0.85

i = 7 0 0 0 0 0 0 0.1 0.9

i = 8 0 0 0 0 0 0 0 1

For the second action (replacement), the transition probabilities are: pi1(2) = 1 for i = 1, 2, . . . , 8. We

leave it to the reader to verify that this model satisfies the assumptions B1, B2, B3 and B4. If we use the

linear programming problem (3.32) with βj = 1
8

for j = 1, 2, . . . , 8, this program becomes:

max{−x71 − 5x81− 2x12 − 2x22 − 2x32 − 2x42 − 2x52− 2x62 − 2x72 − 2x82

subject to the constraints

x11 + x12 = 0.125 + 0.9 · {0.03x11 + x12 + x22 + x32 + x42 + x52 + x62 + x72 + x82};
x21 + x22 = 0.125 + 0.9 · {0.07x11 + 0.02x21};
x31 + x32 = 0.125 + 0.9 · {0.05x11 + 0.03x21 + 0.05x31};
x41 + x42 = 0.125 + 0.9 · {0.1x11 + 0.1x21 + 0.05x31 + 0.05x41};
x51 + x52 = 0.125 + 0.9 · {0.1x11 + 0.1x21 + 0.1x31 + 0.05x41 + 0.02x51};
x61 + x62 = 0.125 + 0.9 · {0.2x11 + 0.2x21 + 0.1x31 + 0.1x41 + 0.08x51 + 0.05x61};
x71 + x72 = 0.125 + 0.9 · {0.2x11 + 0.2x21 + 0.2x31 + 0.2x41 + 0.1x51 + 0.1x61 + 0.1x71};
x81 + x82 = 0.125 + 0.9 · {0.25x11 + 0.35x21 + 0.5x31 + 0.6x41 + 0.8x51 + 0.85x61 + 0.9x71 + x81};
x11, x21, x31, x41, x51, x61, x71, x81, x12, x22, x32, x42, x52, x62, x72, x82 ≥ 0.

An optimal solution of this program and the corresponding control-limit policy is presented in the next

table (note that more optimal solutions are possible):

i xi(1) xi(2) f(i)

i = 1 3.5700 0 1

i = 2 0.3563 0 1

i = 3 0.3092 0 1

i = 4 0.5155 0 1

i = 5 0.5391 0 1

i = 6 0.9893 0 1

i = 7 0 1.1177 2

i = 8 0 2.6029 2

We now provide an implementation of a policy iteration algorithm, which finds a monotone optimal policy.

We assume that the assumptions A1, A2, A3 and A4 hold, so that a nondecreasing optimal policy exists.

Therefore, the policy space is the set of nondecreasing policies.

100 CHAPTER 3. DISCOUNTED REWARDS

Algorithm 3.13 Determination of a nondecreasing optimal policy f∞∗ for an MDP either under assump-

tion 3.1 or under assumption 3.2.

Input: Instance of a discounted MDP which satisfies either assumption 3.1 or assumption 3.2.

Output: A nondecreasing optimal deterministic policy f∞∗ .

1. Choose any nondecreasing policy f∞1 ∈ C(D); n := 1.

2. Compute vn := vα(f∞n) by solving {I − αP (fn)}x = r(fn).

3. i := 1; Ai := {1, 2, . . . ,M}.

(a) A∗
i := argmaxa∈Ai

{ri(a) + α ·∑N
j=1 pij(a)v

n
j }.

(b) if i = N then go to step 3d

else Ai+1 :=
{

a ∈ Ai | a ≥max{a∗ | a∗ ∈ A∗
i }
}

.

(c) i := i+ 1; return to step 3a.

(d) Choose fn+1 such that fn+1(j) ∈ A∗
i for all j ∈ S, setting fn+1(j) := fn(j) if possible.

4. if fn+1 = fn then begin f∞∗ := fn; STOP end

else begin n := n+ 1; return to step 2 end

The advantage of this algorithm is that the maximization can be carried out over action sets Ai which

become smaller in the order of the states.

3.10 Bibliographic notes

The principle of optimality is credited to Bellman ([17]). Discounted models appear to have been first

analyzed in generality by Howard ([134]). Blackwell ([29]) and Denardo ([56]) have provided fundamental

theoretical papers on discounted models.

The proof of Theorem 3.6 is drawn from Ross ([236]). Shapiro ([266]) made the observation that

Brouwer’s fixed-point theorem can also be used to prove that the mapping U has a fixed-point (see Exercise

3.7). The concept of conserving policy was proposed by Dubins and Savage ([75]). Bather ([11]) was the

first to use the span semi-norm in Markov decision processes. The idea to use bounds for the value vector

in order to derive suboptimality tests is due to MacQueen ([188], [189]). These ideas were extended and

improved by Grinold ([109]), Porteus ([220], [222]) Hordijk and Kallenberg ([129]) and others.

Policy iteration is usually attributed to Howard ([134]). We followed the more mathematically treat-

ment of Blackwell ([29]). The equivalence between policy iteration and Newton’s method was shown in

Puterman and Brumelle ([228]). Hastings ([112]; see Exercise 3.12) has proposed a method to accelerate

the policy iteration method. Theorem 3.14, Theorem 3.15 and Corollary 3.6 are based on Ng’s note ([204]).

Hartley, Lavercombe and Thomas ([110]) have evaluated by computational experiments several ideas which

have been suggested for the implementation of of policy iteration.

The linear programming method for discounted MDPs was proposed by d’Epenoux ([67]). The equiv-

alence between block-pivoting and policy iteration was mentioned by De Ghellinck ([51]). The one-to-one

correspondence between the feasible solutions of the dual program and the set of stationary policies can

be found in De Ghellinck and Eppen ([52]). For an extensive study of linear programming and Markov

decision models see Kallenberg ([148]). In [281] Stein reports on numerical experience with the linear pro-

gramming method. It turns out that this method is efficient - in comparison with value iteration, policy

iteration and modified policy iteration - for problems with discount factor a close to 1 and for not too

3.11. EXERCISES 101

large state spaces. Furthermore, the experiments show that action elimination and block-pivoting cannot

reduce the computation time of the standard LP method considerably. Bello and Riano ([19]) have built

the package JMDP, an object-oriented framework to model and solve discounted and unichained average

MDPs in Java. In this package LP-solvers Xpress-MP (see [49]) and QSopt (see [6]) are used.

The use of value iteration originates in the work of Shapley ([267]), who applied it in stochastic games.

Hastings ([111], [112]) and Kushner and Kleinman ([173]) independently suggested the use of (pre)-Gauss-

Seidel iteration to accelerate value iteration. The variant with relaxation and one-step look-ahead is due to

Herzberg and Yechiali ([116]). Other accelerations were proposed by Kushner and Kleinman ([174]) and

Reetz ([234]), both papers on overrelaxation, Wessels ([323]) and Van Nunen and Wessels ([303], [304]),

these last papers based on stopping times, and by Porteus and Totten ([223], [224]). The method of value

iteration and bisection of Section 3.7 is due to Bartmann ([10]).

The method of modified policy iteration was suggested in Morton [201] and formalized by Van Nunen

([301]), and by Puterman and Shin ([229], [230]). The example showing that the operator of this method is

in general neither a contraction nor monotone is due to Van Nunen ([302]). The observation that modified

policy iteration method can be viewed as an inexact Newton method to solve the optimality equation

Ux = x was made by Dembo and Haviv ([55]). The exclusion of suboptimal actions is developed by

Puterman and Shin ([230]). Example 3.6 is due to Van der Wal and Van Nunen ([298]).

The development of monotone optimal policies is provided by the work of Serfozo ([263]) and Topkis

([289]). Other contributions are given e.g. by Ross ([239]), White ([328]) and Heyman and Sobel ([117]).

3.11 Exercises

Exercise 3.1

Let M =
{

µ ∈ R
N | µi > 0, i ∈ S and

∑

j pij(a)µj ≤ µi for all (i, a) ∈ S × A
}

.

Define ‖x‖µ = maxi µ
−1
i · |xi|.

a. Show that ‖x‖µ is a norm in R
N .

b. Formulate the generalizations of Lemma 3.2 and Lemma 3.3 with respect to the norm ‖x‖µ.

c. Give the key property by which the proofs of these new Lemmata follow from the versions with the

supremum norm.

Exercise 3.2

Suppose that B is a monotone contraction with contraction factor β and fixed-point x∗.

Show that for any n ∈ N the mapping Bn is a monotone contraction with contraction factor βn and

fixed-point x∗.

Exercise 3.3

Let X be a Banach space and B : X → X.

Suppose that B is nonexpanding, i.e. ‖Bx − By‖ ≤ ‖x− y‖ for every x, y ∈ X, and suppose furthermore

that Bn is a contraction mapping with contraction factor β and fixed-point x∗, for some n ∈ N. Then,

show that

(1) x∗ is the unique fixed-point of B.

(2) ‖x∗ − x‖ ≤ n(1− β)−1 · ‖Bx− x‖ for every x ∈ X.

102 CHAPTER 3. DISCOUNTED REWARDS

Exercise 3.4

Let B : R
N → R

N be such that for all x, y ∈ R
N . Assume that for some β ∈ [0, 1) we have

maxi (Bx −By)i ≤ β ·maxi (x − y)i and mini (Bx− By)i ≥ β ·mini (x− y)i.

Show that:

(1) B is a monotone contraction mapping with contraction factor β.

(2) x+ (1− β)−1 ·mini (Bx− x)i · e ≤ x∗ ≤ x+ (1− β)−1 ·maxi (Bx− x)i · e, where x∗ is the fixed-point

of B and x is an arbitrary point of R
N .

Exercise 3.5

Let R = (π1, π2, . . .) be any Markov policy and let x ∈ R
N . Show that vα(R) = limn→∞ Lπ1Lπ2 · · ·Lπn x.

Exercise 3.6

Give the optimality equation of the following model:

S = {1, 2}; A(1) = A(2) = {1, 2}; α = 0.9; r1(1) = 4, r1(2) = 2, r2(1) = 0, r2(2) = 2;

p11(1) = 1
3
, p12(1) = 2

3
, p11(2) = 2

3
, p12(2) = 1

3
, p21(1) = 1, p22(1) = p21(2) = 0, p22(2) = 1.

Exercise 3.7

Brouwer’s fixed-point theorem is:

Suppose that G is a continuous function which maps a compact convex set X ⊆ R
N into itself. Then G

has a fixed-point.

Show by Brouwer’s theorem that U has a fixed-point.

Hint: Take X = {x ∈ R
N | ‖x‖∞ ≤ (1− α)−1 ·M}, where M := max(i,a) |ri(a)|.

Exercise 3.8

For any x ∈ R
N and µ ∈M, defined in Exercise 3.1, we define

b1 := mini
(Ux−x)i

µi
; β1 :=

α ·mini,a
1
µi

∑

j pij(a)µj if b1 > 0

α ·maxi,a
1
µi

∑

j pij(a)µj if b1 ≤ 0

b2 := maxi
(Ux−x)i

µi
; β2 :=

α ·maxi,a
1
µi

∑

j pij(a)µj if b2 > 0

α ·mini,a
1
µi

∑

j pij(a)µj if b2 ≤ 0

Show that:

(1) β1b1 · µi ≤ α · b1
∑

j pij(a)µj and β2b2 · µi ≥ α · b2
∑

j pij(a)µj for every (i, a) ∈ S × A.
(2) x+ (1− β1)

−1b1 · µ ≤ Ux+ β1(1− β1)
−1b1 · µ ≤ vα(f∞x) ≤ vα ≤ Ux+ β2(1− β2)

−1b2 · µ ≤
x+ (1− β2)

−1b2 · µ.
(3) If ri(a) + α

∑

j pij(a)xj < (Ux)i + β1(1− β1)
−1b1 · µi − β2(1 − β2)

−1b2 · µi, then action a ∈ A(i) is

suboptimal.

(4) If ri(a) + α
∑

j pij(a)(Ux)j < (Ux)i + β1(1− β1)
−1b1 · µi − β2

2 (1− β2)
−1b2 · µi, then action a ∈ A(i)

is suboptimal.

(5) Test (4) is stronger than test (3).

Exercise 3.9

Show that span (U2x− Ux) ≤ α · (Ux− x).

3.11. EXERCISES 103

Exercise 3.10

Consider the following MDP:

S = {1, 2}; A(1) = A(2) = {1, 2}; α = 1
2 ; r1(1) = 1, r1(2) = 0; r2(1) = 2, r2(2) = 2.

p11(1) = 1
2 , p12(1) = 1

2 ; p11(2) = 1
4 , p12(2) = 3

4 .

p21(1) = 2
3 , p22(1) = 1

3 ; p21(2) = 1
3 , p22(2) = 2

3 .

Use the policy iteration algorithm 3.2 to find an α-discounted optimal policy for this model (start with

f(1) = f(2) = 1).

Exercise 3.11

Show that Fy ≥ Fx implies that y ≤ x, where F is defined by Fx = Ux− x.

Exercise 3.12

Consider the following modification of the policy iteration method:

1. Start with any f ∈ C(D).

2. Compute vα(f∞) as unique solution of the linear system Lfx = x.

3. for i = 1 to N do

begin

dia(f) := ri(a) + α
∑i−1

j=1 pij(a)xj + α
∑N

j=i pij(a)v
α
j (f∞), a ∈ A(i);

if dia(f) ≤ vα
i (f∞) for every a ∈ A(i) then begin xi := vα

i (f∞); g(i) := f(i) end

else begin xi := maxa dia(f); choose g(i) such that dig(i) = xi end

end

4. if g(i) = f(i) for every i ∈ S then go to step 6

5. f := g; return to step 2.

6. f∞ is an α-discounted optimal policy (STOP).

Prove the correctness of this method by showing the following steps:

a. (i) x ≥ vα(f∞); (ii) x = vα(f∞) if and only if f = g.

b. If f = g, then f∞) is an α-discounted optimal policy.

c. If f 6= g, then vα(g∞) ≥ x ≥ vα(f∞).

Exercise 3.13

Apply the method of Exercise 3.12 to the MDP model of Example 3.1.

Exercise 3.14

Show that for a given initial distribution β and a stationary policy π∞,
∑

j βjv
α
j (π∞) =

∑

(i,a) ri(a)x
π
i (a).

Exercise 3.15

Use the linear programming method to compute the value vector and an optimal policy for the model of

Exercise 3.10 (take β1 = β2 = 1
2).

Exercise 3.16

Show the following optimality properties:

(1) If π∞ ∈ C(S) is an α-discounted optimal policy, then xπ is an optimal solution of (3.32).

(2) If x is an optimal solution of (3.32), then
(

πx
)∞

is an α-discounted optimal policy.

104 CHAPTER 3. DISCOUNTED REWARDS

Exercise 3.17

Apply the suboptimality tests of the Theorems 3.20 and 3.22 to the model of Exercise 3.10 (take β1 =

β2 = 1
2
).

Exercise 3.18

Use algorithm 3.4 to compute an ε-optimal policy for the model of Exercise 3.10. Take ε = 0.2 and start

with x = (2, 2).

Exercise 3.19

Use algorithm 3.5 to compute an ε-optimal policy for the model of Exercise 3.10. Take ε = 0.2 and start

with x = (2, 2).

Exercise 3.20

Use algorithm 3.6 to compute an ε-optimal policy for the model of Exercise 3.10. Take ε = 0.2 and start

with x = (2, 2).

Exercise 3.21

Use algorithm 3.7 to compute an ε-optimal policy for the model of Exercise 3.10. Take ε = 0.2 and start

with x = (2, 2).

Exercise 3.22

Prove Theorem 3.28

Exercise 3.23

Prove Theorem 3.29

Exercise 3.24

Use algorithm 3.11 to compute an ε-optimal policy for the model of Exercise 3.10. Take ε = 0.2, start

with x = (2, 2) and choose k = 2 in each iteration.

Exercise 3.25

Show that ‖vα − xn+1‖∞ ≤ β · ‖vα − xn‖∞, where xn is the x in iteration n of algorithm 3.11 and

β := min{α, αk(n)+(1−α)−1
(

α−αk(n)
)

‖P (fn)−P (fα)‖∞}, where fn := fxn and fα := fvα , respectively.

Assume that Ux1 ≥ x1.

Exercise 3.26

Consider the following modified policy algorithm.

Algorithm 3.14

Input: Instance of a discounted MDP and some scalar ε > 0.

Output: An ε-optimal deterministic policy f∞ and a 1
2
ε-approximation of the value vector vα.

1. Select x ∈ R
N arbitrary; y :=∞.

2. a. Choose any k with 1 ≤ k ≤ ∞.

b. Determine f such that Lf x = Ux.

c. Let min := mini (Ux− x)i and max := maxi (Ux− x)i.

d. y := x+ (1− α)−1min · e; y = x+ (1− α)−1max · e.
c. if ‖y − y‖∞ ≤ ε then begin y := 1

2
(y − y); go to step 3 end

else begin y := {Lf}k x; x := y: return to step 2 end

3.11. EXERCISES 105

3. y is a 1
2ε-approximation of vα and f∞ is an ε-optimal policy (STOP).

(1) Apply this algorithm to the MDP model of exercise 3.24.

(2) Show, under the assumption Ux1 ≥ x1, the following properties for this algorithm (xn, fn, y
n, yn are

the values of x, f, y, y, respectively, in iteration n):

a. xn ≤ Uxn ≤ xn+1 ≤ vα(f∞n).

b. yn ≤ vα(f∞n) ≤ vα ≤ yn.

c. yn ↑ vα and yn ↓ vα.

d. ‖vα − y‖∞ ≤ 1
2ε and ‖vα − vα(f∞)‖∞ ≤ ε, when the algorithm terminates.

Exercise 3.27

Let xn be the value of x in iteration n of Algorithm 3.11. Show that if

ri(a) + α
∑

j pij(a)x
n
j < xn

i + (1− α)−1mink (Uxn − xn)k − α(1− α)−1maxk(Uxn − xn)k,

then action a is suboptimal.

106 CHAPTER 3. DISCOUNTED REWARDS

Chapter 4

Total reward

4.1 Introduction

4.2 Square matrices, eigenvalues and spectral radius

4.3 The linear program

4.4 Transient, contracting and normalized MDPs

4.5 The optimality equation

4.6 Optimal transient policies

4.7 The contracting model

4.8 Finite horizon and transient MDPs

4.9 Positive MDPs

4.10 Negative MDPs

4.11 Convergent MDPs

4.12 Special models

4.12.1 Red-black gambling

4.12.2 Optimal stopping

4.13 Bibliographic notes

4.14 Exercises

4.1 Introduction

.

Alternatives to the expected total discounted reward criterion in infinite-horizon models include the total

expected reward and the average expected reward criteria. This chapter deals with the total expected

reward criterion. We have to make some assumptions on the rewards and/or the transition probabilities,

without which the total expected reward may be unbounded or not even well defined. When these assump-

tions are not fulfilled, the average reward and more sensitive optimality criteria can be applied. These last

models will be discussed in the chapters 5, 6 and 7.

We will generalize the concept of transition probability to the concept of transition rate. The numbers

pij(a) are required only to be nonnegative. Given that at time t = 1 the system is observed in state i with

’quantity’ 1, we define for any policy R by pt
ij(R) and pt

ij(a, R) the expectation of the ’quantity’ in state

j at time t, and the expectation of the ’quantity’ in state j at time t in conjunction with the probability

that action a is chosen at time t, respectively.

107

108 CHAPTER 4. TOTAL REWARD

Hence, the total expected reward in the first T periods, given initial state i and the use of policy R, is

given by

vT
i (R) :=

T
∑

t=1

∑

j,a

pt
ij(a, R) · rj(a), i ∈ S. (4.1)

We distinguish between the following models:

An MDP is called stochastic if
∑

j pij(a) = 1 for all (i, a) ∈ S × A; it is called substochastic if
∑

j pij(a) ≤ 1 for all (i, a) ∈ S × A. A discounted MDP with discount factor α may be considered as an

MDP with total rewards for which
∑

j pij(a) = α for all (i, a) ∈ S ×A and for some α ∈ [0, 1).

An MDP is said to be contracting if there exists a vector µ ∈ RN with µi > 0 for all i ∈ S, and a scalar

α ∈ [0, 1) such that
∑

j pij(a)µj ≤ α·µi for all (i, a) ∈ S×A. An excessive MDP satisfies
∑

j pij(a)µj ≤ µi

for all (i, a) ∈ S ×A for some µ ∈ RN with µi > 0 for all i ∈ S.

In a transient MDP every policy R is transient, i.e.
∑∞

t=1 p
t
ij(a, R) <∞ for all (i, a) ∈ S × A and all

j ∈ S. If every policy R is normalized, i.e.
∑∞

t=1 α
t−1pt

ij(a, R) < ∞ for all (i, a) ∈ S × A, all j ∈ S and

all α ∈ [0, 1), then the MDP is called normalized.

It is obvious that any transient policy is normalized, but a normalized policy is not transient, in general.

Notice that a substochastic MDP is normalized, but not necessarily transient. Furthermore, a transient

MDP may be non-substochatic.

A policy R is said to be regular if limT→∞ vT
i (R) exists (possibly +∞ or −∞ for every i ∈ S. For a regular

policy R, the total expected reward vi(R) over the infinite horizon is defined by

vi(R) = lim
T→∞

vT
i (R) =

∞
∑

t=1

∑

j,a

pt
ij(a, R) · rj(a), i ∈ S. (4.2)

Let

v+
i (R) :=

∞
∑

t=1

∑

j,a

Pi,R{Xt = j, Yt = a} · r+j (a), i ∈ S, (4.3)

where r+j (a) := max{0, rj(a)}, and

v−i (R) :=

∞
∑

t=1

∑

j,a

Pi,R{Xt = j, Yt = a} · r−j (a), i ∈ S, (4.4)

where r−j (a) := max{0,−rj(a)}.
The total expected reward vi(R) is well defined, possibly ±∞, if min{v+

i (R), v−i (R)} <∞.

The regular value vector v, the transient value vector w and the normalized value vector z are defined by

vi = sup{vi(R) | R is a regular policy}, i ∈ S; (4.5)

wi = sup{vi(R) | R is a transient policy}, i ∈ S; (4.6)

zi = sup{vi(R) | R is a regular and normalized policy}, i ∈ S. (4.7)

A policy R∗ is said to be regular optimal if R∗ is regular and v(R∗) = v; R∗ is transient optimal if R∗ is

transient and v(R∗) = w; R∗ is normalized optimal if R∗ is regular and normalized and v(R∗) = z. Since

any transient policy is regular and normalized, we have the inequalities

wi ≤ zi ≤ vi, i ∈ S. (4.8)

4.2. SQUARE MATRICES, EIGENVALUES AND SPECTRAL RADIUS 109

4.2 Square matrices, eigenvalues and spectral radius

Let M= {µ ∈ R
N | µi > 0, i = 1, 2, . . . , N}. For any µ ∈ M it can easily be verified (cf. Exercise 3.1)

that

‖x‖µ := max1≤i≤N µ−1 · |xi|, x ∈ R
N (4.9)

is a norm in R
N . Let P(N) be the set of nonnegative N ×N -matrices. It is well known that the adjoint

matrix norm ‖P ‖µ satisfies

‖P ‖µ := ‖Pµ‖µ = max1≤i≤N µ−1
N
∑

j=1

pijµi for every P ∈ P(N). (4.10)

Notice that the supremum norm ‖ · ‖∞ corresponds to µ = e.

Theorem 4.1

For any P ∈ P(N) and any norm ‖ · ‖ on R
N , we have limn→∞ ‖P n‖1/n = infn≥1 ‖P n‖1/n.

Proof

Take any P ∈ P(N) and any norm ‖·‖ on R
N . The theorem is trivial if P n = 0 for some n ∈ N. Therefore,

we may assume that P n 6= 0 for every n ∈ N. Let an = log2 ‖P n‖. Then, we have for every k, n ∈ N

an+k = log2 ‖P n+k‖ ≤ log2 {‖P n‖ · ‖P k‖} = log2 ‖P n‖+ log2 ‖P k‖ = an + ak.

For any arbitrary, fixed m ∈ N, we can write n = m · qn + rn for every n ∈ N, where qn and rn are

nonnegative integers with 0 ≤ rn < m. Then, an = am·qn+rn
≤ am · qn + arn

, and consequently,

an

n ≤
am·qn

m·qn+rn
+

arn

n = am

m+ rn
qn

+
arn

n ≤ am

m +
arn

n , implying lim supn→∞
an

n ≤ am

m .

Since m is arbitrarily chosen, we get lim supn→∞
an

n ≤ infm≥1
am

m ≤ lim supm→∞
am

m , which proves that

limn→∞
an

n exists and equals infn≥1
an

n . Furthermore, we have

limn→∞ ‖P n‖1/n = limn→∞ 2 an/n = 2 limn→∞ an/n

= 2 infn≥1 an/n = infn≥1 2 an/n = infn≥1 ‖P n‖1/n.

We say that two norms, ‖ · ‖A and ‖ · ‖B on R
N are equivalent if there exist m,M > 0 such that

m · ‖x‖B ≤ ‖x‖A ≤ m · ‖x‖B for every x ∈ R
N .

The L1-norm ‖ · ‖1 and the L2-norm ‖ · ‖2 on R
N are defined by

‘ ‖x‖1 :=
∑N

i=1 |xi| and ‖x‖2 :=

√

∑N
i=1 |xi|2, respectively.

Lemma 4.1

The L1-norm and L2-norm are equivalent.

Proof

We first show that ‖x‖2 ≤ ‖x‖1, or equivalently, ‖x‖22 =
∑N

i=1 |xi|2 ≤ ‖x‖21 =
(∑N

i=1 |xi|
)2

.

We can write

‖x‖21 =
(
∑N

i=1 |xi|
)2

=
(
∑N

i=1 |xi|
)

·
(
∑N

j=1 |xj|
)

≥∑N
i=1 |xi| · |xi| =

∑N
i=1 |xi|2 = ‖x‖22.

Next we show that ‖x‖1 ≤
√
N · ‖x‖2, or equivalently, ‖x‖21 =

(
∑N

i=1 |xi|
)2 ≤ N · ‖x‖22 = N ·∑N

i=1 |xi|2.

110 CHAPTER 4. TOTAL REWARD

We apply induction on N . For N = 1 the inequality holds with equality.

Assume that
(∑N−1

i=1 |xi|
)2 ≤ (N − 1) ·∑N−1

i=1 |xi|2. Then, we have
(
∑N

i=1 |xi|
)2

=
(
∑N−1

i=1 |xi|+ |xN |
)2

=
(
∑N−1

i=1 |xi|
)2

+ 2 · |xN | ·
∑N−1

i=1 |xi|+ |xN |2

≤ (N − 1) ·∑N−1
i=1 |xi|2 + 2 · |xN | ·

∑N−1
i=1 |xi|+ |xN |2

Hence, we have to show that
∑N−1

i=1 |xi|2 + (N − 1) · |xN |2 − 2 · |xN | ·
∑N−1

i=1 |xi| ≥ 0. Indeed, we obtain
∑N−1

i=1 |xi|2 + (N − 1) · |xN |2 − 2 · |xN | ·
∑N−1

i=1 |xi| =
∑N−1

i=1

(

|xi| − |xN |
)2 ≥ 0.

Theorem 4.2

All norms in RN are equivalent.

Proof

We shall demonstrate that any norm ‖·‖ on RN is equivalent to the L2-norm. Since the relation ’equivalent

norms’ is an equivalence relation, it then follows that all norms in RN are equivalent. Take any norm ‖ · ‖
on RN and let {ei}Ni=1 be a basis for RN . Then, any vector x ∈ RN has an expression as x =

∑N
i=1 xi · ei.

First, let us check that ‖ ·‖ is continuous with respect to the L2-norm. For all pair x, y ∈ R
N , we can write

‖x− y‖ = ‖∑N
i=1 (xi − yi) · ei‖ ≤∑N

i=1 |xi − yi| · ‖ei‖ ≤M1 · ‖x− y‖1 ≤M2 · ‖x− y‖2,

where M1 := max1≤i≤N ‖ei‖ and M1 · ‖x − y‖1 ≤ M2 · ‖x − y‖2 for some M2 > 0 because the L1-norm

and L2-norm are equivalent (see Lemma 4.1). In other words, when x and y are ’nearby’ with respect tot

the L2-norm, they are also ’nearby’ with respect to any other norm.

Now, consider the unit sphere S with respect to the L2-norm, i.e. S = {x ∈ R
N | ‖x‖2 = 1}. This is a

compact set. Therefore, the continuous function ‖ · ‖ attains maximum and minimum values on S, say m

and M , respectively. Hence, m · ‖x‖2 ≤ ‖x‖ ≤M · ‖x‖2 for any x ∈ R
N with ‖x‖2 = 1. Every y ∈ R

N can

be expressed as y = c ·x for some x ∈ S and some c ∈ R. Therefore, we also have m · ‖y‖2 ≤ ‖y‖ ≤M · ‖y‖2
for any y ∈ R

N . The scalars m and M are obviously nonnegative and m ≤M . Assume that m = 0. Then,

there exists a point x on S for which ‖x‖ = 0. But then x = 0, which contradicts ‖x‖2 = 1.

Let P ∈ P(N). It is easily seen that the characteristic polynomial φP (λ) := det (P − λI) is a Nth degree

polynomial of the form

φP (λ) = (−1)N{λN + αN−1λ
N−1 + · · ·+ α1λ + α0}. (4.11)

The zeroes of φP (λ) are the eigenvalues of P . If λ1, λ2, . . . , λk are the distinct eigenvalues, then φP (λ) can

be represented in the form

φP (λ) = (−1)N (λ− λ1)
σ1(λ − λ2)

σ2 · · · (λ − λk)σk , (4.12)

where the integer σi, which is also denoted by σ(λi), is called the algebraic multiplicity of the eigenvalue

λi. A vector xi 6= 0 such that Pxi = λi x
i is an eigenvector of λi. The set L(λi) := {xi | Pxi = λi x

i} is a

linear space of dimension ρ(λi) = N − rank(P −λiI), which is the geometric multiplicity of the eigenvalue

λi. The algebraic and geometric multiplicity of an eigenvalue can be different (see Example 4.3).

Let λi be an eigenvalue of P and let xi be an eigenvector of λi with respect to P . Furthermore, let T be

an arbitrary nonsingular N ×N matrix. For yi := T−1xi 6= 0 one can write, with Q := T−1PT ,

Qyi = T−1PTyi = T−1Pxi = λiT
−1xi = λiy

i, (4.13)

4.2. SQUARE MATRICES, EIGENVALUES AND SPECTRAL RADIUS 111

i.e. λi is an eigenvalue of Q and yi is an eigenvector of λi with respect to Q. Q = T−1PT is called a

similarity transformation of P . One easily shows that similarity of matrices is an equivalence relation.

Similar matrices have not only the same eigenvalues, but also the same characteristic polynomial, namely:

φQ(λ) = det (Q− λI) = det (T−1PT − λI) = det {T−1(P − λI)T}
= det (T−1) · det (P − λI) · det (T) = det (P − λI) = φP (λ).

Moreover, the algebraic and geometric multiplicity of the eigenvalues, i.e. ρ(λi) and σ(λi) remain the

same. For σ(λi) this follows from the invariance of the characteristic polynomial, and for ρ(λi) it follows

from the fact that, T being nonsingular, the eigenvectors xi,1, xi,2, . . . , xi,ρ(λi) are linearly independent if

and only if the corresponding vectors xi,1 = T−1xi,1, yi,2 = T−1xi,2, . . . , yi,ρ(λi) = T−1xi,ρ(λi) are linearly

independent.

Lemma 4.2

Let λ1, λ2, . . . , λk be the distinct eigenvalues of P ∈ P(N). Then, 1 ≤ ρ(λi) ≤ σ(λi) for i = 1, 2, . . . , k.

Proof

Take any 1 ≤ i ≤ k. We prove only the nontrivial part ρ(λi) ≤ σ(λi). Let xi,1, xi,2, . . . , xi,ρ(λi) be the

linearly independent independent eigenvalues associated with λi: Px
i,j = λi x

i,j for j = 1, 2, . . . , ρ(λi).

We select N − ρ(λi) additional linearly independent vectors xi,j for j = ρ(λi) + 1, ρ(λi) + 2, . . . , N , such

that xi,j, j = 1, 2, . . . , N form a basis in R
N . Then, the N ×N matrix Ti with columns xi,j, j = 1, 2, . . . , N

is nonsingular. In view of Tie
j = xi,j, we have

T−1
i PTie

j = T−1
i Pxi,j = λiT

−1
i xi,j = λie

j for j = 1, 2, . . . , ρ(λi).

Therefore, T−1
i PTi has the form T−1

i PTi =

(

λi B

0 C

)

and for the characteristic polynomial of P and

T−1
i PTi, we obtain

φP (λ) = det (P − λI) = det (T−1
i PTi − λI) = (λi − λ)ρ(λi) · det (C − λI).

Hence, φP (λ) is divisible by (λi − λ)ρ(λi) i.e. λi is a zero of φP (λ) of multiplicity at least ρ(λi), which

implies ρ(λi) ≤ σ(λi).

Example 4.1

Consider the matrix Ji =

λi 1 0 0 . . . 0

0 λi 1 0 . . . 0

.

.

0 0 0 0 λi 1

0 0 0 0 0 λi

. Such a matrix is called a Jordan block.

Then, φJi
(λ) = (λi − λ)N , so σ(λi) = N .

Since Ji − λI =

0 1 0 0 . . . 0

0 0 1 0 . . . 0

.

.

0 0 0 0 0 1

0 0 0 0 0 0

, we have rank (Ji − λI) = N − 1. Hence,

ρ(λi) = N − rank (Ji − λI) = N − (N − 1) = 1. Since Jie
1 = λie

1, the unique eigenvector (up to scalar

multiples) of Ji is e1 and consequently, L(λi) = {x | x = c · e1; c ∈ R}.

112 CHAPTER 4. TOTAL REWARD

A Jordan normal form matrix J is a block diagonal matrix whose blocks are all Jordan matrices, i.e.

J =

J1 0 0 0 · · · 0

0 J2 1 0 · · · 0

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
0 0 0 0 Jp−1 1

0 0 0 0 0 Jp

, where Ji =

λi 1 0 0 · · · 0

0 λi 1 0 · · · 0

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
0 0 0 0 λi 1

0 0 0 0 0 λi

.

There is a fundamental theorem which we state without proof (the proof can be found in books on linear

algebra, e.g. see p. 216 in [164]).

Theorem 4.3

Let A be an N × N matrix with λ1, λ2, · · · , λk as distinct eigenvalues with geometric and algebraic mul-

tiplicities ρ(λi) and σ(λi), respectively, i = 1, 2, . . . , k. Then, for each of the eigenvalues λi there exist

natural numbers νi
1, ν

i
2, ν

i
ρ(λi)

such that

(1) σ(λi) =
∑ρ(λi)

j=1 νi
j;

(2) there exists a nonsingular N ×N matrix T such that J = T−1AT has the following Jordan normal form:

J =

Jν1
1
· · · 0 0 · · · · · · · · · 0

· ·
0 · · · Jν1

ν(λ1)
0 · · · · · · · · · 0

· ·
· ·
0 · · · 0 0 0 Jνk

1
· · · 0

· ·
0 · · · 0 0 0 0 · · · Jνk

ν(λk)

with Jνi
j

a νi
j × νi

j Jordan matrix.

Example 4.2

Consider the matrix A =

2 4 −8

0 0 4

0 −1 4

. Then, it is easy to verify that this matrix has only λ = 2 as

eigenvalue with algebraic multiplicity σ(λ) = 3. Since A− 2I =

0 4 −8

0 −2 4

0 −1 2

has rank 1, ρ(λ) = 2.

Then, σ(λ) = 3 = ν1 + ν2. Hence, the Jordan normal form has 2 blocks, one block 2× 2 and one

block 1 × 1 with in each block a Jordan matrix. Therefore, A =

2 1 0

0 2 0

0 0 2

. The nonsingular matrix

T =

4 0 1

−2 1 0

−1 0 0

. It is also easy to verify that J = T−1AT .

The spectral radius ρ(P) of P ∈ P(N) is defined by

ρ(P) = max {|λ| | λ is an eigenvalue of P}. (4.14)

4.2. SQUARE MATRICES, EIGENVALUES AND SPECTRAL RADIUS 113

Let λ be any eigenvalue of P ∈ P(N) with eigenvector v. Then, we can write

|λ|n · ‖v‖ = ‖λnv‖ = ‖P nv‖ ≤ ‖P n‖ · ‖v‖ for all n ∈ /N .

Since v 6= 0, |λ| ≤ ‖P n‖1/n for all n ∈ N. From the definition of ρ(P) and Theorem 4.1 it follows that

ρ(P) ≤ max {|λ| | λ is an eigenvalue of P} ≤ limn→∞ ‖P n‖1/n = infn≥1 ‖P n‖1/n.

We will show (see Theorem 4.4) that ρ(P) = limn→∞ ‖P n‖1/n = infn≥1 ‖P n‖1/n.

Lemma 4.3

Let P ∈ P(N). Then, limn→∞ P n = 0 if and only if ρ(P) < 1.

Proof

⇒ Let λ be any eigenvalue of P ∈ P(N) with eigenvector v. Then, P nv = λnv and we have

0 = limn→∞ P nv = limn→∞ λnv.

Since v 6= 0, limn→∞ λn = 0, which implies |λ| < 1. Since this must be true for any eigenvalue λ, we

can conclude ρ(P) < 1.

⇐ Let P has λ1, λ2, . . . , λk as distinct eigenvalues with geometric and algebraic multiplicities ρ(λi) and

σ(λ), respectively, for i = 1, 2, . . . , k. From the Jordan Normal Form Theorem, we know that for

each i = 1, 2, . . . , k there exist natural numbers νj for j = 1, 2, . . . , ρ(λi) with σ(λi) =
∑ρ(λi)

j=1 νi
j,

and there exists a nonsingular matrix T such that J = T−1PT has the following Jordan normal form:

J =

Jν1
1
· · · 0 0 · · · · · · · · · 0

· ·
0 · · · Jν1

ν(λ1)
0 · · · · · · · · · 0

· ·
· ·
0 · · · 0 0 0 Jνk

1
· · · 0

· ·
0 · · · 0 0 0 0 · · · Jνk

ν(λk)

with Jνi
j

a νi
j × νi

j Jordan matrix.

Note that P n = TJnT−1 for all n ∈ N. Since J is a block-diagonal matrix, matrix Jn is also a

block-diagonal matrix:

Jn =

Jn
ν1
1
· · · 0 0 · · · · · · · · · 0

· ·
0 · · · Jn

ν1
ν(λ1)

0 · · · · · · · · · 0

· ·
· ·
0 · · · 0 0 0 Jn

νk
1
· · · 0

· ·
0 · · · 0 0 0 0 · · · Jn

νk
ν(λk)

,

where

Jn
νi

j

=

λn
i

(

n
1

)

λn−1
i

(

n
2

)

λn−2
i

(

n
3

)

λn−3
i · · ·

(

n
νi

j
−1

)

λ
n−νi

j+1

i

0 λn
i

(

n
1

)

λn−1
i

(

n
2

)

λn−2
i · · ·

(

n
νi

j
−2

)

λ
n−νi

j+1

i

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
0 0 0 0 λn

i

(

n
1

)

λn−1
i

0 0 0 0 0 λn
i

.

114 CHAPTER 4. TOTAL REWARD

The proof that the above Jn
νi

j

is correct can be given by induction on n. For n = 1 the formula holds,

where
(

n
m

)

:= 0 if n < m, because Jn
νi

j

is a Jordan block for n = 1. Assuming the (k, l)th element of Jn
νi

j

equals
(

n
l−k

)

λn−l+k
i for k ≤ l, the (k, l)th element of Jn+1

νi
j

=
∑

p {Jn
νi

j

}kp · {Jνi
j
}pk. Since {Jνi

j
}pk 6= 0 only

for p = l or p = l− 1, we obtain

{Jn+1
νi

j

}kl = {Jn
νi

j

}k,l−1 · {Jνi
j
}l−1,k + {Jn

νi
j

}kl · {Jνi
j
}lk

=
(

n
l−1−k

)

λn−l+1+k
i · 1 +

(

n
l−k

)

λn−l+k
i · λi

= {
(

n
l−1−k

)

+
(

n
l−k

)

} · λn−l+1+k
i =

(

n+1
l−k

)

· λ(n+1)−l+k
i .

Since λi < 1 for all eigenvalues λi, limn→∞ Jn = 0 and consequently, limn→∞ P n = 0.

Lemma 4.4

Let P ∈ P(N). Then, if ρ(P) > 1, ‖P n‖ is not bounded for increasing n values.

Proof

Write, as in Lemma 4.3, P n = TJnT−1 with J the Jordan matrix and T a nonsingular matrix. Since

λi > 1 for at least one eigenvalue λi, it follows that there is at least one element in Jn which does not

remain bounded as n increases, so proving the statement of the lemma.

Theorem 4.4 Gelfand’s formula (1941)

Let P ∈ P(N). Then, ρ(P) = limn→∞ ‖P n‖1/n = infn≥1 ‖P n‖1/n.

Proof

For any ε > 0, consider the matrix P1(ε) := 1
ρ(P)+ε · P . Obviously, ρ

(

P1(ε)
)

= ρ(P)
ρ(P)+ε < 1. Then, by

Lemma 4.3, limn→∞ P n
1 (ε) = 0, implying the existence of an integer n1 such that ‖P n

1 (ε)‖ < 1 for all

n ≥ n1. This means that ‖P n‖ < {ρ(P) + ε}n for all n ≥ n1, i.e. ‖P n‖1/n < ρ(P) + ε for all n ≥ n1.

On the other hand, consider the matrix P2(ε) := 1
ρ(P)−ε

· P . Since ρ
(

P2(ε)
)

= ρ(P)
ρ(P)−ε

> 1, by Lemma 4.4,

there exists an integer n2 such that ‖P n
2 (ε)‖ > 1 for all n ≥ n2. This implies ‖P n‖ > {ρ(P)− ε}n for all

n ≥ n2, and consequently ‖P n‖1/n > ρ(P)− ε for all n ≥ n2.

Taking n3 := max(n1, n2), we obtain ρ(P)−ε < ‖P n‖1/n < ρ(P)+ε for all n ≥ n3. Since ε was arbitrarily

chosen, ρ(P) = limn→∞ ‖P n‖1/n = infn≥1 ‖P n‖1/n, the last equality by Theorem 4.1.

Theorem 4.5

For any P ∈ P(N) and any norm ‖ · ‖ in R
N , the following five statements are equivalent:

(1) |λ| < 1 for every eigenvalue λ of P .

(2) ρ(P) < 1.

(3) |P n‖ < 1 for some n ≥ 1.

(4) I − P is nonsingular and (I − P)−1 =
∑∞

n=0 P
n.

(5) limn→∞ P n = 0.

Proof

(1) and (2) are equivalent by the definition of the spectral radius; (2) and (3) are equivalent by Theorem

4.4; (2) and (5) are equivalent by Lemma 4.3. Therefore, it is sufficient to show that (4) and (5) are

equivalent.

4.3. THE LINEAR PROGRAM 115

Assume that (4) holds. Since
∑∞

n=0 P
n exists, obviously limn→∞ P n = 0, so (5) holds. On the other

hand, assume that (5) holds. Since (I − P)(I + P + · · ·+ P n−1) = I − P n and limn→∞ P n = 0, we can

write

det (I − P) · det (I + P + · · ·+ P n−1)→ det (I) = 1 for n→∞.

Therefore, det (I − P) 6= 0, implying I − P is nonsingular and (I − P)−1 =
∑∞

n=0 P
n.

Theorem 4.6

Let P ∈ P(N), I − P nonsingular and ρ(P) ≤ 1. Then, ρ(P) < 1

Proof

For any α ∈ [0, 1), we have ρ(αP) = αρ(P) < 1. By Theorem 4.5, (I − αP)−1 =
∑∞

n=0 α
nP n. Since

the matrix I − P is nonsingular and the elements of (I − αP)−1 are rational functions in α with as

numerator the determinant of I−αP (this is based on Cramers rule, see e.g. Karlin [155] p. 387), we have

(I − P)−1 = limα↑1
∑∞

n=0 α
nP n. Since P is nonnegative the monotone convergence theorem (cf. Loève

[185] p. 124) implies

limα↑1
∑∞

n=0 α
nP n =

∑∞
n=0 limα↑1 αnP n =

∑∞
n=0 P

n = (I − P)−1.

Hence, by Theorem 4.5, ρ(P) < 1.

4.3 The linear program

In this section we discuss some properties of a linear program that will be used in the sequel of this chapter.

In particular, we establish the correspondence between the randomized stationary transient policies and

the feasible solutions of this linear program. Furthermore, we show that the deterministic transient policies

correspond to the extreme solutions of the program. Let β ∈ R
N with βj > 0 for every j ∈ S. Then,

consider the following linear program:

max

∑

(i,a)

ri(a)xi(a)

∣

∣

∣

∣

∣

∑

(i,a) {δij − pij(a)}xi(a) = βj , j ∈ S
xi(a) ≥ 0, (i, a) ∈ S × A

}

. (4.15)

For any feasible solution x ∈ R
|S×A| of (4.15) we define a vector, also denoted by x and with x ∈ RN by

xi :=
∑

a xi(a), i ∈ S. Hence, we have xj =
∑

a xj(a) = βj +
∑

(i,a) pij(a)xi(a) ≥ βj > 0 for all j ∈ S.

Define a stationary policy π∞(x) by

πia(x) :=
xi(a)

xi
, (i, a) ∈ S × A. (4.16)

From (4.16), we obtain xi(a) = πia(x) · xi, (i, a) ∈ S ×A. Therefore,

xj = βj +
∑

(i,a) pij(a)πia(x) · xi = βj +
∑

i pij

(

π(x)
)

· xi, j ∈ S.

In vector notation, xT = βT + xTP
(

π(x)
)

. Iterating this equality yields

xT = βT
∑n

t=1 P
t−1
(

π(x)
)

+ xTP n
(

π(x)
)

≥ βT
∑n

t=1 P
t−1
(

π(x)
)

for all n ∈ N.

Hence,
∑∞

t=1 P
t−1
(

π(x)
)

exists and has finite components:
∑∞

t=1 {P t−1
(

π(x)
)

}ij <∞ for all i, j ∈ S.

Therefore, the stationary policy π∞(x) is transient and satisfies

xT = βT
∞
∑

t=1

P t−1
(

π(x)
)

= βT {I − P
(

π(x)
)

}−1. (4.17)

116 CHAPTER 4. TOTAL REWARD

Conversely, let π∞ be an arbitrary transient stationary policy. Then, P n(π)→ 0 if n→∞. Therefore, by

Theorem 4.5,
(

I − P (π)
)−1

exists. We define the vector x(π) ∈ R
|S×A| by

xia(π) := {βT
(

I − P (π)
)−1}i · πia, (i, a) ∈ S ×A. (4.18)

Theorem 4.7

The mapping (4.18) is a bijection between the set of transient stationary policies and the set of feasible

solutions of (4.15) with (4.16) as the inverse mapping. Furthermore, the set of transient deterministic

policies corresponds to the set of extreme feasible solutions of (4.15).

Proof

First, we prove that x(π), for any transient stationary policy π∞, is a feasible solution of (4.15).

∑

(i,a) {δij − pij(a)}xia(π) =
∑

a xja(π) −∑(i,a) pij(a)xia(π)

= {βT
(

I − P (π)
)−1}j −

∑

(i,a) pij(a){βT
(

I − P (π)
)−1}i · πia

= {βT
(

I − P (π)
)−1}j −

∑

i {βT
(

I − P (π)
)−1}i · {P (π)}ij

= {βT
(

I − P (π)
)−1}j − {βT

(

I − P (π)
)−1}{P (π)}j

= {βT
(

I − P (π)
)−1}{(I − P (π)}j = βj , j ∈ S.

Furthermore, xia(π) = {βT
(

I − P (π)
)−1}i · πia = {βT

∑∞
t=1 P

t−1(π)}i · πia ≥ 0 for all (i, a) ∈ S × A.

Hence, x(π) is a feasible solution of (4.15). The relations (4.16), (4.17) and (4.18) imply x
(

π(x)
)

= x and

π
(

x(π)
)

= π, i.e. the mapping (4.18) is a bijection between the set of transient stationary policies and the

set of feasible solutions of (4.15) with (4.16) as the inverse mapping.

Let f∞ be an arbitrary deterministic transient policy. Suppose that x(f) is not an extreme feasible solution

of (4.15). Then, there exist feasible solutions x1 and x2 of program (4.15) and a real number λ ∈ (0, 1) such

that x1 6= x2 and x(f) = λx1 + (1− λ)x2. Since xia(f) = 0 for all a 6= f(i), i ∈ S, also x1
ia = x2

ia = 0 for

all for all a 6= f(i), i ∈ S. Hence, the Nth-dimensional vectors x1 and x2 with components x1
i

(

f(i)
)

, i ∈ S
and x2

i

(

f(i)
)

, i ∈ S, respectively, are solutions of the linear system xT {I − P (f)} = βT . Since f∞ is a

transient policy, the matrix {I − P (f)} is nonsingular and consequently, the system xT {I − P (f)} = βT

has a unique solution, namely βT {I − P (f)}−1. This implies x1 = x2, which yields a contradiction.

Conversely, let x be an arbitrary extreme feasible solution of (4.15). Since (4.15) has N constraints, x has

at most N positive components. Since
∑

a xj(a) = βj +
∑

(i,a) pij(a)xia ≥ βj > 0 for all j ∈ S, x has

precisely N positive components, for each state j exactly one. Hence, the corresponding policy π∞(x) is

a deterministic policy.

4.4 Transient, contracting, excessive and normalized MDPs

We start this section with a lemma that shows that the total expected reward of a regular policy is the

limit of the discounted expected reward when the discount factor α tends to 1.

Lemma 4.5

For any regular policy R the expected total reward satisfies: vi(R) = limα↑1 vα
i (R), i ∈ S.

4.4. TRANSIENT, CONTRACTING, EXCESSIVE AND NORMALIZED MDPS 117

Proof

Take any initial state i and any policy R. We distinguish the following cases.

Case 1: −∞ < vi(R) < +∞.
Let v

(t)
i (R) be the expected reward in period t: v

(t)
i (R) :=

∑

j,a Pi,R{Xt = j, Yt = a} · rj(a).

Take any ε > 0. Then, there exists a T∗ such that |vi(R)−∑T
t=1 v

(t)
i (R)| < ε for every T ≥ T∗.

Since |v(t)
i (R)| is bounded by M := max(i,a) |ri(a)|, the two power series vα

i (R) :=
∑∞

t=1 α
t−1v

(t)
i (R)

and
∑∞

s=1 α
s−1 have radius of convergence (at least) 1. Hence, for any α ∈ [0, 1), we may write

(1− α)−1vα
i (R) =

{
∞
∑

s=1

αs−1
}{

∞
∑

t=1

αt−1v
(t)
i (R)

}

=
∞
∑

t=1

{
t
∑

s=1

v
(s)
i (R)

}

· αt−1.

Therefore,

|(1− α)−1{vα
i (R)− vi(R)}| ≤ ∑∞

t=1 |
∑t

s=1 v
(s)
i (R) − vi(R)| · αt−1 =

∑T∗

t=1 |
∑t

s=1 v
(s)
i (R)− vi(R)| · αt−1 +

∑∞
t=T∗+1 |

∑t
s=1 v

(s)
i (R)− vi(R)| · αt−1.

Let A = max1≤t≤T∗
|∑t

s=1 v
(s)
i (R)− vi(R)|. Then, we obtain

|(1− α)−1{vα
i (R)− vi(R)}| ≤ ∑T∗

t=1 A · αt−1 +
∑∞

t=T∗+1 ε · αt−1

≤ A · 1−αT∗

1−α
+ ε ·∑∞

t=1 α
t−1 < 2ε(1− α)−1

for α sufficiently close to 1. Hence, |vα
i (R) − vi(R)| < 2ε for α sufficiently close to 1. This implies

limα↑1 vα
i (R) = vi(R).

Case 2: vi(R) = +∞.
Choose M > 0 arbitrary. Then, there exists an integer T∗ such that

∑T
t=1 v

(t)
i (R) > M for all

T > T ∗. Similarly as in case 1 we can write

(1− α)−1vα
i (R) =

∑∞
t=1

{
∑t

s=1 v
(s)
i (R)

}

αt−1

=
∑T∗

t=1

{
∑t

s=1 v
(s)
i (R)

}

αt−1 +
∑∞

t=T∗+1

{
∑t

s=1 v
(s)
i (R)

}

αt−1.

Let m = min1≤t≤T∗

∑t
s=1 v

(s)
i (R), then (1− α)−1vα

i (R) > m · 1−αT∗

1−α
+M · αT∗

1−α
, i.e.

vα
i (R) > m · (1− αT∗

) +M · αT∗

. For α ↑ 1, we have m · (1− αT∗

) +M · αT∗ →M.

Hence, since M was arbitrarily chosen, limα↑1 vα
i (R) = +∞ = vi(R).

Case 3: vi(R) = −∞.
The proof is similar to the proof of case 2 and left to the reader (see Exercise 4.3).

Theorem 4.8

The following seven statements are equivalent:

(1) Every policy is transient.

(2) Every stationary policy is transient.

(3) Every deterministic policy is transient.

(4) ρ
(

P (π)
)

< 1 for every stationary policy π∞.

(5) ρ
(

P (f)
)

< 1 for every deterministic policy f∞.

(6) The linear program (4.15) with ri(a) = 1, (i, a) ∈ S × A has a finite optimum.

(7) The MDP is contracting.

118 CHAPTER 4. TOTAL REWARD

Proof

Obviously, (1) implies (2), and (2) implies (3). Let π∞ be a stationary transient policy. Then, we have

∑∞
t=1 P

∞
i,π{Xt = j, Yt = a} =

∑∞
t=1 {P t−1(π)}ij · πja <∞ <∞ for all i, j ∈ S and a ∈ A(j).

Hence,
∑∞

t=1 P
t−1(π) is convergent, which implies limt→∞ P t(π) = 0, and - by Theorem 4.5 - ρ

(

P (π)
)

< 1.

Similarly, it can be shown that if ρ
(

P (π)
)

< 1, then
∑∞

t=1 P
t−1(π) is convergent and π∞ is a transient

policy. Therefore, (2) is equivalent to (4) and also (3) and (5) are equivalent. Hence, it is sufficient to

show that (3) implies (6), (6) implies (7) and (7) implies (1).

The proof that (3) implies (6):

Since there are transient deterministic policies, program (4.15) is feasible. Suppose that it has an infinite

solution. Then, we know from the theory of linear programming that there exists a basis solution, which

corresponds by Theorem 4.7 to a deterministic policy f∞, such that in the simplex tableau the column of

some nonbasic variable xk(ak) has only nonpositive values. On the other hand, Theorem 4.7 implies that

the exchange of the nonbasic variable xk(ak) with the basic variable xk

(

f(k)
)

provides a feasible simplex

tableau, i.e. the column of the nonbasic variable xk(ak) contains a positive element in the row of the basic

variable xk

(

f(k)
)

: contradiction, which proves that (3) implies (6).

The proof that (6) implies (7):

Consider the dual program of (4.15) with ri(a) = 1 for all (i, a) ∈ S ×A, which is

min
{

∑

j

βjµj

∣

∣

∣

∑

j

{δij − pij(a)}µj ≥ 1, (i, a) ∈ S ×A
}

. (4.19)

This program has also a finite optimal solution, say µ. Let f∞ be any deterministic transient policy.

Since limn→∞ P n(f) = 0, by Theorem 4.5, {I − P (f)} is nonsingular with inverse
∑∞

n=0 P
n(f). From

the constraints of (4.19), we obtain {I − P (f)} ≥ e. Hence, µ = {I − P (f)}−1e ≥ e, the last inequality

because {I − P (f)}−1e =
∑∞

n=0 P
n(f)e ≥ P 0(f)e = e. Define α := 1 − {maxk µk}−1 ∈ [0, 1). Then, we

have

∑

j pij(a)µj ≤ µi − 1 ≤ µi − µi

maxk µk
= α · µi, (i, a) ∈ S × A,

i.e. the MDP is contracting.

The proof that (7) implies (1):

From Corollary 1.1 it follows that it is sufficient to show that
∑∞

t=1 Pi,R{Xt = j} <∞ for all i, j ∈ S and

all R ∈ C(M). Take any i, j ∈ S and any R = (π1, π2, . . .) ∈ C(M). Since the MDP is contracting, there

exist an α ∈ [0, 1) and µ ∈ R
N with µi > 0, i ∈ S, such that P (πt)µ ≤ α · µ for all Markov decision rules

πt. Therefore, P (π1)P (π2) · · ·P (πt) ≤ αt · µ for all t ∈ N. Hence, we obtain

∑∞
t=1 P (π1)P (π2) · · ·P (πt−1)µ ≤ (1− α)−1 · µ.

Since µi > 0 for every i ∈ S and because

∑∞
t=1 Pi,R{Xt = j} =

∑∞
t=1 {P (π1)P (π2) · · ·P (πt−1)}ij <∞,

it follows that R is a transient policy.

Characterization (6) provides an algorithm for checking the contraction property of a given MDP model.

Below we present this algorithm.

Algorithm 4.1 Checking the contracting property of a substochastic MDP (LP approach)

Input: Instance of an MDP (without immediate rewards) and a vector β ∈ R
N with βj > 0, 1 ≤ j ≤ N .

Output: Decision whether or not this MDP is contracting.

4.4. TRANSIENT, CONTRACTING, EXCESSIVE AND NORMALIZED MDPS 119

1. Solve the linear program

max

∑

(i,a)

xi(a)

∣

∣

∣

∣

∣

∑

(i,a) {δij − pij(a)}xi(a) = βj , j ∈ S
xi(a) ≥ 0, (i, a) ∈ S ×A

}

.

2. if the linear has a finite optimum then the MDP is contracting (STOP)

else the MDP is not contracting (STOP).

Remark 1

If it happens in Algorithm 4.1 that the model is contracting, we obtain - as shown in the proof of Theorem

4.8 - from the dual program (4.19) a µ as optimal solution and α, where α := 1 − {maxk µk}−1 ∈ [0, 1),

such that µi > 0 for all i ∈ S and
∑

j pij(a)µj ≤ α · µi for all (i, a) ∈ S × A.

Remark 2

A discounted model is a contracting model with transition probabilities p′ij(a) := αpij(a) for all i, j ∈ S
and all a ∈ A(i) and with µi = 1 for all i ∈ S. In fact the discounting and the contracting models are

equivalent: a contracting substochastic model can be transformed into a stochastic discounted model such

that for any policy R the total expected reward in the original model differs a multiplicative factor with

the total discounted reward in the transformed model.

To prove this equivalence, we introduce the following transformed model (S, A, p, r):

S = S ∪ {0}; A(i) =

{

A(i) i 6= 0

{1} i = 0
; ri(a) =

{

1
µi
ri(a) i 6= 0, a ∈ A(i)

0 i = 0, a ∈ A(i)

pij(a) =

1
αµi

pij(a)µj i 6= 0, j 6= 0, a ∈ A(i)

1− 1
αµi

∑

k∈S pik(a)µk i 6= 0, j = 0, a ∈ A(i)

1 i = 0, j = 0, a ∈ A(i)

0 i = 0, j 6= 0, a ∈ A(i)

For i = 0:
∑

j∈S pij(a) =
∑

j∈S p0j(1) = 1.

For i 6= 0:
∑

j∈S pij(a) =
∑

j∈S pij(a) + pi0(a)

=
∑

j∈S
1

αµi
pij(a)µj +

{

1− 1
αµi

∑

k∈S pik(a)µk

}

= 1 for all a ∈ A(i).

Hence, the transformed model is stochastic. In order to analyze the expected total (discounted) rewards,

we may restrict ourselves to Markov policies. Let R = (π1, π2, . . .) be a Markov policy. Then, by induction

on t, it is straightforward to show that

{P (π1)P (π2) · · ·P (πt)}ij =
(

1
α

)t · 1
µi
· {P (π1)P (π2) · · ·P (πt)}ij · µj for all i, j ∈ S and t ∈ N.

Therefore, we can write,

vα
i (R) =

∑∞
t=1 α

t−1 · {P (π1)P (π2) · · ·P (πt−1)r(πt)}i
=

∑∞
t=1 α

t−1 ·∑j∈S{P (π1)P (π2) · · ·P (πt−1)}ij · rj(π
t)

=
∑∞

t=1 α
t−1 ·∑j∈S{P (π1)P (π2) · · ·P (πt−1)}ij · rj(π

t)

=
∑∞

t=1

∑

j∈S
1
µi
· {P (π1)P (π2) · · ·P (πt−1)}ij · µj · 1

µj
rj(π

t)

= 1
µi
·∑∞

t=1

∑

j∈S {P (π1)P (π2) · · ·P (πt−1)}ij · rj(π
t)

= 1
µi
·∑∞

t=1 {P (π1)P (π2) · · ·P (πt−1)r(πt)}i, i ∈ S
= 1

µi
· vi(R), i ∈ S.

120 CHAPTER 4. TOTAL REWARD

Remark 3

For any α ∈ [0, 1) we define the transition rates pα
ij(a) by pα

ij(a) := α · pij(a) for all i, j ∈ S and a ∈ A(i).

Then, a policy R is normalized with respect to the transition rates pij(a) if and only if R is transient for

all α ∈ [0, 1) with respect to the transition rates pα
ij(a). Hence, an MDP is normalized if there exists a

vector µ ∈ R
N with µi > 0 for all i ∈ S which satisfies

∑

j pij(a)µj ≤ µi for all (i, a) ∈ S × A, i.e. if the

MDP is excessive. The reverse statement, that a normalized MDP is excessive, is not true in general. The

above observations transforms Theorem 4.8 into the following result.

Theorem 4.9

The following seven statements are equivalent:

(1a) Every policy is normalized.

(2a) Every stationary policy is normalized.

(3a) Every deterministic policy is normalized.

(4a) ρ
(

P (π)
)

≤ 1 for every stationary policy π∞.

(5a) ρ
(

P (f)
)

≤ 1 for every deterministic policy f∞.

(6a) For all α ∈ [0, 1) the linear program (4.15) with pα
ij(a) instead of pij(a) for all i, j ∈ S and a ∈ A(i)

and with ri(a) = 1 for all (i, a) ∈ S ×A has a finite optimum.

(7a) The MDP is normalized.

Introduce the vector yN ∈ R
N inductively by

{

y0
i := 1, i ∈ S
yt

i := maxa

∑

j pij(a)y
t−1
j , i ∈ S, t = 1, 2, . . . , N

(4.20)

Lemma 4.6

yt
i = supR

∑

j Pi,R{Xt+1 = j} for all i ∈ S and t = 0, 1, . . . , N .

Proof

From Corollary 1.1 it follows that it is sufficient to show that yt
i = supR∈C(M)

∑

j Pi,R{Xt+1 = j}.
We apply induction on t. For t = 0:

∑

j Pi,R{X1 = j} = Pi,R{X1 = i} = 1 = y0
i , i ∈ S.

Suppose that the result is correct for some t. Take any i ∈ S and any policy R = (π1, π2, π3, . . .) ∈ C(M).
∑

j Pi,R{Xt+2 = j} =
∑

j

{
∑

k pik(π1) Pk,R′{Xt+1 = j}
}

=
∑

k pik(π1)
{
∑

j Pk,R′{Xt+1 = j}
}

,

where R′ = (π2, π3, . . .). Hence, by the induction hypothesis,
∑

j Pi,R{Xt+2 = j} ≤∑k pik(π1)yt
k ≤ maxa

∑

k pik(a)yt
k = yt+1

i .

Hence, supR

∑

j Pi,R{Xt+1 = j} ≤ yt
i for all i ∈ S and t = 0, 1, . . . , N .

On the other hand, also by induction on t, we show that
∑

j Pi,Rt
{Xt+1 = j} = yt

i for some

deterministic Markov policy Rt = (ft, ft−1, . . . , f1, f1, . . .).

For t = 0 we have already shown above that
∑

j Pi,R{X1 = j} = y0
i = 1 for any policy R.

Suppose that
∑

k Pj,Rt−1{Xt = k} = yt−1
j for some deterministic Markov policy Rt−1. Let ft be such that

yt
i =

∑

j pij

(

ft(i)
)

yt−1
j , i ∈ S. Then, with Rt := (ft, Rt−1), we obtain

yt
i =

∑

j pij

(

ft(i)
)

yt−1
j =

∑

j pij

(

ft(i)
){∑

k Pj,Rt−1{Xt = k}
}

=
∑

k

∑

j pij

(

ft(i) Pj,Rt−1{Xt = k} =
∑

k Pi,Rt
{Xt+1 = k}.

4.4. TRANSIENT, CONTRACTING, EXCESSIVE AND NORMALIZED MDPS 121

Theorem 4.10

Consider a substochasttic MDP. Then, the seven statements of Theorem 4.8 are also equivalent tot the

following seven statements:

(8) ‖yN‖∞ = maxi∈S y
N
i < 1.

(9) ‖P (π1)P (π2) · · ·P (πN)‖∞ < 1 for every (π1, π2, . . .) ∈ C(M).

(10) ‖PN(π)‖∞ < 1 for every π∞ ∈ C(S).

(11) ‖PN(f)‖∞ < 1 for every f∞ ∈ C(D).

(12) supR ρ(R) < 1, where ρ(R) := lim supn→∞ ‖P n(R)‖1/n
∞ and {P n(R)}ij := Pi,R{Xn+1 = j}.

(13) supπ∞ ρ
(

P (π)
)

< 1.

(14) supf∞ ρ
(

P (f)
)

< 1.

Proof

The proof that (1) implies (8):

From the proof of Lemma 4.6 it follows that yN
i = maxR∈C(DM)

∑

j Pi,R{XN+1 = j} for all i ∈ S, where

C(DM) is the finite set of deterministic Markov policies R = (f1, f2, . . . , fN). Take any i ∈ S and any

deterministic Markov policy R = (f1, f2, . . . , fN). Then, it is sufficient to show
∑

j Pi,R{XN+1 = j} < 1.

Add a state 0 with A(0) := {1} and let pk0(a) := 1−∑N
j=1 pkj(a) for all (k, a) ∈ S×A, and let p0j(1) := 0

for all 1 ≤ j ≤ N and p00(1) := 1. Consider the extended model with state space S∗ := S ∪ {0} and let

R∗ be the policy in the extended model which corresponds to R.

Define the following subsets of S∗:

T1 := {i} and Tk := {j ∈ S∗ | Pi,R∗{Xk = j} > 0} for k = 2, 3,

We first show three propositions.

Proposition 1:

If, for all 1 ≤ n ≤ N , 0 /∈ ∪n
l=1 Tl implies Tn+1 6⊆ ∪n

l=1 Tl, then statement (8) is true.

The proof of Proposition 1:

Suppose 0 /∈ ∪N
l=1 Tl. Since the state 0 is absorbing, this implies that 0 /∈ ∪n

l=1Tl for n = 1, 2, . . . , N .

Then, by the assumption of the proposition, ∪n+1
l=1 Tl has at least one state more than ∪n

l=1 Tl for all

n = 1, 2, . . . , N . Consequently, ∪N+1
l=1 Tl = S∗ and 0 ∈ TN+1 , i.e. Pi,R∗{XN+1 = 0} > 0,and therefore

∑

j∈S Pi,R{XN+1 = j} < 1.

Proposition 2:

Let, for some 1 ≤ n ≤ N , 0 /∈ ∪n
l=1Tl and Tn+1 ⊆ ∪n

l=1Tl. Let the deterministic f∞∗ be such that

f∗(j) :=

{

fk(j) if j ∈ Tk\ ∪k−1
l=1 Tl;

arbitrarily chosen if j /∈ ∪n
l=1Tl.

Define T ∗
1 := {i} and T ∗

k := {j ∈ S∗ | Pi,f∞
∗
{Xk = j} > 0} for k = 2, 3,

Then, T ∗
k ⊆ ∪n

l=1 Tl for all k = 1, 2,

The proof of Proposition 2:

The proof is by induction on k. For k = 1: T ∗
1 = T1 ⊆ ∪n

l=1 Tl for all n ≥ 1. Suppose that T ∗
k ⊆ ∪n

l=1 Tl

for k = 1, 2, . . . , m. Take any j ∈ Tm+1 . Then, there exists a state s ∈ T ∗
m such that psj

(

f∗(s)
)

> 0. Since

s ∈ ∪n
l=1 Tl, we have f∗(s) = fk(s) for some k satisfying s ∈ Tk\ ∪k−1

l=1 Tl. Since s ∈ Tk and f∗(s) = fk(s),

we obtain Pi,R∗{Xk+1 = j} ≥ Pi,R∗{Xk = s} · psj

(

f∗(s)
)

> 0. Hence, j ∈ Tk+1 ⊆ ∪n+1
l=1 Tl = ∪n

l=1 Tl, which

completes the proof that T ∗
m+1 ⊆ ∪n

l=1 Tl.

122 CHAPTER 4. TOTAL REWARD

Proposition 3:

Suppose that we have the same assumptions as in Proposition 2. Let f∞ the policy in the substochastic

model corresponding with policy f∞∗ of the extended model, defined in Proposition 2. Then, f∞ is a

nontransient policy.

The proof of Proposition 3:

Since 0 /∈ ∪n
l=1 Tl and T ∗

k ⊆ ∪n
l=1 Tl for all k ∈ N, we have Pi,f∞

∗
{Xk = 0}, k ∈ N, and consequently,

∑

j∈S Pi,f∞{Xk = j} = 1, k ∈ N. Hence,
∑∞

t=1

∑

j∈S Pi,f∞{Xt = j} = +∞, implying that f∞ is

nontransient.

We can complete the proof of statement (8) as follows. Since every policy is transient (by property (1)),

the assumption of Proposition 2 is not valid (by Proposition 3). Hence, 0 /∈ ∪n
l=1 Tl and at the same time

Tn+1 ⊆ ∪n
l=1 Tl is impossible for all 1 ≤ n ≤ N . Hence, 0 /∈ ∪n

l=1 Tl implies Tn+1 6⊆ ∪n
l=1 Tl, 1 ≤ n ≤ N .

Then, by Proposition 1, statement (8) holds.

The proof that (8) and (9) are equivalent:

From the proof of Lemma 4.6 if follows that

yN
i = maxR∈C(DM)

∑

j Pi,R{XN+1 = j} = supR∈C(M)

∑

j Pi,R{XN+1 = j} for all i ∈ S.

From this property we obtain directly that (8) and (9) are equivalent.

Further, it is obvious that (14) and (5) are equivalent, that (9) implies (10), (10) implies (11), and (13)

implies (14). Notice that, by Theorem 4.4, (12) implies (13). Assume that (11) implies (5). Then, (8)

implies (9), (9) implies (10), (11) implies (5) and (5) implies (8), the last implication because (5) and (1)

are equivalent. Hence, assuming (11) implies (5) give the equivalence between the seven statements of

Theorem 4.8 and (8), (9), (10) and (11). Furthermore, assume that (8) implies (12). Then, (8) implies

(12), (12) implies (13), (13) implies (14), (14) implies (5) and (5) implies (8). Hence, assuming (11) implies

(5) and (8) implies (12), the seven statements of Theorem 4.8 and the seven statements of Theorem 4.10

are all equivalent. Consequently, it is sufficient to show that (11) implies (5) and (8) implies (12).

The proof that (11) implies (5):

Take any f ∈ C(D). Since ‖PN(f)‖∞ ¡ 1. we have - by Theorem 4.5, ρ
(

P (f)
)

< 1.

The proof that (8) implies (12):

In Lemma 4.6 we have shown that for every t ∈ N, every i ∈ S and any policy R, we have

∑

j

Pi,R{Xt+1 = j} ≤ yt
i =

∑

j

{P (ft)P (ft−1) · · ·P (f1)}ij for some policy (ft, ft−1 · · · f1) ∈ C(DM).

(4.21)

Since we have already shown that (8) implies (9), (9) implies (10), (10) implies (11) and (11) implies (5)

and because (5) is equivalent to (7), (8) implies that the MDP is contracting. Hence, there exists a vector

µ ∈ RN with i > 0 for all i ∈ S, and a scalar α ∈ [0, 1) such that
∑

j pij(a)µj = α ·µi for all (i, a) ∈ S×A.

Therefore, for every t ∈ N , we have P (ft)P (ft−1) · · ·P (f1)µ ≤ αt · µ, and consequently,

lim supt→∞ ‖P (ft)P (ft−1) · · ·P (f1)‖1/t
µ ≤ αt < 1.

Since we can show (see Exercise 4.5) that

lim supt→∞ ‖P (ft)P (ft−1) · · ·P (f1)‖1/t
µ = lim supt→∞ ‖P (ft)P (ft−1) · · ·P (f1)‖1/t

∞

Hence, we obtain, also using (4.21),

supR ρ(R) = supR

{

lim supn→∞ ‖P n(R)‖1/n
∞
}

≤ lim supt→∞ ‖P (ft)P (ft−1) · · ·P (f1)‖1/t
∞ < 1.

4.4. TRANSIENT, CONTRACTING, EXCESSIVE AND NORMALIZED MDPS 123

Characterization (8) provides a finite algorithm for checking the contraction property of a given substochas-

tic MDP model. Below we present this algorithm.

Algorithm 4.2 Checking the contracting property of a substochastic MDP (iterative approach)

Input: Instance of an MDP (without immediate rewards).

Output: Decision whether or not this MDP is contracting.

1. y0
i := 1 for every i ∈ S; t := 1.

2. yt
i := maxa

∑

j pij(a)y
t−1
j for every i ∈ S.

3. if maxi y
t
i < 1 then the MDP is contracting (STOP)

else go to step 4.

4. if t = N then the MDP is not contracting (STOP)

else begin t := t + 1; return to step 2 end

Theorem 4.11

Consider an excessive MDP. Then, the seven statements of Theorem 4.8 are also equivalent to the following

two statements:

(15) supR

∑

j {PN+1(R)}ijµj < µi for all i ∈ S.

(16) maxf∞∈C(D) ‖PN+1(f)‖µ < 1.

Proof

We will show that (15) implies (16), (16) implies (5) and (5) implies (15).

The proof that (15) implies (16):

Take any f∞ ∈ C(D). From (15) it follows that
∑

j {PN+1(f)}ijµj < µi for all i ∈ S. Hence, we have

‖PN+1(f)‖µ = maxi µ
−1
∑

j {PN+1(f)}ijµj < 1.

The proof that (16) implies (5):

Take any f∞ ∈ C(D). Since ‖PN+1(f)‖µ < 1, we have - by Theorem 4.5 - ρ
(

P (f)
)

< 1. Therefore

ρ
(

P (f)
)

< 1 for every f∞ ∈ C(D).

The proof that (5) implies (15):

Similar as in the proof of Lemma 4.6 it can be shown that for all i ∈ S and all t ∈ N,

supR

∑

j {P t(R)}ijµj = supR∈C(DM)

∑

j {P t(R)}ijµj

Therefore, it is sufficient to show that supR∈C(DM)

∑

j {PN+1(R)}ijµj < µi for all i ∈ S. Take any

state i ∈ S and any deterministic Markov policy R = (f1, f2, . . . , fN). Then, it is sufficient to show that
∑

j {PN+1(R)}ijµj < µi. Add an absorbing state 0 with A(0) := {1} and let pk0(a) := µk−
∑N

j=1 pkj(a)µj

for all (k, a) ∈ S × A, and let p0j(1) := 0 for all 1 ≤ j ≤ N and p00(1) := 1. Given state k and action

a ∈ A(k) is chosen by policy R, notice that we have a positive transition probability to state 0 if and only

if
∑

j pkj(a)µj < µi. Consider the extended model with state space S∗ := S ∪{0} and let R∗ be the policy

in the extended model which corresponds to R.

Define the following subsets of S∗:

T1 := {i} and Tk := {j ∈ S∗ | Pi,R∗{Xk = j} > 0} for k = 2, 3,

Similarly to the proof of Theorem 4.10 the following three propositions can be shown.

Proposition 1:

If, for all 1 ≤ n ≤ N , 0 /∈ ∪n
l=1 Tl implies Tn+1 6⊆ ∪n

l=1 Tl, then statement (15) is true.

124 CHAPTER 4. TOTAL REWARD

Proposition 2:

Let, for some 1 ≤ n ≤ N , 0 /∈ ∪n
l=1Tl and Tn+1 ⊆ ∪n

l=1Tl. Let the deterministic f∞∗ be such that

f∗(j) :=

{

fk(j) if j ∈ Tk\ ∪k−1
l=1 Tl;

arbitrarily chosen if j /∈ ∪n
l=1Tl.

Define T ∗
1 := {i} and T ∗

k := {j ∈ S∗ | Pi,f∞
∗
{Xk = j} > 0} for k = 2, 3,

Then, T ∗
k ⊆ ∪n

l=1 Tl for all k = 1, 2,

Proposition 3:

Suppose that we have the same assumptions as in Proposition 2. Let f∞ the policy in the substochastic

model corresponding with policy f∞∗ of the extended model, defined in Proposition 2. Then, f∞ is a

nontransient policy.

We can complete the proof of property (15) as follows. Notice that (5) is equivalent to the property that

every policy is transient (see Theorem 4.8). Hence, by Proposition 3, the assumption of Proposition 2 is

not valid, i.e. 0 /∈ ∪n
l=1 Tl and at the same time Tn+1 ⊆ ∪n

l=1 Tl is impossible for all 1 ≤ n ≤ N . Therefore,

0 /∈ ∪n
l=1 Tl implies Tn+1 6⊆ ∪n

l=1 Tl, 1 ≤ n ≤ N . Then, by Proposition 1, statement (15) holds.

Remark 4:

Testing the excessivity of a given MDP can be done in a finite way by checking the feasibility of the

following system of linear inequalities

{

∑

j pij(a)µj ≤ µi for all (i, a) ∈ S × A
µi ≥ 1 for all i ∈ S

(4.22)

This feasibility test can be executed by the so-called phase I of the simplex method.

From the results in this section we derive the following properties:

(a) A stochastic MDP is substochastic (trivial).

(b) A discounted MDP is substochastic and contracting (trivial).

(c) A substochastic MDP is excessive (take µi = 1 for all i ∈ S).

(d) Contracting and transient MDPs are equivalent (Theorem 4.8).

(e) A contracting and - by (d) also a transient - MDP are excessive (because
∑

j pij(a)µj ≤ αµj ≤ µi

for all (i, a) ∈ S ×A).

(f) An excessive MDP is normalized (see Remark 3).

The above properties are visualized in the following diagram:

discounted

stochastic

contracting

transient

substochastic

excessive normalized

-�
�

�
�

�
��
-

6?
������*

-

HHHHHHj -

4.5. THE OPTIMALITY EQUATION 125

4.5 The optimality equation

In this section we show that the regular value vector v satisfies, under certain conditions, the optimality

equation

xi = maxa

{

ri(a) +
∑

j

pij(a)xj

}

, i ∈ S. (4.23)

Theorem 4.12

Suppose that the MDP is normalized and that every policy is regular. Then, there exists a regular optimal

deterministic policy.

Proof

Since the MDP is normalized, we have - by Theorem 4.9 - ρ
(

P (f)
)

≤ 1 for every deterministic policy

f∞. Hence, ρ
(

αP (f)
)

≤ α < 1 for every α ∈ [0, 1), and consequently (see Theorem 4.5) I − αP (f) is

nonsingular and vα(f∞) =
∑∞

t=1 α
t−1P t−1(f)r(f) = {I − αP (f)}−1r(f) for every deterministic policy

f∞ and every α ∈ [0, 1). Since, for any f∞ ∈ C(D), vα(f∞) is the unique solution of the linear system

{I − αP (f)}x = r(f), by Cramer’s rule, vα
i (f∞) is a rational function in α for each component i.

Suppose there is no deterministic Blackwell optimal policy, where Blackwell optimality means discount

optimality for all discount factors α ∈ [α0, 1) for some α0. In a normalized MDP, for each α ∈ [0, 1) there

exists a discounted optimal deterministic policy (the proof is similar the the proof given in Chapter 3 for

stochastic MDPs). Hence, there is a sequence {αk, k = 1, 2, . . .} and a sequence {fk, k = 1, 2, . . .} such

that αk ↑ 1 and vα = vα(f∞k) > vα(f∞k−1) for α = αk, k = 2, 3,

Since C(D) is finite, there are different policies f∞ and g∞ such that for any increasing subsequence

αkn
, n = 1, 2, . . . with limn→∞ αkn

= 1, we have

vα(f∞) > vα(g∞) for α = αk1 , αk3, . . .

vα(f∞) < vα(g∞) for α = αk2 , αk4, . . .
(4.24)

Let h(α) := vα(f∞)−vα(g∞). Then, for each i ∈ S the function hi(α) is a continuous rational function in α

on [0, 1). From (4.24) it follows that hi(α) has an infinite number of zeros, which contradicts the rationality

of hi(α), unless hi(α) ≡ 0. Hence, there exists a Blackwell optimal policy f∞0 ∈ C(D). Furthermore, by

Lemma 4.5,

vi(f
∞
0) = limα↑1 vα

i (f∞0) ≥ limα↑1 vα
i (R) = vi(R)

for all regular policies R, i.e. f∞0 is a regular optimal deterministic policy.

For any c ∈ [−∞,+∞] we define 0 · c := c · 0 := 0. We call an N -dimensional vector x with components

xi ∈ [−∞,+∞] p−summable if
∑

j pij(a)xj is well defined for all (i, a) ∈ S×A, i.e. not both of the values

+∞ and −∞ may occur in the summation. The next example shows that the solution of the optimality

equation not p-summable, in general.

Example 4.3

S = {1, 2, 3}; A(1) = A(2) = A(3) = {1}; p11(1) = 0, p12(1) = 1
2
, p13(1) = 1

2
; p21(1) = 0, p22(1) = 1,

p23(1) = 0; p31(1) = 0, p32(1) = 0, p33(1) = 1; r1(1) = 0; r2(1) = 2; r3(1) = −1.

This is a stochastic MDP. The optimality equation is:

v1 = 1
2v2 + 1

2v3; v2 = 2 + v2; v3 = −1 + v3.

Hence, in the extended real space [−∞,+∞], we obtain v2 = +∞, v3 = −∞, but v1 is undefined because
1
2 · (+∞) + 1

2 · (−∞) is not defined.

126 CHAPTER 4. TOTAL REWARD

Theorem 4.13

If there exists a regular optimal deterministic policy and if the regular value vector v is p-summable, then

v satisfies the optimality equation xi = maxa

{

ri(a) +
∑

j pij(a)xj

}

, i ∈ S.

Proof

Let f∞ be a regular optimal deterministic policy, i.e. v = v(f∞). Since v is p-summable, we may write

vi = vi(f
∞) = ri(f) +

∑

j

pij(f)vj (f
∞) = maxa

{

ri(a) +
∑

j

pij(a)vj(f
∞)
}

, i ∈ S. (4.25)

Let ai ∈ A(i), i ∈ S, be such that ri(ai) +
∑

j pij(ai)vj = maxa

{

ri(a) +
∑

j pij(a)vj

}

, i ∈ S.

Take policy R = (π1, π2, , . . . ,) ∈ C(M) such that π1
ia =

{

1, a = ai

0, a 6= ai

; πt
ia =

{

1, a = f(i)

0, a 6= f(i)
t ≥ 2.

Since vi(R) = ri(ai)+
∑

j pij(ai)vj(f
∞) = ri(ai)+

∑

j pij(ai)vj , i ∈ S, R is a regular policy. Furthermore,

we can write

vi ≥ vi(R) = ri(ai) +
∑

j

pij(ai)vj = maxa

{

ri(a) +
∑

j

pij(a)vj

}

, i ∈ S. (4.26)

From (4.25), (4.26) and vi = vi(f
∞) it follows that vi = maxa

{

ri(a) +
∑

j pij(a)vj

}

, i ∈ S.

Corollary 4.1

For any g∞ ∈ C(D) such that v(g∞) is p-summable, the total expected reward v(g∞) satisfies the equation

x = r(g) + P (g)x.

Proof

Take any g∞ ∈ C(D) such that v(g∞) is p-summable. Since v(g∞) is p-summable, the total expected

reward for any starting state i, which is denoted by vi(g
∞), satisfies vi(g

∞) = ri(g) +
∑

j pij(g)vj(g
∞)

and is well defined. Hence, g∞ is a regular policy.

Consider the MDP model with in state i only action g(i), i ∈ S. Since this model has only one policy,

namely g∞, which is regular. this policy is a deterministic regular optimal policy. By applying Theorem

4.13 to this model, we obtain v(g∞) = v = r(g) + P (g)v = r(g) + P (g)v(g∞).

Remark:

Unfortunately, in contrast to discounted models, the solution of the optimality equation is not unique, in

general. For instance, in a stochastic MDP, i.e.
∑

j pij(a) = 1 for all (i, a) ∈ S × A, if x is a solution of

the optimality equation also x + c · e is a solution for any scalar c. The reason for the nonuniqueness is

that the mapping Lfx := r(f) +P (f)x and the mapping (Ux)i := maxa{ri(a)+
∑

j pij(a)xj}, i ∈ S, are

no contractions (the monotonicity holds for Lf and U and is easy to verify).

The next example shows that the functional equation does not have a unique solution in a normalized

MDP which has a transient policy.

Example 4.4

S = {1}; A(1) = {1, 2}; p11(1) = 1, p11(2) = 1
2
; r1(1) = 0; r1(2) = −1.

This is a normalized and regular MDP, and f∞1 with f1(1) = 1 is a deterministic normalized and regular

optimal policy. Therefore, v1 = z1 = 0.

Notice that a policy is transient if and only if the action a = 2 is chosen infinitely often with posive

probability, in which case the total expected reward is equal to -2. Hence, w1 = −2.

The functional equation of this MDP is: x1 = max{0 + x1,−1 + 1
2x1} with solution set {x1 | x1 ≥ −2}.

Hence, both v = z = 0 and w = −2 are solutions of the optimality equation.

4.6. OPTIMAL TRANSIENT POLICIES 127

A policy f∞ ∈ C(D) is called conserving if r(f) +P (f)v = v. An optimal policy is always conserving (see

Corollary 4.1), but the reverse statement is not true as the next example shows.

Example 4.5

S = {1, 2}; A(1) = {1, 2}; A(2) = {1}; p11(1) = 1, p12(1) = 0; p11(2) = 0, p12(2) = 1; p21(1) = 0,

p22(1) = 0; r1(1) = 0; r1(2) = 2; r2(1) = −1.

This is a substochastic and regular MDP, and it is easy to verify that v = (1,−1).

The policy f∞1 with f1(1) = 2 and f1(2) = 1 is a deterministic normalized and regular optimal policy,

which is also a conserving policy. The policy f∞2 with f2(1) = 1 and f2(2) = 1 is conserving, because

r(f2) + P (f2)v =
(

0
−1

)

+
(

1 0
0 0

)(

0
−1

)

=
(

1
−1

)

= v. However, v(f∞2) =
(

0
−1

)

, so v(f∞2) is not optimal.

4.6 Optimal transient policies

In this section we discuss the problem of finding an optimal policy within the set of transient policies, i.e.

a policy R∗ such that

vi(R∗) = sup {vi(R) | R is a transient policy} = wi, i ∈ S. (4.27)

Throughout this section we assume the following.

Assumption 4.1

(1) The model is normalized and every policy is regular.

(2) There exists at least one transient policy.

The next theorem shows how the existence of a transient policy can be verified.

Theorem 4.14

There exists a transient policy if and only if the linear program

max

∑

(i,a)

xi(a)

∣

∣

∣

∣

∣

∑

(i,a) {δij − pij(a)}xi(a) = βj , j ∈ S
xi(a) ≥ 0, (i, a) ∈ S × A

}

. (4.28)

where βj > 0, j ∈ S, are some given numbers, has a feasible solution.

Proof

Let x be a feasible solution of the linear program (4.28). Then, by Theorem 4.7, π∞(x) defined by (4.16)

is a transient policy. Conversely, let R be a transient policy. Define x(R) by

xia(R) :=

∞
∑

t=1

∑

k

βk · Pk,R {Xt = i, Yt = a}, (i, a) ∈ S × A. (4.29)

Since R is transient, xja(R) is well defined and finite for all (j, a). Furthermore, by Corollary 1.1, we may

assume that R is a Markov policy, say R = (π1, π2, . . .). Then, we obtain
∑

(i,a) {δij − pij(a)}xia(R) =
∑

(i,a) {δij − pij(a)} · limn→∞
∑n

t=1

∑

k βk · Pk,R {Xt = i, Yt = a}
=

∑

(i,a) {δij − pij(a)} ·
∑

k βk · limn→∞
∑n

t=1

{

P (π1) · · ·P (πt−1)
}

ki
· πt

ia

=
∑

k βk · limn→∞
∑n

t=1

{

P (π1) · · ·P (πt−1)
}

ki
·
{

I − P (πt)
}

ij

=
∑

k βk · limn→∞
{

I − P (π1) · · ·P (πn)
}

kj

=
∑

k βk · δkj = βj , j ∈ S.

128 CHAPTER 4. TOTAL REWARD

Theorem 4.15

There exists a transient deterministic policy.

Proof

Since for the concept of a transient policy the rewards are not important, we may assume that ri(a) = −1

for all (i, a) ∈ S × A. Let R∗ be a transient policy, i.e.
∑∞

t=1 Pi,R∗
{Xt = j, Yt = a} < ∞ for all i ∈ S

and all (j, a) ∈ S ×A. Hence,

0 ≥ vi(R∗) =
∑∞

t=1

∑

j,a Pi,R∗
{Xt = j, Yt = a} · (−1) > −∞, i ∈ S.

Because vi = supR vi(R), i ∈ S, we also have −∞ < vi ≤ 0, i ∈ S. Since, by Theorem 4.12, there exists a

deterministic policy f∞ such that v = v(f∞), we can write

−∞ < vi(f
∞) =

∑∞
t=1

∑

j,a Pi,f∞ {Xt = j, Yt = a} · (−1) ≤ 0, i ∈ S.

Consequently,

∑∞
t=1 Pi,f∞ {Xt = j, Yt = a} < +∞ for all i ∈ S and all (j, a) ∈ S × A,

i.e. f∞ is a transient deterministic policy.

Although vi(R) is finite for every transient policy and for every i ∈ S, the transient value vector w has

not necessarily finite components wi for all i ∈ S, as the next example shows.

Example 4.6

S = {1, 2}; A(1) = {1, 2}; A(2) = {1}; p11(1) = 1, p12(1) = 0; p11(2) = 0, p12(2) = 1; p21(1) = 0,

p22(2) = 1
2 ; r1(1) = 1; r1(2) = 1; r2(1) = 1.

This is a normalized and regular MDP, and f∞ with f(1) = 2, f(2) = 1 is a transient policy. Hence, this

MDP satisfies Assumption 4.1.

Consider the sequence
{

π∞(n)
}∞

n=1
of stationary policies, defined by πia(n) :=

{

1− 1
n if a = 1;

1
n

if a = 2.

Since v
(

π∞(n)
)

satisfies the equation

{

x1 = 1 + (1 − 1
n
)x1 + 1

n
x2

x2 = 1 + 1
2
x2

, we obtain

v1
(

π∞(n)
)

= n + 2, v2
(

π∞(n)
)

= 2. Since rj(a) = 1 for every (j, a) ∈ S ×A, we have

{

n+ 2 = v1
(

π∞(n)
)

=
∑∞

t=1

∑

j,a Pi,π∞(n) {Xt = j, Yt = a}
2 = v2

(

π∞(n)
)

=
∑∞

t=1

∑

j,a Pi,π∞(n) {Xt = j, Yt = a}
Since these values are finite for every n, every policy π∞(n) is transient. However, the transient value

vector w has not finite components, because w1 ≥ supn v1
(

π∞(n)
)

= +∞.

Theorem 4.16

If all components of the transient value vector w are finite, then w is the solution of the functional equation

xi = maxa

{

ri(a) +
∑

j pij(a)xj

}

, i ∈ S.

Proof

Let R1 := (π1, π2, . . .) be an arbitrary transient Markov policy. Then, v(R1) = r(π1)+P (π1)u(R1), where

uj(R1) represents the expected total reward earned from time point 2, given that the state at time 2 is j.

Let R2 := (π2, π3, . . .), then we have uj(R1) = vj(R2) for any state j such that pij(π1) > 0 for some i ∈ S.

4.6. OPTIMAL TRANSIENT POLICIES 129

If the stochastic process induced by R2 starts in a state j for which pij(π1) > 0 for some i ∈ S, then this

process is also transient. Hence, we can write

vi(R1) = ri(π1) +
∑

j pij(π1)uj(R1) = ri(π1) +
∑

j pij(π1)vj(R2)

≤ ri(π1) +
∑

j pij(π1)wj ≤ maxa

{

ri(a) +
∑

j pij(a)wj

}

, i ∈ S.
Therefore,

wi ≤ maxa

{

ri(a) +
∑

j

pij(a)wj

}

, i ∈ S. (4.30)

Take any ε > 0. Suppose that for every j ∈ S, the policy R(j) is a transient policy which satisfies

vj

(

R(j)
)

≥ wj − ε. Take ai ∈ A(i) such that ri(ai) +
∑

j pij(ai)wj = maxa

{

ri(a) +
∑

j pij(a)wj

}

, i ∈ S.

Let R3 be the policy that chooses at time 1 action ai for initial sate i, and then follows R(j), when the

state at time 2 is state j. The stochastic process induced by R(j) is considered as starting in state j.

Hence, policy R3 is also transient and we obtain

wi ≥ vi(R3) = ri(ai) +
∑

j pij(ai)vj

(

R(j)
)

≥ ri(ai) +
∑

j pij(ai)(wj − ε)
= maxa

{

ri(a) +
∑

j pij(a)wj

}

− ε ·∑j pij(ai)

≥ maxa

{

ri(a) +
∑

j pij(a)wj

}

− ε · p,

where p := max(i,a)

∑

j pij(a). Since ε is arbitrarily chosen, we have

wi ≥ maxa

{

ri(a) +
∑

j

pij(a)wj

}

, i ∈ S. (4.31)

From (4.28) and (4.29), it follows that wi = maxa

{

ri(a) +
∑

j pij(a)wj

}

, i ∈ S.

In the context of this section we say that a (finite) vector z ∈ R
N is superharmonic if for all pairs

(i, a) ∈ S ×A, we have zi ≥ ri(a) +
∑

j pij(a)zj .

Theorem 4.17

If the transient value vector w is finite, then w is the (componentwise) smallest superharmonic vector.

Proof

Theorem 4.16 implies that w is superharmonic. Suppose that z is also superharmonic. From Theorem 1.1 it

follows that it is sufficient to show that z ≥ v(R) for every transient Markov policy R. Let R = (π1, π2, . . .)

be an arbitrary transient Markov policy. Since z is superharmonic, we have z ≥ r(πt) + P (πt)z for all

t ∈ N. By iterating this inequality, we obtain

z ≥∑T
t=1 P (π1)P (π2) · · ·P (πt−1)r(πt) + P (π1)P (π2) · · ·P (πT)z for all T ∈ N.

Because R is a transient policy, we have P (π1)P (π2) · · ·P (πT)→ 0 for T →∞.

Since v(R) = limT→∞
∑T

t=1 P (π1)P (π2) · · ·P (πt−1)r(πt), we obtain z ≥ v(R).

Theorem 4.17 implies that, if the transient value vector w is finite, w is the unique optimal solution of the

linear program

min
{

∑

j

βjzj

∣

∣

∣

∑

j

{δij − pij(a)}zj ≥ ri(a), (i, a) ∈ S × A
}

, (4.32)

where β is any vector in R
N that satisfies βj > 0 for every j ∈ S. The dual program of (4.32) is program

(4.15). In Section 4.3, we have shown in Theorem 4.7 that the mapping (4.18) is a bijection between

the set of transient stationary policies and the set of feasible solutions of (4.15) with (4.16) as the inverse

mapping. Furthermore, the set of transient deterministic policies corresponds to the set of extreme feasible

solutions of (4.15).

130 CHAPTER 4. TOTAL REWARD

Theorem 4.18

(1) If program (4.15) is infeasible, then there does not exist a transient policy.

(2) If program (4.15) has an infinite solution, then there does not exist a transient optimal policy.

(3) If x∗ is an extreme optimal solution of program (4.15), then the deterministic policy f∞∗ such

that x∗j
(

f∗(j)
)

> 0, j ∈ S, is a transient optimal policy.

Proof

(1) This property is a consequence of Theorem 4.14.

(2) Suppose that there exist a transient optimal policy. Then, w is finite and, by Theorem 4.17, (4.32) has

a finite optimal solution. Hence, (4.15) - the dual program of (4.32) - has also a finite optimal solution,

which provides a contradiction.

(3) Let x∗ be an extreme optimal solution of program (4.15). Then, x∗ has at most N positive components.

Since
∑

a x
∗
j(a) = βj +

∑

(i,a) pij(a)x
∗
i (a) ≥ βj > 0, j ∈ S, for each j ∈ S, x∗j (a) > 0 for exactly one

action a ∈ A(j). From Theorem 4.7 it follows that f∞∗ is a transient policy. By the complementary

slackness property of linear programming, we obtain {I − P (f∗)}w = r(f∗). Hence, we can write

w = {I − P (f∗)}−1r(f∗) = v(f∞∗), i.e. f∞∗ is a transient optimal policy.

The above results give rise to the following algorithm which determines an optimal policy in the set of

transient policies, if such policy exists. Otherwise, the algorithm concludes either that no transient policy

exists or that no optimal policy exists in the class of transient policies.

Algorithm 4.3 Linear programming algorithm to find an optimal transient policy.

Input: Instance of an MDP which satisfies Assumption 4.1.

Output: A policy f∞∗ witch is optimal in the set of transient policies, if such policy exists, and the

transient value vector w; otherwise, we find either that there exists no transient policy or

that there exists no optimal policy in the set of teansient policies.

1. Take any vector β with βj > 0 for every j ∈ S.

2. Use the simplex method to solve the dual pair of linear programs:

min

∑

j

βjzj

∣

∣

∣

∣

∣

∣

∑

j

{δij − pij(a)}zj ≥ ri(a), (i, a) ∈ S × A

and

max

∑

(i,a)

ri(a)xi(a)

∣

∣

∣

∣

∣

∑

(i,a) {δij − pij(a)}xi(a) = βj , j ∈ S
xi(a) ≥ 0, (i, a) ∈ S × A

}

.

3. if the second linear program is infeasible then there exists no transient policy (STOP);

4. if the second linear program has an infinite solution then there exists no optimal policy in the set

of transient policies (STOP);

5. if the second linear program has a finite optimal extreme solution, say x∗, then the first linear

program has also a finite optimal solution, say z∗, and go to step 6.

6. w := z∗ is the transient vector value and f∞∗ ∈ C(D) such that x∗j(f∗(j)) > 0 for every j ∈ S, is an

optimal policy in the set of transient policies (STOP).

4.6. OPTIMAL TRANSIENT POLICIES 131

Since the simplex method is used to solve the linear program (4.15), we obtain an extreme optimal solution

x∗. The next example shows that if in step 5 of the algorithm the property ’extreme’ is necessary: if x∗

is any optimal solution, then the corresponding policy is not necessarily optimal in the set of transient

policies.

Example 4.7

S = {1, 2}; A(1) = {1, 2}; A(2) = {1}; p11(1) = 1, p12(1) = 0; p11(2) = 0, p12(2) = 1; p21(1) = 0,

p22(2) = 1
2
; r1(1) = 1; r1(2) = 1; r2(1) = 1. Take β1 = β2 = 1

2
.

Notice that this MDP satisfies Assumption 4.1 and that the transient value vector w = (3, 2).

The linear program becomes:

max

x1(2) + x2(1)

∣

∣

∣

∣

∣

∣

∣

x1(2) = 1
2

−x1(2) + 1
2x2(1) = 1

2

x1(1), x1(2), x2(1) ≥ 0

.

The optimal solutions are x1(1) ≥ 0, x1(2) = 1
2 , x2(1) = 2. The only extreme optimal solution of this

program is x∗1(1) = 0, x∗1(2) = 1
2 , x

∗
2(1) = 2 with corresponding policy f∗(1) = 2, f∗(2) = 1, which is an

optimal policy in the set of transient policies. Another optimal solution is x1(1) = 1, x1(2) = 1
2
, x2(1) = 2

with a possible corresponding policy f(1) = 1, f(2) = 1, which is not a transient policy.

The following example shows that a policy f∞∗ , obtained by Algorithm 4.3, is in general not optimal in

the set of all policies.

Example 4.8

S = {1, 2}; A(1) = A(2) = {1, 2}; p11(1) = 1
2 , p12(1) = 0; p11(2) = 0, p12(2) = 1; p21(1) = 0, p22(2) = 1

2 ;

p21(2) = 1, p22(2) = 0; r1(1) = −1; r1(2) = 1; r2(1) = 1. Take β1 = β2 = 1
2
.

Notice that this MDP satisfies Assumption 4.1. The linear program becomes:

max

−x1(1)− x2(1)

∣

∣

∣

∣

∣

∣

∣

1
2
x1(1) + x1(2) − x2(2) = 1

2

− x1(2) + 1
2x2(1) + x2(2) = 1

2

x1(1), x1(2), x2(1), x2(2) ≥ 0

.

An extreme optimal solution is: x∗1(1) = 0, x∗1(2) = 1
2 , x

∗
2(1) = 2, x∗2(2) = 0. The corresponding policy

is: f∗(1) = 2, f∗(2) = 1 with v1(f
∞
∗) = v2(f

∞
∗) = w1 = w2 = −2. This policy is not optimal in the set of

all policies, because for the policy f∞ ∈ C(D) with f(1) = f(2) = 2, we have v1(f
∞) = v2(f

∞) = 0. This

is a better, in fact an optimal, policy. However, this policy is not transient.

Theorem 4.19

Assume that the linear program (4.15) has a finite optimal solution. Then, the correspondence between

the transient stationary policies and the feasible solutions of linear program (4.15) preserves the optimality

property, i.e.

(1) If π∞ is a stationary transient policy which is optimal in the set of transient policies, then x(π) is

an optimal solution of the linear program (4.15).

(2) If x is an optimal solution of the linear program (4.15), then the stationary transient policy π∞(x)

is optimal in the set of transient policies.

132 CHAPTER 4. TOTAL REWARD

Proof

1. Since the transient value vector w is an optimal solution of (4.32) and x(π) is feasible for (4.15), the

dual program of (4.32), it follows that it is sufficient to verify that
∑

(i,a) ri(a)xia(π) =
∑

j βjwj.

Indeed, we can write

∑

(i,a) ri(a)xia(π) =
∑

(i,a) ri(a)
{

βT
(

I − P (π)
)−1}

i
· πia

= βT
(

I − P (π)
)−1

r(π) = βT v(π∞) = βTw.

2. We have,

βT v
(

π∞(x)
)

= βT
{

I − P
(

π(x)
)}−1

r
(

π(x)
)

=
∑

(i,a) ri(a)xia

(

π(x)
)

=
∑

(i,a) ri(a)xi(a) = βTw.

Since βj > 0, j ∈ S, and v
(

π∞(x)
)

≤ w, it follows that v
(

π∞(x)
)

= w, i.e. π∞(x) is optimal in the

set of transient policies.

4.7 The contracting model

Throughout this section we assume that the model is contracting, i.e. there exists a vector µ ∈ RN with

µi > 0 for all i ∈ S, and a scalar α ∈ [0, 1) such that
∑

j pij(a)µj ≤ α · µi for all (i, a) ∈ S × A. We

have seen that contracting is equivalent to transient, and that any contracting MDP may be considered as

a stochastic MDP with discounting. Therefore, results for discounted MDPs as the optimality equation,

policy iteration, linear programming and value iteration can directly be applied to contracting MDPs. We

will summarize this result in the following theorem and algorithms.

Theorem 4.20

(1) The value vector v is the unique solution of the optimality equation

xi = maxa {ri(a) +
∑

j pij(a)xj}, i ∈ S.
(2) The value vector is the (componentwise) smallest vector which satisfies

xi ≥ ri(a) +
∑

j pij(a)xj, (i, a) ∈ S ×A.

Algorithm 4.4 Policy iteration algorithm

Input: Instance of a contracting MDP.

Output: Optimal deterministic policy f∞ and the value vector v.

1. Start with any f∞ ∈ C(D).

2. Compute v(f∞) as the unique solution of the linear system x = r(f) + P (f)x.

3. a. Compute sia(f) := ri(a) +
∑

j pij(a)vj(f
∞) − vi(f

∞) for every (i, a) ∈ S × A.

b. Determine A(i, f) := {a ∈ A(i) | sia(f) > 0} for every i ∈ S.

4. if A(i, f) = ∅ for every i ∈ S then go to step 6.

otherwise take g such that sig(i)(f) = maxa sia(f), i ∈ S.

5. f := g and return to step 2.

6. v(f∞) is the value vector and f∞ an optimal policy (STOP).

4.7. THE CONTRACTING MODEL 133

Algorithm 4.5 Linear programming algorithm

Input: Instance of a contracting MDP.

Output: Optimal deterministic policy f∞ and the value vector v.

1. Take any vector β with βj > 0, j ∈ S.

2. Use the simplex method to compute optimal solutions v∗ and x∗ of the dual pair

of linear programs:

min
{

∑

j

βjvj

∣

∣

∣

∑

j

{δij − pij(a)}vj ≥ ri(a), (i, a) ∈ S × A
}

and

max

∑

(i,a)

ri(a)xi(a)

∣

∣

∣

∣

∣

∑

(i,a) {δij − pij(a)}xi(a) = βj , j ∈ S
xi(a) ≥ 0, (i, a) ∈ S ×A

}

.

3. Take f∞∗ ∈ C(D) such that x∗i (f∗(i)) > 0 for every i ∈ S.

v∗ is the value vector and f∞∗ an optimal policy (STOP).

As we have seen in the chapter on discounted MDPs, the policy iteration method is equivalent to the

block-pivoting method for linear programming in the sense of the next theorem.

Theorem 4.21

(1) Any policy iteration algorithm is equivalent to a block-pivoting simplex algorithm.

(2) Any simplex algorithm is equivalent to a particular policy iteration algorithm.

Elimination of suboptimal actions

Also for contracting MDPs one can derive tests for the elimination of suboptimal actions. An action

ai ∈ A(i) is suboptimal if ri(ai) +
∑

j pij(ai)vj < vi. We shall derive a suboptimality test which can be

used in the policy iteration and in the linear programming method. In both methods we have in each

iteration a deterministic policy f∞ for which we know the numbers vi(f
∞), i ∈ S, and also the numbers

sia(f) (in the linear programming method these numbers are obtained from the reduced costs), defined by

sia(f) := ri(a) +
∑

j pij(a)vj(f
∞)− vi(f

∞) for every (i, a) ∈ S ×A.

Theorem 4.22

Let b be an upper bound of the value vector v. If siai
(f) < maxa sia(f) −∑j pij(ai){bj − vj(f

∞)}, then

action ai ∈ A(i) is suboptimal.

Proof

We can write,

ri(ai) +
∑

j pij(ai)vj ≤ ri(ai) +
∑

j pij(ai)bj

= siai
(f) + vi(f

∞) +
∑

j pij(ai){bj − vj(f
∞)}

< maxa sia(f) + +vi(f
∞)

= maxa {ri(a) +
∑

j pij(a)vj(f
∞)}

≤ maxa {ri(a) +
∑

j pij(a)vj} = vi.

134 CHAPTER 4. TOTAL REWARD

Remark

The suboptimality test of Theorem 4.22 can also be used in Algorithm 4.3 with b an upper bound of the

transient value vector w. The proof is similar to the proof of Theorem 4.22, namely:

ri(ai) +
∑

j pij(ai)wj ≤ ri(ai) +
∑

j pij(ai)bj

= siai
(f) + vi(f

∞) +
∑

j pij(ai){bj − vj(f
∞)}

< maxa sia(f) + +vi(f
∞)

= maxa {ri(a) +
∑

j pij(a)vj(f
∞)}

≤ maxa {ri(a) +
∑

j pij(a)wj} = wi.

Let µ be an optimal solution of the linear program

min

∑

j

µj

∣

∣

∣

∣

∣

∑

j {δij − pij(a)}µj ≥ 1, (i, a) ∈ S × A
µj ≥ 0, j ∈ S ×A

}

. (4.33)

We have seen in Remark 1 of Section 4.4 that this linear program has a finite optimal solution. The next

theorem shows how an upper bound b of the value vector v can be derived from µ and from the data we

have during an iteration.

Theorem 4.23

Let µ be an optimal solution of the linear program (4.33) and let α := 1 − 1
maxk µk

. Furthermore, let b(f)

be defined by b(f) := v(f∞) + (1 − α)−1 · max(i,a)
sia(f)

µi
· µ. Then, b(f) is an upper bound of the value

vector v.

Proof

Let M := max(i,a)
sia(f)

µi
≥ 0 and let g∞ be an optimal deterministic policy. Then, we have

M ≥ sig(i)(f)

µi
=

ri(g)+
P

j pij(g)vj(f∞)−vi(f
∞)

µi
, i ∈ S.

Consequently, r(g) + P (g)v(f∞) − v(f∞) ≤M · µ, i.e. {I − P (g)}}v(f∞) ≥ r(g)−M · µ, which implies

v(f∞) ≥ {I − P (g)}−1r(g) −M · {I − P (g)}−1µ = v(g∞)−M · {I − P (g)}−1µ.

From the definitions of µ and α, we obtain

∑

j pij(g)µj ≤ µi − 1 ≤ µi − µi

maxk µk
= µi ·

(

1− 1
maxk µk

)

= α · µi, i ∈ S.

Hence, P (g)µ ≤ α · µ, which implies {I − P (g)}µ ≥ (1− α) · µ. Therefore, (1− α)−1µ ≥ {I − P (g)}−1µ.

Now, we can write v = v(g∞) ≤ v(f∞) +M · {I − P (g)}−1µ ≤ v(f∞) +M · (1 − α)−1µ = b(f).

In value iteration, we iterate: vn+1
i := (Uvn)i = maxa {ri(a) +

∑

j pij(a)v
n
j }, i ∈ S for n = 1, 2, For

the stop criterion we consider ‖vn+1 − vn‖ for some norm. In the contracting case we use the ‖ · ‖µ-norm,

defined by ‖x‖µ := maxi
1
µi
· |xi| for some µ with µi > 0, i ∈ S and

∑

j pij(a)µj ≤ α ·µi, where α ∈ [0, 1),

for all (i, a) ∈ S × A. Since the model is contracting, such µ and α exist (see also Exercise 3.1, in which

the reader was asked to show that ‖ · ‖µ is a correct norm). For this norm we obtain with operator Lf ,

defined by Lf x = r(f) + P (f)x,

‖Lf x− Lf y‖µ = maxi
1
µi
· |∑j pij(f)(xj − yj)| ≤ maxi

1
µi
·∑j pij(f) · |xj − yj |

= maxi
1
µi
·∑j pij(f)µj · 1

µj
· |xj − yj |

≤ maxi
1
µi
·∑j pij(f)µj · ‖x− y‖µ ≤ α · ‖x− y‖µ,

4.7. THE CONTRACTING MODEL 135

i.e. Lf is a contraction with respect to the ‖ · ‖µ-norm with contraction factor α. Similarly, it can be

shown that U also is a contraction with respect to the ‖ · ‖µ-norm with contraction factor α. The value

iteration algorithm for contracting MDPs is similar to the value iteration algorithm for discounted MDPs.

Below we formulate this algorithm.

Algorithm 4.6 Value iteration

Input: Instance of a contracting MDP and some scalar ε > 0.

Output: An ε-optimal deterministic policy f∞ and a 1
2
ε-approximation of the value vector v.

1. Select x ∈ R
N arbitrary.

2. a. Compute y by yi := maxa {ri(a) +
∑

j pij(a)xj}, i ∈ S.

b. Let f(i) ∈ argmaxa {ri(a) +
∑

j pij(a)xj}, i ∈ S.

3. if ‖y − x‖µ ≤ 1
2(1− α)α−1ε then

f∞ is an ε-optimal policy and y is a 1
2ε-approximation of the value vector v (STOP)

else x := y and return to step 2.

Example 4.9

Consider the contracting model with S = {1, 2}; A(1) = A(2) = {1, 2}; p11(1) = 1
2 , p12(1) = 0; p11(2) = 0,

p12(2) = 1
2 ; p21(1) = 0, p22(1) = 3

4 ; p21(2) = 1
2 , p22(2) = 0; r1(1) = 2, r1(2) = 3; r2(1) = 1, r2(2) = 4.

The optimality equation is:

x1 = max{2 + 1
2x1, 3 + 1

2x2}, x2 = max{1 + 3
4x2, 4 + 1

2x1} with solution x1 = 20
3 , x2 = 22

3 .

If we apply policy iteration, stating with f(1) = f(1) = 1, we obtain:

Iteration 1:

x1 = 2 + 1
2x1, x2 = 1 + 3

4x2 → v1(f
∞) = 4, v2(f

∞) = 4.

s11(f) = 0, s12(f) = 1; s21(f) = 0, s22(f) = 2 → A(1, f) = A(2, f) = {2}.
g(1) = g(2) = 2.

Iteration 2:

x1 = 3 + 1
2x2, x2 = 4 + 1

2x1 → v1(f
∞) = 20

3 , v2(f
∞) = 22

3 .

s11(f) = −4
3 , s12(f) = 0; s21(f) = −5

6 , s22(f) = 0 → A(1, f) = A(2, f) = ∅.
(20

3 ,
22
3) is the value vector and f∞ with f(1) = f(2) = 2 is an optimal policy.

The dual linear program with β1 = β2 = 1
2 becomes:

max

2x1(1) + 3x1(2) + x2(1) + 4x2(2)

∣

∣

∣

∣

∣

∣

∣

1
2x1(1) + x1(2) − 1

2x2(2) = 1
2

−1
2x1(2) + 1

4x2(1) + x2(2) = 1
2

x1(1), x1(2), x2(1), x2(2) ≥ 0

.

The optimal solution of this dual program is: x1(1) = 0, x1(2) = 1, x2(1) = 0, x2(2) = 1.

The primal problem is:

min

{

1
2v1 + 1

2v2

∣

∣

∣

∣

∣

1
2v1 ≥ 2; 1

4v2 ≥ 1

v1 − 1
2v2 ≥ 0; −1

2v1 + v2 ≥ 4

}

.

This program has as optimal solution: v1 = 20
3 , v2 = 22

3 . Hence, the value vector is
(

20
3 ,

22
3

)

and the

optimal solution takes in both states action 2.

Finally, we present the value iteration method for this model with v0 = (4, 4) and ε = 0.2. The iteration

scheme is: y1 = max{2 + 1
2x1, 3 + 1

2x2}, y2 = max{1 + 3
4x2, 4 + 1

2x1}. The values of µ and α can be

obtained as indicated in Remark 1 of section 4.4. The linear program (4.19) is;

136 CHAPTER 4. TOTAL REWARD

min

{

1
2µ1 + 1

2µ2

∣

∣

∣

∣

∣

1
2µ1 ≥ 1; 1

4µ2 ≥ 1

µ1 − 1
2µ2 ≥ 1; −1

2µ1 + µ2 ≥ 1

}

.

This program has as optimal solution: µ1 = 3, µ2 = 4. From µ we obtain α := 1− 1
maxk µk

= 3
4 .

The algorithm terminates if the µ-norm of the difference of two subsequent y-vectors is at most 1
6
ε = 1

30
.

Since ‖y − x‖µ = max{ 1
3 |y1 − x1|, 1

4 |y2 − x2|}, the procedure is terminated as soon as |y1 − x1| ≤ 1
10 and

|y2 − x2| ≤ 2
15 . The results of the computation are summarized below.

Iteration

1 2 3 4 5

y1 5.00 6.00 6.25 6.50 6.57

y2 6.00 6.50 7.00 7.13 7.25

f1 2 2 2 2 2

f2 2 2 2 2 2

Hence, f∞ with f(1) = f(2) = 2 is a 0.2-optimal policy and (6.57, 7.25) is a 0.1-approximation of the value

vector.

4.8 Finite horizon and transient MPDs

In section 2.3 we have seen that any, nonstationary or stationary, finite horizon MDP can be transformed

into a stationary transient MDP. Since the states (j, T + 1), j ∈ S, are equal (the process terminates and

there are no rewards), we may replaces these states by one state, say state T +1. The corresponding linear

programs, according to Algorithm 4.5, are:

max
∑

(i,a)

∑T
t=1 r

t
i(a)xi,t(a)

subject to
∑

a xj,1(a) = 1, j ∈ S
∑

a xj,t(a) − ∑

(i,a) p
t
ij(a)xi,t−1(a) = 1, j ∈ S, 2 ≤ t ≤ T

xT+1 − ∑

(i,a) xi,T (a) = 1

xi,t(a) ≥ 0, (i, a) ∈ S × A, 1 ≤ t ≤ T

and

min
∑

j∈S

∑T
t=1 v

t
j + vT+1

subject to

vt
i − ∑

j∈S pt
ij(a)v

t+1
j ≥ rt

i(a), (i, a) ∈ S × A, 1 ≤ T − 1

vT
i − vT+1 ≥ rT

i (a), (i, a) ∈ S ×A
vT+1 = 0

We shall show that a special version of the simplex method to solve the above linear programs is in fact the

backward recursion Algorithm 2.1. Because vT+1 = 0, we can fill in this value in the minimization problem,

and consequently the last equation of the maximization problem, i.e. the equation xT+1−
∑

(i,a) xi,T (a) = 1

can be deleted. For the maximization problem we introduce artificial variables zt
j, j ∈ S, 1 ≤ t ≤ T and

for the minimization problem nonnegative slack variables st
i(a), (i, a) ∈ S × A, 1 ≤ t ≤ T . Then, we

obtain the following linear systems:

4.8. FINITE HORIZON AND TRANSIENT MPDS 137

{

z1
j = 1−∑a xj,1(a), j ∈ S
zt
j = 1−∑a xj,t(a) +

∑

(i,a) p
t
ij(a)xi,t−1(a), j ∈ S, 2 ≤ t ≤ T

st
i(a) = vt

i −
∑

j∈S pt
ij(a)v

t+1
j − rt

i(a), (i, a) ∈ S ×A, 1 ≤ T − 1

sT
i (a) = vT

i − rT
i (a), (i, a) ∈ S ×A

We state the special version of the simplex method in the next algorithm.

Algorithm 4.7 Determination of an optimal policy for a nonstationary MDP over T periods by linear

programming (version 1).

Input: Instance of a finite nonstationary MDP and the time horizon T .

Output: Optimal Markov policy R∗ = (f1, f2, . . . , fT) and the value vector vT .

1. t := T + 1 and select as basic variables the artificial variables zt
j , j ∈ S, 1 ≤ t ≤ T .

2. t := t − 1.

3. Select for every i ∈ S an action ft(i) ∈ A(i) such that st
i(a)

(

ft(i)
)

= mina s
t
i(a).

4. Exchange for every j ∈ S the basic variable zt
j and the nonbasic variable xj,t

(

ft(i)
)

.

5. if t ≥ 2 then go to step 2

else begin R∗ := (f1 , f2, . . . , fT) is an optimal policy; vT := −s1(f1) is the value vector end

(STOP).

This algorithm has the following properties:

1. Step 4 consists of N standard pivot iterations, which can be viewed as one block-pivoting iteration

(cf. [48] p. 201).

2. By induction to the number of iterations, one can easily verify that during the algorithm:

a. any pivot element is 1;

b. in any column of xj,t(a) all elements in the first rows, i.e. the rows of zs
i , i ∈ S, 1 ≤ s ≤ t− 1 and

zt
i , 1 ≤ i ≤ j − 1, are 0;

c. in any row of zt
j all elements in the first columns, i.e. the columns of xi,s(a), (i, a) ∈ S ×A,

1 ≤ s ≤ t− 2, are 0.

Hence, when in step 4 of the algorithm the basic variable zt
j and the nonbasic variable xj,t

(

ft(i)
)

are

exchanged, then the first rows and first columns stay unchanged (first in the sense of 2b and 2c).

3. The only numbers that are of interest in any iteration (see step 3 of the algorithm) are the updated

values of st
i(a) for all (i, a) ∈ S × A and t = 1, 2, . . . , T . At the start of the algorithm, we have

sT
i (a) = −rT

i (a) for all (i, a) ∈ S×A. We shall show by induction that at the start of the iteration for

some t, we have st
i(a) = −rt

i(a) +
∑

j p
t
ij(a)s

t+1
j

(

ft+1(j)
)

, where sT+1
j

(

fT+1(j)
)

= 0 for all j ∈ S. By

the properties mentioned in 2, the numbers st
i(a), (i, a) ∈ S ×A, do not change during the iterations

T, T − 1, . . . , t+2. In iteration with t+ 1, a block-pivoting step is executed with the pivot columns of

the nonbasic variables xj,t+1

(

ft+1(j)
)

, j ∈ S. Since the pivot elements are 1, during the single

pivoting step for some j ∈ S, we have the assignment st
i(a) := st

i(a) + pt
ij(a)s

t+1
j

(

ft+1(j)
)

. Hence,

after this block-pivoting step, we obtain the desired expression st
i(a) = −rt

i(a)+
∑

j p
t
ij(a)s

t+1
j

(

ft+1(j)
)

.

4. According to step 3 of the algorithm, we have

sT
i

(

fT (i)
)

= mina {−rT
i (a)} = −maxa r

T
i (a), i ∈ S

st
i

(

ft(i)
)

= mina {−rt
i(a) +

∑

j p
t
ij(a)s

t+1
j

(

ft+1(j)
)

}, i ∈ S, 1 ≤ t ≤ T − 1

−maxa {rt
i(a) −

∑

j p
t
ij(a)s

t+1
j

(

ft+1(j)
)

}, i ∈ S, 1 ≤ t ≤ T − 1

138 CHAPTER 4. TOTAL REWARD

Let xt
i := −st

i

(

ft(i)
)

, i ∈ S, 1 ≤ t ≤ T . Then, with xT+1 := 0, we can write

xt
i = {r(ft) + P (ft)xt+1}i = maxa {rt

i(a) +
∑

j p
t
ij(a)x

t+1
j

)

}, i ∈ S, 1 ≤ t ≤ T − 1,

which is the backward reduction of Theorem 2.1.

As a consequence of the above properties we obtain the following algorithm, which is equivalent to the

backward induction Algorithm 2.1. The reason that we also have formulated Algorithm 4.7 is that this

special simplex method can be used for problems with additional constraints (see section 9.2.5 of chapter

9). Algorithm 4.8 is not suitable for problems with additional constraints.

Algorithm 4.8 Determination of an optimal policy for a nonstationary MDP over T periods by linear

programming (version 2).

Input: Instance of a finite nonstationary MDP and the time horizon T .

Output: Optimal Markov policy R∗ = (f1, f2, . . . , fT) and the value vector vT .

1. t := T + 1; sT+1
j := 0 for all j ∈ S.

2. for t = T, T − 1, . . . , 1 do

begin

st
i(a) := −rt

i(a) +
∑

j p
t
ij(a)s

t+1
j for all (i, a) ∈ S × A;

select for every i ∈ S an action ft(i) ∈ A(i) such that st
i

(

ft(i)
)

= mina s
t
i(a);

st
j := st

j

(

ft(j)
)

, j ∈ S
end

3. R∗ := (f1, f2, . . . , fT) is an optimal policy; vT := −s1(f1) is the value vector (STOP).

Example 2.1 (continued)

The linear programs with the additional artificial and slack variables are:

max {x1,1(1) + 2x1,1(1) + 5x2,1(2) + x1,2(1) + 2x2,2(1) + 5x2,2(2) + x1,3(1) + 2x2,3(1) + 5x2,3(2)}
subject to

z1
1 = 1− x1,1(1)− x1,1(2)

z1
2 = 1− x2,1(1)− x2,1(2)

z2
1 = 1 + 1

2x1,1(1) + 1
4x1,1(2) + 2

3x2,1(1) + 1
3x2,1(2) − x1,2(1)− x1,2(2)

z2
2 = 1 + 1

2
x1,2(1) + 3

4
x1,2(2) + 1

3
x2,2(1) + 2

3
x2,2(2) − x2,2(1)− x2,2(2)

z3
1 = 1 + 1

2x1,2(1) + 1
4x1,2(2) + 2

3x2,2(1) + 1
3x2,2(2) − x1,3(1)− x1,3(2)

z3
2 = 1 + 1

2x1,2(1) + 3
4x1,2(2) + 1

3x2,2(1) + 2
3x2,2(2) − x2,3(1)− x2,3(2)

respectively,

min {v1
1 + v1

2 + v2
1 + v2

2 + v3
1 + v3

2}
subject to

s11(1) = v1
1 − 1

2
v2
1 − 1

2
v2
2 − 1; s22(1) = v2

2 − 2
3
v3
1 − 1

3
v3
2 − 2;

s11(2) = v1
1 − 1

4v
2
1 − 3

4v
2
2 ; s22(2) = v2

2 − 1
3v

3
1 − 2

3v
3
2 − 5;

s12(1) = v1
2 − 2

3v
2
1 − 1

3v
2
2 − 2; s31(1) = v3

1 − 1;

s12(2) = v1
2 − 1

3
v2
1 − 2

3
v2
2 − 5; s31(2) = v3

1 ;

s21(1) = v2
1 − 1

2
v3
1 − 1

2
v3
2 − 1; s32(1) = v3

2 − 2;

s21(2) = v2
1 − 1

4v
3
1 − 3

4v
3
2 ; s32(2) = v3

2 − 5.

We first apply Algorithm 4.8. The simplex tableaus are stated below and the pivot elements are indicated

by an asterisk.

4.8. FINITE HORIZON AND TRANSIENT MPDS 139

Iteration 1

x1,1(1) x1,1(2) x2,1(1) x2,1(2) x1,2(1) x1,2(2) x2,2(1) x2,2(2) x1,3(1) x1,3(2) x2,3(1) x2,3(2)

z1
1 1 1 1 0 0 0 0 0 0 0 0 0 0

z1
2 1 0 0 1 1 0 0 0 0 0 0 0 0

z2
1 1 − 1

2
− 1

4
− 2

3
− 1

3
1 1 0 0 0 0 0 0

z2
2 1 − 1

2
− 3

4
− 1

3
− 2

3
0 0 1 1 0 0 0 0

z3
1 1 0 0 0 0 − 1

2
− 1

4
− 2

3
− 1

3
∗1 1 0 0

z3
2 1 0 0 0 0 − 1

2
− 3

4
− 1

3
− 2

3
0 0 1 ∗1

0 −1 0 −2 −5 −1 0 −2 −5 −1 0 −2 −5

Iteration 2

x1,1(1) x1,1(2) x2,1(1) x2,1(2) x1,2(1) x1,2(2) x2,2(1) x2,2(2) z3
1 x1,3(2) x2,3(1) z3

2

z1
1 1 1 1 0 0 0 0 0 0 0 0 0 0

z1
2 1 0 0 1 1 0 0 0 0 0 0 0 0

z2
1 1 − 1

2
− 1

4
− 2

3
− 1

3
∗1 1 0 0 0 0 0 0

z2
2 1 − 1

2
− 3

4
− 1

3
− 2

3
0 0 1 ∗1 0 0 0 0

x1,3(1) 1 0 0 0 0 − 1
2

− 1
4

− 2
3

− 1
3

1 1 0 0

x2,3(2) 1 0 0 0 0 − 1
2

− 3
4

− 1
3

− 2
3

0 0 1 1

6 −1 0 −2 −5 −4 −4 − 13
3

− 26
3

1 1 3 5

Iteration 3

x1,1(1) x1,1(2) x2,1(1) x2,1(2) z2
1 x1,2(2) x2,2(1) z2

2 z3
1 x1,3(2) x2,3(1) z3

2

z1
1 1 1 ∗1 0 0 0 0 0 0 0 0 0 0

z1
2 1 0 0 1 ∗1 0 0 0 0 0 0 0 0

x1,2(1) 1 − 1
2

− 1
4

− 2
3

− 1
3

1 1 0 0 0 0 0 0

x2,2(2) 1 − 1
2

− 3
4

− 1
3

− 2
3

0 0 1 1 0 0 0 0

x1,3(1) 11
6

− 5
12

− 3
8

− 4
9

− 7
18

1
2

1
4

− 1
3

1
3

1 1 0 0

x2,3(2) 13
6

− 7
12

− 5
8

− 5
9

− 11
18

1
2

− 1
4

1
3

2
3

0 0 1 1
56
3

− 22
3

− 15
2

− 68
9

− 109
9

4 0 13
3

26
3

1 1 3 5

Iteration 4

x1,1(1) z1
1 x2,1(1) z1

2 z2
1 x1,2(2) x2,2(1) z2

2 z3
1 x1,3(2) x2,3(1) z3

2

x1,1(2) 1 1 1 0 0 0 0 0 0 0 0 0 0

x2,1(2) 1 0 0 1 1 0 0 0 0 0 0 0 0

x1,2(1) 17
12

− 1
4

1
4

− 1
3

1
3

1 1 0 0 0 0 0 0

x2,2(2) 29
12

1
4

3
4

1
3

2
3

0 0 1 1 0 0 0 0

x1,3(1) 187
72

− 1
24

3
8

− 1
18

7
18

1
2

1
4

− 1
3

1
3

1 1 0 0

x2,3(2) 245
72

1
24

5
8

1
18

11
18

1
2

− 1
4

1
3

2
3

0 0 1 1
689
18

1
6

15
2

41
9

109
9

4 0 13
3

26
3

1 1 3 5

From this optimal tableau it follows that the optimal policy is: f1(1) = 2, f1(2) = 2, f2(1) = 1,

f2(2) = 2, f3(1) = 1, f3(2) = 2. The value vector is (15
2 ,

109
9).

Next, we apply Algorithm 4.8. We start with t = 4 and s4 = (0, 0).

Iteration 1: t = 3.

s31(1) = −1, s32(2) = 0, s32(1) = −2, s32(2) = −5; f3(1) = 1, f3(2) = 2; s3 = (−1,−5).

Iteration 2: t = 2.

s21(1) = −1 + 1
2 (−1) + 1

2(−5) = −4, s21(2) = 0 + 1
4(−1) + 3

4 (−5) = −4,

s22(1) = −2 + 2
3 (−1) + 1

3(−5) = −13
3 , s

2
2(2) = −5 + 1

3(−1) + 2
3 (−5) = −26

3);

f2(1) = 1 (or 2), f2(2) = 2; s2 = (−4,−26
3 .

Iteration 3: t = 1.

s11(1) = −1 + 1
2 (−4) + 1

2(−26
3) = −22

3 , s
1
1(2) = 0 + 1

4(−4) + 3
4 (−26

3) = −15
2 ,

140 CHAPTER 4. TOTAL REWARD

s12(1) = −2 + 2
3 (−4) + 1

3(−26
3) = −68

9 , s
1
2(2) = −5 + 1

3 (−4) + 2
3(−26

3) = −109
9 ;

f1(1) = 2, f1(2) = 2; s2 = (−15
2 ,−109

9).

Hence, the optimal policy is: f1(1) = 2, f1(2) = 2, f2(1) = 1 (or 2), f2(2) = 2, f3(1) = 1,

f3(2) = 2. The value vector vT = (15
2 ,

109
9).

4.9 Positive MDPs

Throughout this section we have the following assumption.

Assumption 4.2

(1) The model is substochastic.

(2) ri(a) ≥ 0 for all (i, a) ∈ S × A.

A vector x ∈ R
N is said to be superharmonic if vi ≥ ri(a) +

∑

j pij(a)vj for all (i, a) ∈ S × A.

Theorem 4.24

The value vector v is the (componentwise) smallest nonnegative superharmonic vector.

Proof

From Assumption 4.2 it follows that every policy is regular and that the MDP is normalized.

Hence, by Theorem 4.12, there exists a regular optimal deterministic policy. From Assumption 4.2

it also follows that v is p-summable. Then, by Theorem 4.13, it follows that v is a superharmonic

vector. It is obvious that v is nonnegative. Suppose that x is also a nonnegative superharmonic

vector. It is sufficient to show that x ≥ v(f∞) for every f∞ ∈ C(D). Take an arbitrary

f∞ ∈ C(D). Then, the superharmonicity of x implies x ≥ r(f) + P (f)x. By iterating this

inequality, we obtain

x ≥∑n
t=1 P

t−1(f)r(f) + Pn(f)x ≥∑n
t=1 P

t−1(f)r(f), n ∈ N.

Hence, let n→∞, x ≥∑∞
t=1 P

t−1(f)r(f) = v(f∞).

Theorem 4.24 implies that the value vector v is the unique optimal solution of the linear program

min

∑

j

βjxj

∣

∣

∣

∣

∣

∑

j {δij − pij(a)}xj ≥ ri(a), (i, a) ∈ S × A
xj ≥ 0, j ∈ S

}

, (4.34)

where βj > 0, j ∈ S. The dual program is

max

∑

(i,a)

ri(a)xi(a)

∣

∣

∣

∣

∣

∑

(i,a) {δij − pij(a)}xi(a) ≤ βj, j ∈ S
xi(a) ≥ 0, (i, a) ∈ S ×A

}

. (4.35)

The dual program (4.35) is feasible (x = 0 is a feasible solution). Therefore, (4.35) either has a

finite optimal solution or the there is an infinite solution. We consider both cases separately.

Case 1: (4.35) has a finite optimal solution.

In this case there is also an extreme finite optimal solution x∗, which is computed for instance by

the simplex method. The next theorem shows how an optimal policy is obtained from x∗.

4.9. POSITIVE MDPS 141

Theorem 4.25

Let x∗ be an extreme optimal solution of (4.35). Then, any f∞∗ such that x∗i
(

f∗(i)
)

> 0 for each

i with
∑

a x
∗
i (a) > 0 is an optimal policy.

Proof

By introducing slack variables we can write the constraints of problem (4.35) as

∑

(i,a) {δij − pij(a)}xi(a) + yj = βj, j ∈ S
xi(a) ≥ 0, (i, a) ∈ S ×A
yj ≥ 0, j ∈ S

It follows from the theory of linear programming that the optima of the pair of dual linear

programs are equal, i.e.
∑

j βjvj =
∑

(i,a) ri(a)x
∗
i (a). Since x∗ is an extreme point and the dual

program (4.35) has N constraints, the optimal extreme solution (x∗, y∗) has at most N positive

components. Because

∑

a x
∗
j (a) + y∗j = βj +

∑

(i,a) pij(a)x
∗
i (a) ≥ βj > 0, j ∈ S,

for each j ∈ S, either
∑

a x
∗
j(a) > 0 or y∗j > 0, implying that for each j with

∑

a x
∗
j (a) > 0 there

is exactly one action f∗(j) for which x∗j
(

f∗(j)
)

> 0.

Furthermore, we have (x∗)T = (β − y∗)T + (x∗)TP (f∗). By iterating this equality, we obtain

(x∗)T = (β − y∗)T
∑n

t=1 P
t−1(f∗) + (x∗)TPn(f∗) for all n ∈ N.

Consequently,

(x∗)T r(f∗) = (β − y∗)T
∑n

t=1 P
t−1(f∗)r(f∗) + (x∗)TPn(f∗)r(f∗) for all n ∈ N.

Since v(f∞∗) =
∑∞

t=1 P
t−1(f∗)r(f∗) ≤ v and v is finite, we have limn→∞ Pn(f∗)r(f∗) = 0.

Therefore, by letting n→∞,

βT v =
∑

j βjvj =
∑

(i,a) ri(a)x
∗
i (a) = (x∗)T r(f∗) = (β − y∗)Tv(f∞∗) ≤ βT v(f∞∗),

implying that f∞∗ is an optimal policy.

Remark

If the MDP is contracting, then the linear programs (4.34) and (4.35) have finite optimal solutions.

The converse statement is not true, in general. Consider the MDP:

S = {1, 2}; A(1) = A(2) = {1}; p11(1) = 0, p12(1) = 1, p21(1) = 0, p22(1) = 1 : r1(1) = 1,

r2(1) = 0. This MDP is not transient. However, program (4.35) with β1 = β2 = 1
2 becomes:

max
{

x1(1)
∣

∣ x1(1) ≤ 1
2 ; −x1(1) ≤ 1

2 ; x1(1) ≥ 0; x2(1) ≥ 0
}

.

This program has a finite optimal solution, namely: x1(1) = 1
2 ; x2(1) = 0.

Case 2: (4.35) has an infinite optimal solution.

If we solve the problem by the simplex method, starting with the extreme feasible solution x = 0,

we obtain after a finite number of iterations a simplex tableau corresponding to an extreme feasible

142 CHAPTER 4. TOTAL REWARD

solution (x∗, y∗) in which one of the columns is nonpositive. In this column, the coefficient of

the transformed objective function is strictly negative. This column provides a direction vector

s∗ 6= 0 such that

(1) x∗(λ) := x∗ + λs∗ is feasible for all λ ≥ 0.

(2)
∑

(i,a) ri(a)x
∗
i (a)(λ)→ +∞ for λ→ +∞.

From (1) and (2) it follows that

∑

(i,a)

{δij − pij(a)}s∗i (a) ≤ 0, j ∈ S (4.36)

s∗i (a) ≥ 0, (i, a) ∈ S ×A (4.37)
∑

(i,a)

ri(a)s
∗
i (a) > 0 (4.38)

As we have seen in the proof of Theorem 4.25 the basis of the simplex tableau corresponding to (x∗, y∗)

contains for each state j ∈ S at most one positive x∗j (a). Let

S∗ := {j | ∑a x
∗
j (a) > 0} and let aj ∈ A(j) such that x∗j (aj) > 0, j ∈ S∗.

Lemma 4.7

If the nonpositive column corresponds to the nonbasic variable x∗k(a∗), then k /∈ S∗.

Proof

Assume the contrary, i.e. k ∈ S∗. Let s∗ be the direction vector that satisfies (4.36), (4.37) and (4.38). Let

a∗ be the nonpositive column of xk(a∗) and let ij be the row index of the basic variable xj(aj), j ∈ S∗.

Then, the direction vector s∗ satisfies s∗j (a) =

−a∗ij
j ∈ S∗, a = aj ;

1 j = k, a = a∗;

0 elsewhere.

Let δ :=
−a∗

ik

1−a∗
ik

, so 0 ≤ δ < 1. Define the stationary policy π∞ by

πia :=

1 i ∈ S∗, i 6= k, a = ai

δ i ∈ S∗, i = k, a = ai

1− δ i ∈ S∗, i = k, a = a∗

1 i /∈ S∗, for some arbitrary action ai ∈ A(i)

(4.39)

Then, s∗i (a) = s∗i · πia for all (i, a) ∈ S ×A, where s∗i :=
∑

a s
∗
i (a), i ∈ S. Let S+ := {i | s∗i > 0}.

Furthermore, it can easily be verified that P (π) = δ · P (f1) + (1− δ) · P (f2), where f1(i) := ai, i ∈ S

and f2(i) :=

{

f1(i) i 6= k;

a∗ i = k.

By (4.36), we obtain

0 ≥
∑

(i,a)

{δij − pij(a)}s∗i (a) =
∑

(i,a)

{δij − pij(a)}πia · s∗i = s∗j −
∑

i

pij(π)s∗i , j ∈ S, (4.40)

implying 0 <
∑

j s
∗
j ≤

∑

i{
∑

j pij(π)}s∗i ≤
∑

i s
∗
i . Therefore,

(s∗)T e = (s∗)TP (π)e and
∑

j pij(π) = 1 for every i with s∗i > 0. (4.41)

4.9. POSITIVE MDPS 143

Therefore, also
∑

j pij(f1) =
∑

j pij(f2) = 1 for every i ∈ S+. From (4.40) and (4.41) it follows that

(s∗)T ≤ (s∗)TP (π) and (s∗)T e = (s∗)TP (π)e. Consequently, (s∗)T = (s∗)TP (π). From the theory of

Markov chains, it is well known that S+ ⊆ R(π), where R(π) is the set of states that are recurrent in the

Markov chain induced by P (π), and S+ is closed under P (π). Therefore,

S+ is closed under P (f1) and
∑

j

p
(n)
ij (f1) =

∑

j∈S+

p
(n)
ij (f1) = 1, i ∈ S+, n ∈ N. (4.42)

Since (x∗, y∗) is an extreme feasible solution and since S+ ⊆ S∗, we also have

x∗j(aj) = βj +
∑

(i,a)

pij(a)xi(a) ≥ βj +
∑

i∈S+

pij(f1)xi(ai), j ∈ S+. (4.43)

Notice that S+ is closed under P (f1) and define the vectors x, β and the matrix P as the restrictions of

the vectors x∗, β and the matrix P (f1) to the states of S+. Then, (4.43) becomes in vector notation:

xT ≥ βT
+ xTP . By iterating this inequality, we obtain

xT ≥∑n
t=1 β

T
P

t−1
+ xTP

n
for all n ∈ N.

Consequently, since βj > 0 for all j, we have
∑∞

t=1 p
(t−1)
ij (f1) <∞ for all i, j ∈ S+, implying p

(n)
ij (f1)→ 0

for n→∞ for all i, j ∈ S+. Hence,
∑

j∈S+
p
(n)
ij (f1)→ 0 for n→∞ for all i ∈ S+. This contradicts (4.42)

and concludes the proof that if the nonpositive column corresponds to the nonbasic variable x∗k(a∗), then

k /∈ S∗.

From the proof of Lemma 4.7 it follows that the direction vector s∗ induces a deterministic policy f∞∗ with

f∗(i) :=

ai with x∗i (ai) > 0 i ∈ S∗

ak with x∗k(ak) the nonbasic variable corresponding to the nonpositive column i = k

ai an arbitrary action from A(i) i /∈ S∗ and i 6= k

Lemma 4.8

vj(f
∞
∗) = +∞ for at least one state j.

Proof

Similar as in the proof of Lemma 4.7 we can derive that S+ ⊆ R(f∞∗) and that S+ is closed under P (f∗).

From (4.38) it follows that (s∗)T r(f∗) > 0. Hence, there is a state j ∈ S+ such that rj(f∗) > 0. For all

states i in the same ergodic set as j, we have

vi(f
∞
∗) =

∑∞
t=1 {P t−1(f∗)r(f∗)}i = limn→∞ n · 1

n
·∑n

t=1 {P t−1(f∗)r(f∗)}i
and

limn→∞
1
n ·
∑n

t=1 {P t−1(f∗)r(f∗)}i = {P ∗(f∗)r(f∗)}i ≥ p∗ij(f∗)rj(f∗) > 0,

where P ∗(f∗) is the stationary matrix of the Markov chain P (f∗) (for the definition of the stationary

matrix and its properties we refer to Chapter 5). Hence, we can conclude that vj(f
∞
∗) = +∞.

We construct in the following way an optimal policy f∞. We first determine the ergodic sets in S+ which

have a state j such that rj(f∗) > 0. For any state in these ergodic sets we define f(i) := f∗(i). Outside

these ergodic sets, we choose actions which lead to these ergodic sets, if possible. Then, f∞ has for certain

initial states, say the states S1 ⊆ S, a total reward +∞. The states S\S1 are closed under every policy and

we repeat the same approach to the model of the states S\S1 . The method is summarized in the following

algorithm, which can be used for any positive MDP without knowing in advance whether or not program

(4.35) has a finite optimum.

144 CHAPTER 4. TOTAL REWARD

Algorithm 4.9 Determination of an optimal policy for positive MDPs

Input: Instance of a substochastic positive MDP.

Output: Optimal deterministic policy f∞.

1. Take any vector β, where βj > 0, j ∈ S.

2. Use the simplex method to solve the linear program

max

∑

(i,a)

ri(a)xi(a)

∣

∣

∣

∣

∣

∑

(i,a) {δij − pij(a)}xi(a) ≤ βj , j ∈ S
xi(a) ≥ 0, (i, a) ∈ S × A

}

.

3. if the linear program has a finite optimal solution x∗ then go to step 4

else go to step 5.

4. Select any f∞ ∈ C(D) such that x∗i (f(i)) > 0 for every i such that
∑

a x
∗
i (a) > 0; go to step 12.

5. Let a∗ be the nonpositive column in the simplex tableau in which the infinite optimum is discovered.

Suppose that this column corresponds to the nonbasic variable xk(ak). Let ij be the row index of

the basic variable xj(aj), j ∈ S∗ := {j | ∑a x
∗
j (a) > 0} and let the direction vector s∗ be defined

by s∗j (a) :=

−a∗ij
j ∈ S∗, a = aj;

1 j = k, a = ak;

0 elsewhere.

6. Take f(i) ∈ C(D) such that f(i) = ai for i ∈ S∗ ∪ {k}.

7. Determine in the Markov chain induced by P (f) the ergodic sets on S+ := {j | ∑a s
∗
i (a) > 0}.

8. Determine S1 as the union of the ergodic sets which contain a state j for which rj(f) > 0.

9. if S1 = S then go to step 12.

else go to step 10.

10. if there is a triple (i, ai, , j) with i ∈ S\S1, ai ∈ A(i), j ∈ S1 and pij(ai) > 0 then begin

f(i) := ai; S1 := S1 ∪ {i}; go to step 9 end

else go to step 11.

11. S := S\S1 ; return to step 2.

12. f∞ is an optimal deterministic policy (STOP).

Theorem 4.26

Algorithm 4.9 determines an optimal policy in a finite number of iterations.

Proof

If the linear program in step 2 of the algorithm has a finite optimal solution, then Theorem 4.25 implies

that the policy f∞, defined in step 4 of the algorithm, is optimal.

Next, suppose that the linear program has an infinite solution. Then, by Lemma 4.8, vj(f
∞) = +∞

for every j ∈ S1, where S1 is the nonempty set defined in step 8. Hence, if S1 = S, then the algorithm

terminates in step 12 with an optimal policy f∞. If S1 6= S, then in step 10 the policy f∞ may be redefined

in states i ∈ S\S1 with pij(f) > 0 for at least one state j ∈ S1. Consequently, for these states i we also

have vi(f
∞) = +∞. Notice that, because S1 is extended to S1 ∪ {i}, the property vj(f

∞) = +∞ for all

j ∈ S1 is maintained.

4.9. POSITIVE MDPS 145

If step 11 is reached, then pij(a) = 0 for all triples (i, a, j) such that i ∈ S\S1 , a ∈ A(i), j ∈ S1. Hence,

the set S\S1 is closed under any policy. Therefore, we may return to step 2 and repeat the procedure

in the state space S\S1. Since in each iteration S1 6= ∅, the algorithm has at most N iterations and,

consequently, finite.

Example 4.10

Consider the following substochastic positive MDP.

S = {1, 2, 3, 4, 5, 6, 7}; A(1) = A(2) = A(4) = A(7) = {1, 2}; A(3) = A(5) = {1, 2, 3}; A(6) = {1}.
The nonzero transitions are: p11(1) = 1; p13(2) = 1; p21(1) = 1; p24(2) = 1; p33(1) = 1

2 ; p31(2) = 1;

p37(3) = 1; p43(1) = 1; p42(2) = 1; p54(1) = 1
2
; p53(2) = 1

2
; p56(3) = 1; p67(1) = 1

2
; p77(1) = 1

2
; p76(2) = 1.

The rewards are: r1(1) = 0; r1(2) = 0; r2(1) = 0; r2(2) = 1; r3(1) = 1; r3(2) = 1; r3(3) = 1; r4(1) = 1;

r4(2) = 1; r5(1) = 1; r5(2) = 2; r5(3) = 3; r6(1) = 1; r7(1) = 1; r7(2) = 1.

Taking βj = 1
7 for j = 1, 2, . . . , 7, the linear program becomes (without the nonnegativity of the x-

variables):

max {x2(2) + x3(1) + x3(2) + x3(3) + x4(1) + x4(2) + x5(1) + 2x5(2) + 3x5(3) + x6(1) + x7(1) + x7(2)}
subject to

x1(2) −x2(1) −x3(2) ≤ 1
7

x2(1) +x2(2) −x4(2) ≤ 1
7

−x1(2) + 1
2

x3(1) +x3(2) +x3(3) −x4(1) − 1
2

x5(2) ≤ 1
7

−x2(2) +x4(1) +x4(2) − 1
2

x5(1) ≤ 1
7

x5(1) +x5(2) +x5(3) ≤ 1
7

−x5(3) +x6(1) −x7(2) ≤ 1
7

−x3(3) −x5(3) − 1
2 x6(1) + 1

2 x7(1) +x7(2) ≤ 1
7

With slack variables yj , j = 1, 2, . . . , 7, we obtain the following first simplex tableau corresponding

to the basic solution x = 0.

x1(2) x2(1) x2(2) x3(1) x3(2) x3(3) x4(1) x4(2) x5(1) x5(2) x5(3) x6(1) x7(1) x7(2)

y1
1
7

1 −1 0 0 −1 0 0 0 0 0 0 0 0 0

y2
1
7

0 1 1 1 0 0 0 −1 0 0 0 0 0 0

y3
1
7

−1 0 0 1
2

1 1 −1 0 0 − 1
2

0 0 0 0

y4
1
7

0 0 −1 0 0 0 1 1 − 1
2

0 0 0 0 0

y5
1
7

0 0 0 0 0 0 0 0 1 1 1 0 0 0

y6
1
7

0 0 0 0 0 0 0 0 0 0 −1 1 0 −1

y7
1
7

0 0 0 0 0 −1 0 0 0 0 −1 − 1
2

1
2

1

0 0 0 −1 −1 −1 −1 −1 −1 −1 −2 −3 −1 −1 −1

As first pivot column we select the column of x2(2). After one pivot step we obtain as simplex

tableau:

x1(2) x2(1) y2 x3(1) x3(2) x3(3) x4(1) x4(2) x5(1) x5(2) x5(3) x6(1) x7(1) x7(2)

y1
1
7

1 −1 0 0 −1 0 0 0 0 0 0 0 0 0

x2(2) 1
7

0 1 1 1 0 0 0 −1 0 0 0 0 0 0

y3
1
7

−1 0 0 1
2

1 1 −1 0 0 − 1
2

0 0 0 0

y4
1
7

0 1 1 0 0 0 1 0 − 1
2

0 0 0 0 0

y5
1
7

0 0 0 0 0 0 0 0 1 1 1 0 0 0

y6
1
7

0 0 0 0 0 0 0 0 0 0 −1 1 0 −1

y7
1
7

0 0 0 0 0 −1 0 0 0 0 −1 − 1
2

1
2

1

0 0 1 1 −1 −1 −1 −1 −1 −1 −2 −3 −1 −1 −1

In this tableau the column of x4(2) generates an infinite direction with a∗ = (0,−1, 0, 0, 0, 0, 0)T .

S∗ = {2}, k = 4 and ak = 2. The direction vector s∗ is defined by s∗2(2) = 1, s∗4(2) = 1, s∗j (a) = 0

for all (j, a) 6= (2, 2) or (4, 2). Take f(1) = 1, f(2) = 2, f(3) = 1, f(4) = 2, f(5) = 1, f(6) = 1

146 CHAPTER 4. TOTAL REWARD

and f(7) = 1. S+ = {2, 4}. P (f) has on S+ one ergodic set, namely {2, 4}. S1 = {2, 4}. The

triple (i, ai, j) = (5, 1, 4) satisfies i ∈ S\S1, ai ∈ A(i), j ∈ S1 and pij(ai) > 0, so f(4) := 1 and

S1 := {2, 4, 5}. Then, there is no triple (i, ai, j) which satisfies i ∈ S\S1, ai ∈ A(i), j ∈ S1 and

pij(ai) > 0. Hence, we repeat the procedure for S = {1, 3, 6, 7}.

The linear program is (without the nonnegativity of the x-variables):

max {x3(1) + x3(2) + x3(3) + x6(1) + x7(1) + x7(2)}
subject to

x1(2) −x3(2) ≤ 1
7

−x1(2) +1
2x3(1) +x3(2) +x3(3) ≤ 1

7

+x6(1) −x7(2) ≤ 1
7

−x3(3) −1
2x6(1) +1

2x7(1) +x7(2) ≤ 1
7

With slack variables yj, j = 1, 3, 6, 7, we obtain the following first simplex tableau corresponding

to the basic solution x = 0.

x1(2) x3(1) x3(2) x3(3) x6(1) x7(1) x7(2)

y1
1
7 1 0 −1 0 0 0 0

y3
1
7 −1 1

2 1 1 0 0 0

y6
1
7 0 0 0 0 1 0 −1

y7
1
7 0 0 0 −1 −1

2
1
2 1

0 0 −1 −1 −1 −1 −1 −1

As first pivot column we select the column of x3(2). After one pivot step we obtain as simplex

tableau:

x1(2) x3(1) y3 x3(3) x6(1) x7(1) x7(2)

y1
2
7 0 1

2 1 1 0 0 0

x3(2) 1
7 −1 1

2 1 1 0 0 0

y6
1
7 0 0 0 0 1 0 −1

y7
1
7 0 0 0 −1 −1

2
1
2 1

1
7 −1 −1

2 1 0 −1 −1 −1

In this tableau the column of x1(2) generates an infinite direction with a∗ = (0,−1, 0, 0)T.

S∗ = {3}, k = 1 and ak = 2. The direction vector s∗ is defined by s∗3(2) = 1, s∗1(2) = 1, s∗j (a) = 0

for all (j, a) 6= (3, 2) or (1, 2). Take f(1) = 2, f(3) = 2, f(6) = 1 and f(7) = 1. S+ = {1, 3}. P (f)

has on S+ one ergodic set, namely {1, 3}. S1 = {1, 3}. There is no triple (i, ai, j) which satisfies

i ∈ S\S1, ai ∈ A(i), j ∈ S1 and pij(ai) > 0. Hence, we repeat the procedure for S = {6, 7}.

The linear program is (without the nonnegativity of the x-variables):

max

{

x6(1) + x7(1) + x7(2)

∣

∣

∣

∣

∣

x6(1) −x7(2) ≤ 1
7

−1
2x6(1) +1

2x7(1) +x7(2) ≤ 1
7

}

.

With slack variables yj , j = 6, 7, we obtain the following first simplex tableau corresponding to

the basic solution x = 0.

4.10. NEGATIVE MDPS 147

x6(1) x7(1) x7(2)

y6
1
7 1 0 −1

y7
1
7 −1

2
1
2 1

0 −1 −1 −1

As first pivot column we se-

lect the column of x6(1). Af-

ter one pivot step we obtain

as simplex tableau:

y6 x7(1) x7(2)

x6(1) 1
7 1 0 −1

y7
3
14

1
2

1
2

1
2

1
7 1 −1 −2

As second pivot column we se-

lect the column of x7(2). Af-

ter one pivot step we obtain

as simplex tableau:

y6 x7(1) y7

x6(1) 4
7 2 1 2

x7(2) 3
7 1 1 2

1 3 1 4

This is an optimal simplex

tableau with optimal solution

x6(1) = 4
7 , x7(1) = 0, x7(2) = 3

7 .

Define f(6) = 1 and f(7) = 2.

We have obtained an optimal deterministic policy f∞ with f(1) = 2, f(2) = 2, f(3) = 2, f(4) = 2,

f(5) = 1, f(6) = 1 and f(7) = 2. The value vector v = (+∞,+∞,+∞,+∞,+∞,+∞, 3, 4).

4.10 Negative MDPs

Throughout this section we assume the following:

Assumption 4.3

(1) The model is substochastic.

(2) ri(a) ≥ 0 for all (i, a) ∈ S × A.

In this case the total expected reward vi(R) exists for all i ∈ S and all policies R, possibly −∞. If there

exists a transient policy R, then we have −∞ < vi(R) ≤ vi ≤ 0 for all i ∈ S. Theorem 4.14 shows how the

existence of a transient policy can be verified.

Consider a policy f∞ ∈ C(D). It is intuitively clear that if φi(f
∞), the average reward with starting

state i, is strictly negative, the total reward vi(f
∞) = −∞; if φi(f

∞) = 0 and state i is recurrent in the

Markov chain induced by f∞, then vi(f
∞) = 0. In the next theorem we show this property. In the proof

we use some results from average reward MDPs, which are shown in the next chapter. In the model for the

average reward we have stochastic MDPs (
∑

j pij(a) = 1 for all (i, a) ∈ S ×A). Therefore we have to use

the extended model as introduced in the proof that (1) implies (8) in Theorem 4.10 and with r0(1) = 0.

Theorem 4.27

Let f∞ be an arbitrary stationary and deterministic policy.

(1) If φi(f
∞) < 0, then vi(f

∞) = −∞.
(2) If φi(f

∞) = 0 and i is recurrent in the Markov chain induced by f∞, then vi(f
∞) = 0.

Proof

(1) In the next chapter we show that vα(f∞) = limα↑1
{φ(f∞)

1−α + u(f)
}

for some vector u(f). Hence, if

φi(f
∞) < 0, then vi(f

∞) = limα↑1 vα(f∞) = −∞.
(2) In the next chapter we also show that φ(f∞) = P ∗(f)r(f), where P ∗(f) is the stationary matrix of

P (f). Let Rk be the ergodic set which contains state i. Then, since the rows of Rk P
∗(f) are identical

for the states of Rk, φj(f
∞) = 0 for all j ∈ Rk.

Furthermore, we have p∗ij(f) > 0, j ∈ Rk, p
∗
ij(f) = 0, j /∈ Rk, and pt

ij(f) = 0, j /∈ Rk, t ∈ N0.

From 0 = φi(f
∞) =

∑

j p
∗
ij(f)rj(f) =

∑

j∈Rk
p∗ij(f)rj (f), we have rj(f) = 0, j ∈ Rk.

Hence, vi(f
∞) =

∑∞
t=1

∑

j p
t−1
ij (f)rj (f) =

∑

j∈Rk
pt−1

ij (f)rj(f) = 0.

148 CHAPTER 4. TOTAL REWARD

Corollary 4.2

Let f∞1 ∈ C(D) be an average optimal policy.

(1) If φi(f
∞
1) < 0, then vi = −∞.

(2) If φi(f
∞
1) = 0 and i is recurrent in the Markov chain induced by f∞1 , then vi = 0.

Proof

(1) Since φi(f
∞) ≤ φi(f

∞
1) < 0 for every f∞ ∈ C(D), by Theorem 4.27 part (1), vi(f

∞) = −∞ for every

f∞ ∈ C(D), i.e. vi = −∞.
(2) From Theorem 4.27 it follows that vi(f

∞
1) = 0, implying vi = 0.

We can construct an optimal policy f∞∗ for negative MDPs in the following way:

Firstly, we determine an average optimal policy, say f∞1 . Let S0 := {i | φi(f
∞
1) < 0}.

For i ∈ S0: vi = −∞, f∗(i) = f1(i) is optimal in state i and remove state i from the model.

For i /∈ S0: if there are actions a such that
∑

j∈S0
pij(a) > 0: remove these actions from A(i).

In the resulting model, we have φj(f
∞
1) = 0 for all states j, and there is at least one recurrent class. We

determine the recurrent states R(f1) in the Markov chain of P (f1). From Corollary 4.2 we know that

f∗(i) = f1(i) is optimal in the states i ∈ R(f1). If there are states left, then we try to find an ergodic

set with respect to another average optimal policy, say f∞2 . Therefore, we first change the model in the

following way:

S := S\R(f1) ∪ {0}; A(i) :=

{

A(i) i 6= 0

{1} i = 0
; ri(a) :=

{

ri(a) i 6= 0, a ∈ A(i)

−1 i = 0, a ∈ A(i)

pij(a) :=

pij(a) i 6= 0, j 6= 0, a ∈ A(i);
∑

k∈R(f1)
pik(a) i 6= 0, j = 0, a ∈ A(i);

1 i = 0, j = 0, a ∈ A(i);

0 i = 0, j 6= 0, a ∈ A(i).

In this reduced model, we compute an average optimal policy, say f∞2 . Then, there are two possible

situations:

Case 1: φi(f
∞
2) = 0 for at least one state i.

We remove the set {i | φi(f
∞
2) < 0}, which contains at least the state 0. Determine in the remaining set

{i | φi(f
∞
2) = 0} the states which are recurrent under P (f2), say R(f2). Then, vi(f

∞
2) = 0, i ∈ R(f2),

and consequently, f∗(i) = f2(i) are optimal actions for the states of R(f2). We remove the states of R(f2)

and repeat this procedure for the model with the remaining states.

Case 2: φi(f
∞
2) < 0 for all states i.

In this case we redefine r0(1) := 0, p0j(1) := 0 for all j. For the remaining states together with the set S1

of already removed states, there is an optimal transient policy and we compute such an optimal transient

policy, e.g. by Algorithm 4.5.

Every time we encounter Case 1, the state space decreases with at least one state. Hence, after a finite

number of iterations either we encounter Case 2 or we have an average optimal policy such that all states

i for which φi(f
∞
2) = 0 are recurrent in the Markov chain induced by this policy. Below we present the

algorithm.

4.10. NEGATIVE MDPS 149

Algorithm 4.10 Negative MDPs

Input: Instance of a substochastic negative MDP.

Output: Optimal deterministic policy f∞.

1. if
∑

j pij(a) < 1 for at least one pair (i, a) ∈ S × A then construct the extended model:

S := S ∪ {0}; A(i) :=

{

A(i) i 6= 0

{1} i = 0
; ri(a) :=

{

ri(a) i 6= 0, a ∈ A(i)

0 i = 0, a ∈ A(i)

pij(a) :=

pij(a) i 6= 0, j 6= 0, a ∈ A(i);

1−∑k 6=0 pik(a) i 6= 0, j = 0, a ∈ A(i);

1 i = 0, j = 0, a ∈ A(i);

0 i = 0, j 6= 0, a ∈ A(i).

2. a. Compute an average optimal policy f∞1 (see Chapter 5).

b. Let S0 := {i | φi(f
∞
1) < 0}; f∗(i) := f1(i), i ∈ S0.

c. if S0 = S then go to step 7;

d. S1 := ∅.
e. for every (i, a) ∈ (S\S0)× A do

if
∑

j∈S0
pij(a) > 0 then A(i) := A(i)\{a}.

f. S := S\S0 .

3. a. Determine the set R(f1) of the recurrent states in S in the Markov chain P (f1).

b. f∗(i) := f1(i), i ∈ R(f1).

c. if R(f1) = S then go to step 4g.

d. Construct the following reduced model:

S := S\R(f1) ∪ {0}; A(i) :=

{

A(i) i 6= 0

{1} i = 0
; ri(a) :=

{

ri(a) i 6= 0

−1 i = 0

pij(a) :=

pij(a) i 6= 0, j 6= 0, a ∈ A(i);
∑

k∈R(f1) pik(a) i 6= 0, j = 0, a ∈ A(i);

1 i = 0, j = 0, a ∈ A(i);

0 i = 0, j 6= 0, a ∈ A(i).

4. a. Compute an average optimal policy f∞1 in the reduced model (see Chapter 5).

b. S2 := {i | φi(f
∞
1) < 0}.

c. if S = S2 then begin S1 := S1 ∪ (S2\{0}); go to step 4g end

d. S1 := S1 ∪ (S2\{0}).
e. for every (i, a) ∈ (S\S2)× A do if

∑

j∈S2
pij(a) > 0 then A(i) := A(i)\{a}.

f. S := S\S2 ; return to step 3a.

g. if S1 = ∅ then go to step 7.

5. Construct the following transient model:

S := S1; A(i) := A(i), i ∈ S1; ri(a) := ri(a), i ∈ S1, a ∈ A(i); pij(a) := pij(a), i, j ∈ S1, a ∈ A(i).

6. Compute an optimal transient policy f∞∗ , e.g. by Algorithm 4.5.

7. f∞∗ is an optimal policy (STOP).

150 CHAPTER 4. TOTAL REWARD

Example 4.11

Let S = {1, 2, 3, 4}; A(1) = {1, 2, 3}, A(2) = {1, 2}, A(3) = {1},
A(4) = {1, 2, 3}.
The nonzero transition probabilities are:

p11(1) = 0.5; p12(2) = 1; p13(3) = 0; p22(1) = 0.5; p21(2) =

1; p33(1) = 0.5; p42(1) = 1; p41(2) = 1; p43(3) = 1.

The rewards are:

r1(1) = −1; r1(2) = 0; r1(3) = 1; r2(1) = −1; r2(2) = 0; r2(2) = 0;

r3(1) = −1; r4(1) = 0; r4(2) = −1; r4(3) = 0.

The graph at the right hand side presents the model (partly).

s s

s s

����

���� ����

@
@

@
@

@
@

@
@

?

?

?

--

��

??
?

II 6

���

1 2

3 4

The algorithm has the following result:

1. The extended model becomes:

S = {0, 1, 2, 3, 4}; A(0) = {1}; A(1) = {1, 2, 3}, A(2) = {1, 2}, A(3) = {1}, A(4) = {1, 2, 3}.
The nonzero probabilities are:

p00(1) = 1; p10(1) = 0.5; p11(1) = 0.5; p12(2) = 1; p13(3) = 1; p20(1) = 0.5; p22(1) = 0.5; p21(2) = 1;

p30(1) = 0.5; p33(1) = 0.5; p42(1) = 1; p41(2) = 1; p43(3) = 1.

The rewards are: r0(1) = 0; r1(1) = −1; r1(2) = 0; r1(3) = 1; r2(1) = −1; r2(2) = 0; r3(1) = −1;

r4(1) = 0; r4(2) = −1; r4(3) = 0.

2. a. An average optimal policy f∞1 of the extended model is f1(0) = f1(1) = f1(2) = f1(3) = f1(4) = 1

and has average rewards φ0(f
∞
1) = φ1(f

∞
1) = φ2(f

∞
1) = φ3(f

∞
1) = φ4(f

∞
1) = 0.

b. S0 := ∅.
d. S1 := ∅.
f. S := {0, 1, 2, 3, 4}.

3. a. R(f1) = {0}.
b. f∗(0) := 1.

d. The reduced model is the same as the first extended model, except that r0(1) := −1.

4. a. An average optimal policy f∞1 in the reduced model is f1(0) = 1, f1(1) = 2, f1(2) = 2, f1(3) = 1,

f1(4) = 1 with average rewards φ0(f
∞
1) = −1, φ1(f

∞
1) = φ2(f

∞
1) = 0, φ3(f

∞
1) = −1, φ4(f

∞
1) = 0.

b. S2 := {0, 3}.
d. S1 := {3}.
e. A(1) := {2}; A(2) := {2}; A(4) := {1, 2}.
f. S := {1, 2, 4}.

3. a. R(f1) = {1, 2}.
b. f∗(1) := f∗(2) := 2.

d. The reduced model is: S := {0, 4}; A(0) := {1}; A(4) := {1, 2}; p00(1) := 1; p40(1) := 1;

p40(2) := 1; r0(1) = −1; r4(1) = 0; r4(2) = −1.

4. a. An average optimal policy f∞1 in the reduced model is f1(0) = f1(4) = 1 with average rewards

φ0(f
∞) = φ4(f

∞) = −1.

b. S2 := {0, 4} = S.

c. S1 = {3, 4}.
5. The transient model becomes: S := {3, 4}; A(3) := {1}; A(4) := {1, 2}; r3(1) = −1; r4(1) = 0;

r4(2) = −1; p33 = 0.5 (the other transition probabilities are 0).

6. An optimal transient policy f∞∗ is: f∗(3) = f∗(4) = 1 with v3(f
∞
∗) = −2; v4(f

∞
∗) = 0.

7. f∞∗ with f∗(1) = f∗(2) = 2; f∗(3) = f∗(4) = 1 is an optimal policy with v1 = v2 = 0; v3 = −2 and

v4 = 0.

4.11. CONVERGENT MDPS 151

Theorem 4.28

Algorithm 4.10 terminates with an optimal policy.

Proof

First, we consider the finiteness of the algorithm. The only loop may possibly occur in the steps 3 and 4.

However, each time when we return in step 3d, the number of states in S decreases, namely:

The model defined in step 3d has state 0 as absorbing state and φ0(f
∞
1) = −1. Therefore,

0 ∈ S2 := {i | φi(f
∞
1) < 0}. If S2 = {0}, then there are in the Markov chain induced by P (f1)

no positive transactions from any state i 6= 0 to state 0. But then, S\{0} contains an ergodic set.

So, |S2| ∪ |R(f1)| ≥ 2 and consequently the state space S defined in step 3d in some iteration of

the algorithm has fewer states than the state space S in the previous iteration.

Consequently, Algorithm 4.10 determines a deterministic policy f∞∗ in a finite number of iterations. This

policy has the following properties:

(1) vi(f
∞
∗) = vi = −∞ for all i ∈ S0.

(2) vi(f
∞
∗) = vi = 0 for all i ∈ S\(S0 ∪ S1).

(3) f∞∗ is an optimal transient policy in the model defined in step 5.

Hence, it is sufficient to show that S1 has an optimal transient policy and that f∞∗ is optimal for the states

in S1. Firstly, suppose that there exists an optimal nontransient policy, say g∞, in the model of step 5.

Since g∞ is nontransient, R(g) ∩ S1 6= ∅. From the construction of S1 (see the steps 4c and 4d) it follows

that φi(g
∞) < 0, i ∈ R(g), implying that vi(g

∞) = −∞, i ∈ R(g), which contradicts that g∞ is optimal.

Next, we will prove that f∞∗ is an optimal policy. By the properties (1) and (2) it is sufficient to show

that vi(f
∞
∗) ≥ vi(f

∞) for i ∈ S1 and for all policies f∞. Since vj(f
∞
∗) = 0 for all j ∈ S\(S0 ∪S1), we have

rj(f∗) = 0 for all j ∈ S\(S0 ∪ S1). Hence, for i ∈ S1, the total reward vi(f
∞
∗) is equal to the total reward

in the transient model.

4.11 Convergent MDPs

An MDP is convergent if max{v+
i (R), v−i (R)} < ∞ for all policies R and all i ∈ S, i.e. the total absolute

reward is finite for each policy. Hence, the value vector v is also finite. In this section we make the following

assumption.

Assumption 4.4 The MDP is convergent.

A vector x has the property anne (short for asymptotic nonnegative expectation) if for every policy R, we

have limt→∞ Pi,R{Xt = j} · x−j = 0 for all i, j ∈ S. Hence, any nonnegative vector has the property anne.

Theorem 4.29

The value vector v is the smallest superharmonic vector with the property anne.

Proof

Theorem 4.13 implies that v is a superharmonic vector. Let R be an arbitrary policy. Notice that

v−i = max{−vi, 0} ≤ max{−vi(R), 0} = {vi(R)}−. Since r−j (a) = max{0,−rj(a)} ≥ −rj(a), we have

v−i ≤ {vi(R)}− = max
{

∑∞
t=1

∑

(j,a) Pi,R{Xt = j, Yt = a} · {−rj(a)}, 0
}

≤ max
{

∑∞
t=1

∑

(j,a) Pi,R{Xt = j, Yt = a} · r−j (a), 0
}

=
∑∞

t=1

∑

(j,a) Pi,R{Xt = j, Yt = a} · r−j (a) = v−i (R) for all policies R and all states i.

152 CHAPTER 4. TOTAL REWARD

Let R = (π1, π2, . . .) an arbitrary Markov policy with v−i (R) <∞, i ∈ S, and let Rt := (πt, πt+1, . . .) for

t ∈ N. Then, for any t ∈ N and any i ∈ S, we obtain
∑

j Pi,R{Xt = j} · v−j ≤ ∑

j Pi,R{Xt = j} · v−j (Rt)

=
∑

j Pi,R{Xt = j} ·
{
∑∞

s=1

∑

(k,a) Pj,Rt
{Xs = k, Ys = a} · r−k (a)

}

=
∑∞

s=1

∑

(k,a)

∑

j Pi,R{Xt = j} · Pj,Rt
{Xs = k, Ys = a} · r−k (a)

=
∑∞

s=1

∑

(k,a) Pi,R{Xt+s−1 = k, Yt+s−1 = a} · r−k (a)

=
∑∞

m=t

∑

(k,a) Pi,R{Xm = k, Ym = a} · r−k (a).

Let At :=
∑∞

m=t

∑

(k,a) Pi,R{Xm = k, Ym = a} · r−k (a), for all t ∈ N. Since, v−i (R) < ∞, we have

limt→∞ At = 0, implying limt→∞
∑

j Pi,R{Xt = j} · v−j = 0 for all i ∈ S and for all Markov policy R. By

Corollary 1.1, limt→∞
∑

j Pi,R{Xt = j} · v−j = 0 for all policies. Hence, limt→∞ Pi,R{Xt = j} · v−j = 0 for

all i, j ∈ S and all policies R. Therefore, we have shown that v has the property anne.

Finally, suppose that w is also a superharmonic vector with the property anne. In order to show v ≤ w,

it is sufficient to show that v(R) ≤ w for all Markov policies R. Define by induction: x0
i := wi, i ∈ S, and

xn+1
i := maxa{ri(a)+

∑

j pij(a)x
n
j }, i ∈ S. Since w is superharmonic it can easily be verified by induction

on n that xn ≤ w for n = 0, 1,

We first show that for any i ∈ S and any Markov policy R, vt
i(R) +

∑

j Pi,R{Xt+1 = j} · wj ≤ xt
i, t ∈ N.

Choose any Markov policy R = (π1, π2, . . .) and any i ∈ S. The proof will be given by induction on t. For

t = 1, we have

v1
i (R) +

∑

j Pi,R{X2 = j} · wj =
∑

a π
1
ia{ri(a) +

∑

j pij(a)wj} ≤max{ri(a) +
∑

j pij(a)wj} = x1
i .

Suppose that the inequality is valid for some t. Then, with Markov policy R∗ = (π2, π3, . . .), we can write

vt+1
i (R)+

∑

j Pi,R{Xt+2 = j} · wj =
∑

a π
1
ia

{

ri(a)+
∑

k pik(a)vt
k(R∗)+

∑

j,k pik(a) Pk,R∗
{Xt+1 = j} ·wj

}

≤ maxa

{

ri(a) +
∑

k pik(a){vt
k(R∗) +

∑

j Pk,R∗
{Xt+1 = j} · wj}

}

≤ maxa{ri(a) +
∑

k pik(a)xt
k} = xt+1

i .

Take any Markov policy R. Then, by the anne property of w, we have

lim inft→∞
∑

j Pi,R{Xt = j} · wj ≥ lim inft→∞
∑

j Pi,R{Xt = j} · (−w−
j) = 0.

Hence, we obtain

vi(R) = limt→∞ vt
i (R) ≤ limsupt→∞

{

vt
i(R) +

∑

j Pi,R{Xt+1 = j} · wj

}

≤ xt
i ≤ wi, i ∈ S,

and consequently, vi = supR∈C(M) vi(R) ≤ wi, i ∈ S.

We have seen in Section 4.5 that an optimal policy f∞ is conserving, i.e. v = r(f) + P (f)v, and that the

reverse statement is not necessarily true. If the policy is also equalizing, i.e. limt→∞
∑

j p
t
ij(f)v

+
j = 0 for

all i ∈ S, then the policy is optimal as the next theorem shows.

Theorem 4.30

A policy f∞ ∈ C(D) is optimal if and only if f∞ is conserving and equalizing.

Proof

⇒ Let f∞ be an optimal policy, i.e. v(f∞) = v. Policy f∞ is conserving, because

v = v(f∞) = r(f) + P (f){∑∞
t=1 P

t−1(f)r(f)} = r(f) + P (f)v(f∞) = r(f) + P (f)v.

Iterating the above equation gives v =
∑n

t=1 P
t−1(f)r(f) + P n(f)v, n ∈ N. Since v is finite and

v =
∑∞

t=1 P
t−1(f)r(f), we have limn→∞ P n(f)v = 0, i.e.

∑

j p
n
ij(f)vj = 0, i ∈ S. Since v has the

4.11. CONVERGENT MDPS 153

property anne, limn→∞
∑

j p
n
ij(f)v

−
j = 0, i ∈ S, implying that also limn→∞

∑

j p
n
ij(f)v

+
j = 0, i ∈ S,

i.e. f∞ is conserving and equalizing.

⇐ Since f∞ is conserving, v = r(f) + P (f)v, implying v =
∑n

t=1 P
t−1(f)r(f) + P n(f)v, n ∈ N.

The equalizing property gives lim supn→∞
∑

j p
n
ij(f)vj ≤ limn→∞

∑

j p
n
ij(f)v

+
j = 0, i ∈ S. Hence,

we obtain

vi = limn→∞{
∑n

t=1

∑

j p
t−1
ij (f)rj (f) +

∑

j p
n
ij(f)vj} ≤

∑∞
t=1

∑

j p
t−1
ij (f)rj(f) = vi(f

∞), i ∈ S,

i.e. f∞ is optimal.

Define by induction:

v0
i := 0 and vn+1

i := maxa {ri(a) +
∑

j

pij(a)v
n
j }, i ∈ S. (4.44)

An MDP is stable if limn→∞ vn
i = vi for all i ∈ S. Hence, in a stable MDP, the value vector can be

approximated arbitrary close by value iteration. The next example shows that a convergent MDP is not

necessarily stable.

Example 4.5 (continued)

S = {1, 2}; A(1) = {1, 2}; A(1) = {1}; p11(1) = 1, p12(1) = 0; p11(2) = 0, p12(2) = 1; p21(1) = 0,

p22(1) = 0; r1(1) = 0; r1(2) = 2; r2(1) = −1. It is easy to verify that this MDP is convergent. We have

seen v = (1,−1). It is also easy to verify that vn = (2,−1) for all n ∈ N. Hence, this MDP is not stable.

Theorem 4.31

Positive and negative convergent MDPs are stable.

Proof

Firstly, assume that the MDP is positive. Then,

vi = maxa{ri(a) +
∑

j pij(a)vj} ≥maxa{ri(a) +
∑

j pij(a)v
0
j } = v1

i ≥ v0
i , i ∈ S.

Suppose that vi ≥ vk
i ≥ vk−1

i , i ∈ S for some k. Then,

vi = maxa{ri(a) +
∑

j pij(a)vj} ≥ maxa{ri(a) +
∑

j pij(a)v
k
j } = vk+1

i

≥ maxa{ri(a) +
∑

j pij(a)v
k−1
j } = vk

i , i ∈ S.
Hence, by induction, we have vi ≥ vn+1

i ≥ vn
i , i ∈ S, n ∈ N. Since for each i the sequence {vn

i } is

monotone nondecreasing and bounded by vi < ∞, limn→∞ vn
i exists, say v∞i = limn→∞ vn

i , i ∈ S,

and v∞ ≤ v. By taking the limit for n → ∞, it follows from vn+1
i = maxa {ri(a) +

∑

j pij(a)v
n
j } that

v∞i = maxa {ri(a) +
∑

j pij(a)v
∞
j }, i ∈ S. Hence, v∞ is superharmonic and has the property anne, the

last property because v∞ is nonnegative. Since v is the smallest superharmonic vector with the property

anne, v∞ ≥ v, and we have shown vi = v∞i = limn→∞ vn
i , i ∈ S, i.e. positive convergent MDPs are stable.

Next, we assume that the MDP is negative. Analogously to the positive case it can be shown that the

sequence {vn
i } is monotone non-increasing in n, bounded below by vi, with limit v∞i . Therefore, v∞ ≥ v

and satisfies v∞i = maxa {ri(a)+
∑

j pij(a)v
∞
j }, i ∈ S. Let f∞ ∈ C(D) be such that v∞ = r(f)+P (f)v∞ .

Then, by induction on n,

v∞ =
∑n

t=1 P
t−1(f)r(f) + P n(f)v∞ ≤∑n

t=1 P
t−1(f)r(f), n ∈ N.

Hence, v ≥ v(f∞) = limn→∞
∑n

t=1 P
t−1(f)r(f) ≥ v∞, implying vi = v∞i = limn→∞ vn

i , i.e. negative

convergent MDPs are stable.

Remark

Since in negative MDPs every policy is equalizing, f∞ is optimal if and only if f∞ is conserving, i.e.

r(f) + P (f)v = v. Hence, policy f∞v is an optimal policy.

154 CHAPTER 4. TOTAL REWARD

4.12 Special models

4.12.1 Red-black gambling

The red-black gambling model was introduced in section 1.3.1. The characteristics of this model are:

S = {0, 1, . . . , N}; A(0) = A(N) = {0}, A(i) = {1, 2, . . . , min(i, N − i)}, 1 ≤ i ≤ N − 1.

For 1 ≤ i ≤ N − 1, a ∈ A(i) : pij(a) =

p , j = i+ a

1− p , j = i− a
0 , j 6= i+ a, i− a

and ri(a) = 0.

p0j(0) = pNj(0) = 0, j ∈ S; r0(0) = 0, rN(0) = 1.

The case p = 1
2 was the subject of Exercise 1.4 in which the reader was asked to show that any f∞ ∈ C(D)

is an optimal policy. This current section deals with the cases p > 1
2 and p < 1

2 . In the red-black gambling

model every policy is transient (see Exercise 4.8). Hence, we may use the results of section 4.7, e.g. that

v(f∞) is the unique solution of the linear system x = r(f) +P (f)x. In the red-black gambling model this

system becomes

x0 = 0; xN = 1; xi = pxi+f(i) + (1− p)xi−f(i), 1 ≤ i ≤ N − 1. (4.45)

Let f∞1 be the timid policy, i.e. f(i) = 1 for all i. Then it is easy to verify that vi(f
∞
1) = 1−ri

1−rN , 0 ≤ i ≤ N ,

satisfies (4.45).

Case 1: p > 1
2

In this case we will show that the timid policy f∞1 is optimal. For this purpose, it is sufficient to show

that vi(f
∞
1) ≥ pvi+a(f∞1) + (1− p)vi−a(f∞1), (i, a) ∈ S × A.

Because vi(f
∞
1) = 1−ri

1−rN , 0 ≤ i ≤ N , we have to show

1− ri ≥ p(1− ri+a) + q(1− ri−a), i.e. −ri ≥ −pri+a − qri−a, which is the same as

1 ≤ pra + qr−a. For F (a) = pra + qr−a, we have F (1) = p q
p + q p

q = q + p = 1.

It is sufficient to show that F (a+ 1) ≥ F (a) for all a.

F (a+ 1) ≥ F (a)⇔ pra+1 + qr−a−1 ≥ pra + qr−a ⇔ pr2a+2 + q ≥ pr2a+1 + qr ⇔
pr2a+1(r − 1) ≥ q(r − 1)⇔ r2a+1 ≤ r⇔ r ≤ 1⇔ p ≥ 1

2
.

Case 2: p < 1
2

We will show that in this case bold play, i.e. stake min(i, N − i) in state i, is optimal. Therefore we show

that in value iteration with starting vector 0, i.e.

v0
i = 0, i ∈ S; vn+1

i = maxa {pvn
i+a + (1− p)vn

i−a}, 1 ≤ i ≤ N − 1; vn+1
0 = 0; vn+1

N = 1 for n = 0, 1,

the bold policy f∞b satisfies vn+1 = Lfb
vn. Since vn → v, this implies v = Lfb

v, i.e. f∞b is an optimal

policy.

Let q = 1− p and let wn
ia be the difference between the action fb(i) and a in the computation of vn+1

i , i.e.

wn
ia =

{

pvn
2i − pvn

i+a − qvn
i−a , 1 ≤ i ≤ N/2 , a ∈ A(i)

p+ qvn
2i−N − pvn

i+a − qvn
i−a , N/2 ≤ i ≤ N − 1 , a ∈ A(i)

(4.46)

We have to show that wn
ia ≥ 0 for all i, a and n. To this end, we show by induction on n:

(1) wn
ia ≥ 0 for all i, a;

4.12. SPECIAL MODELS 155

(2) vn
i+a ≥ vn

i + vn
a for all i, a;

(3) vn
N + vn

j ≥ vn
N−k + vn

j+k for all j, k;

(4) vn+1
i =

{

pvn
2i , 1 ≤ i < N/2

p + qvn
2i−N , N/2 ≤ i ≤ N − 1

For n = 0 it is easy to verify that the properties hold. Suppose that the properties are shown for n and

consider n + 1. Because wn
ia has different expressions for the states below and above N/2, we have to

distinguish between different intervals of the states.

Proof for (1):

For i+ a < N/2 and 2i < N/2:

wn+1
ia = pvn+1

2i − pvn+1
i+a − qpvn+1

i−a = p{pvn
4i − pvn

2(i+a) − qvn
2(i−a)} = pwn

2i,2a ≥ 0.

For i+ a < N/2 and 2i ≥ N/2:

wn+1
ia = pvn+1

2i − pvn+1
i+a − qpvn+1

i−a

= p{p+ qvn
4i−N − pvn

2(i+a) − qvn
2(i−a)} = pwn

2i,2a ≥ 0

For i+ a ≥ N/2 and i < N/2:

wn+1
ia = pvn+1

2i − pvn+1
i+a − qpvn+1

i−a

= p{p+ qvn
4i−N − p− qvn

2(i+a)−N − qvn
2(i−a)}

= pq{vn
4i−N − vn

2(i+a)−N − vn
2(i−a)} ≥ 0

(the nonnegativity by property (2).

For i+ a ≥ N/2, i ≥ N/2, i− a < N/2 and 2i−N < N/2:

wn+1
ia = p+ qvn+1

2i−N − pvn+1
i+a − qvn+1

i−a

= p+ qpvn
4i−2N − p{p+ qvn

2(i+a)} − qpvn
2(i−a)

= pq{1 + vn
4i−2N − vn

2(i+a) − vn
2(i−a)

= pq{vn
N + vn

4i−2N − vn
2(i+a) − vn

2(i−a) ≥ 0

(the nonnegativity by property (3) with j = 4i− 2N and k = N − 2(i− a)).
For i+ a ≥ N/2, i ≥ N/2, i− a < N/2 and 2i−N ≥ N/2:

wn+1
ia = p+ qvn+1

2i−N − pvn+1
i+a − qvn+1

i−a

= p+ q{p+ qvn
4i−3N} − p{p+ qvn

2(i+a)−N} − qpvn
2(i−a)

= 2pq + q{qvn
4i−3N − pvn

2(i+a)−N − pvn
2(i−a)}

≥ pq{2 + vn
4i−3N − vn

2(i+a)−N − vn
2(i−a)} ≥ 0

(the nonnegativity because vn
2(i+a)−N + vn

2(i−a) ≤ 2).

For i+ a ≥ N/2, i ≥ N/2, i− a ≥ N/2 and 2i−N < N/2:

wn+1
ia = p+ qvn+1

2i−N − pvn+1
i+a − qvn+1

i−a

= p+ qpvn
4i−2N − p{p+ qvn

2(i+a)−N} − q{p+ vn
2(i−a)−N}

= q{pvn
4i−2N − pvn

2(i+a)−N − qvn
2(i−a)−N}

≥ qwn
2i−N,2a ≥ 0

For i+ a ≥ N/2, i ≥ N/2, i− a ≥ N/2 and 2i−N ≥ N/2:

wn+1
ia = p+ qvn+1

2i−N − pvn+1
i+a − qvn+1

i−a

= p+ q{p+ qvn
4i−3N} − p{p+ qvn

2(i+a)−N} − q{p+ vn
2(i−a)−N}

= q{p+ vn
4i−3N − pvn

2(i+a)−N − qvn
2(i−a)−N}

≥ qwn
2i−N,2a ≥ 0

156 CHAPTER 4. TOTAL REWARD

Proof for (2):

For i+ a < N/2:

vn+1
i+a = pvn

2(i+a) ≥ p{vn
2i + vn

2a} = vn+1
i + vn+1

a .

For i+ a ≥ N/2 and i < N/2:

vn+1
i+a = p + qvn

2(i+a)−N ≥ (because wn
i+a,i−a ≥ 0)

≥ pvn
2i + qvn

2a ≥ pvn
2i + pvn

2a = vn+1
i + vn+1

a .

For i+ a ≥ N/2 and i ≥ N/2:

vn+1
i+a = p + qvn

2(i+a)−N ≥ p + q{vn
2i−N + vn

2a}
≥ p + qvn

2i−N + pvn
2a = vn+1

i + vn+1
a .

Proof for (3):

If j ≥ N − k: vn
N + vn

j ≥ vn
N + vn

N−k ≥ vn
j+k + vn

N−k.

If j ≥ N − k and j + k ≤ N − k:
For N/2 ≤ j ≤ j + k ≤ N − k:

vn+1
N + vn+1

j = 1 + p + qvn
2j−N and vn+1

j+k + vn+1
N−k = 2p+ q{vn

2(j+k)−N + vn
2(N−k)−N}.

Hence,

vn+1
N + vn+1

j ≥ vn
j+k + vn

N−k ↔ 1 + vn
2j−N ≥ vn

2(j+k)−N + vn
2(N−k)−N ,

which is true by property (3) (take in (3) 2j −N for j and 2k for k).

For j < N/2 ≤ j + k ≤ N − k:
vn+1

j+k + vn+1
N−k = 2p+ q{vn

2(j+k)−N + vn
2(N−k)−N} (by property (2))

≤ 2p+ qvn
2j = 2p+ (1− p)vn

2j = 2p+ qvn
2j = 1 + pvn

2j − (1− 2p)(1− vn
2j)

≤ 1 + pvn
2j = vn+1

N + vn+1
j .

For j ≤ j + k < N/2 ≤ N − k:
vn+1

N + vn+1
j = 1 + pvn

2j ≥ q + p{1 + vn
2j} ≥ (take in (3) 2j for j and 2k for k)

≥ q + p{vn
2(j+k) + vn

2(N−k)−N}.
vn+1

j+k + vn+1
N−k = pvn

2(j+k) + p+ q{vn
2(N−k)−N ≤ q + p{vn

2(j+k) + vn
2(N−k)−N}.

Hence, vn+1
N + vn+1

j ≥ vn+1
N−k + vn+1

j+k .

For j ≤ j + k ≤ N − k < N/2:

This case cannot occur, because (j + k) + (N − k) = j +N ≥ N .

Proof for (4):

Since wn+1
ia ≥ 0 for all (i, a) ∈ S ×A, the bold actions maximize pvn+1

i+a + (1− p)vn+1
i−a , i ∈ S.

Therefore, vn+2
i =

{

pvn+1
2i , 1 ≤ i < N/2

p+ qvn+1
2i−N , N/2 ≤ i ≤ N − 1

4.12.2 Optimal stopping

The optimal stopping model was introduced in section 1.3.3. The characteristics of the model are:

S = {1, 2, . . . , N}; A(i) = {1, 2}, i ∈ S; ri(1) = ri, i ∈ S; ri(2) = −ci, i ∈ S;

pij(1) = 0, i, j ∈ S; pij(2) = pij, i, j ∈ S.

4.12. SPECIAL MODELS 157

In this section we assume that ri ≥ 0 and ci ≥ 0 for all i ∈ S. Hence, any optimal policy is a transient

policy, implying v = w. We also have 0 ≤ minj rj ≤ vi ≤ maxj rj <∞ for all i ∈ S. Therefore, the value

vector is finite and, by Theorem 4.17, v is the smallest superharmonic vector, i.e. v is the unique optimal

solution of the linear program

min

∑

j

vj

∣

∣

∣

∣

∣

vi ≥ ri , i ∈ S
vi ≥ −ci +

∑

j pijvj , i ∈ S

}

. (4.47)

Consider also the dual linear program

max

{

∑

i

rixi −
∑

i

ciyi

∣

∣

∣

∣

∣

xj + yj −
∑

i pijyi = 1, j ∈ S
xi, yi ≥ 0, i ∈ S

}

. (4.48)

Theorem 4.32

Let (x∗, y∗) be an extreme optimal solution of the dual program (4.48). Then, the policy f∞∗ such that

f∗(i) =

{

1 if x∗i > 0

2 if x∗i = 0
is an optimal policy.

Proof

If x∗j = 0, then it follows from x∗j + y∗j = 1 +
∑

i pijy
∗
i ≥ 1 > 0 that y∗j > 0. Since (x∗, y∗) is an extreme

point, there are at most N positive components. Hence, for each state i ∈ S, we have either x∗j > 0 or

y∗j > 0. Furthermore, for z∗ =

{

x∗i if x∗i > 0

y∗i if x∗i = 0
we obtain z∗ = eT + (z∗)TP (f∗).

Iterating this equality gives z∗ =
∑n

t=1 e
TP t−1(f∗) + (z∗)TP n(f∗) ≥

∑n
t=1 e

TP n−1(f∗) for all n ∈ N.

Hence, f∞∗ is transient and {I − P (f∗)}−1 =
∑∞

t=1 P
t−1(f∗). The complementary slackness of linear

programming gives: v = r(f∗) +P (f∗)v, i.e. v = {I − P (f∗)}−1r(f∗) =
∑∞

t=1 P
t−1(f∗)r(f∗) = v(f∞∗), i.e.

f∞∗ is an optimal policy.

Algorithm 4.11 Linear programming algorithm for optimal stopping

Input: Instance of an optimal stopping problem

Output: Optimal deterministic policy f∞.

1. Use the simplex method to compute optimal solutions v∗ and (x∗, y∗) of the dual pair of linear

programs:

min

∑

j

vj

∣

∣

∣

∣

∣

vi ≥ ri , i ∈ S
vi ≥ −ci +

∑

j pijvj , i ∈ S

}

and

max

{

∑

i

rixi −
∑

i

ciyi

∣

∣

∣

∣

∣

xj + yj −
∑

i pijyi = 1, j ∈ S
xi, yi ≥ 0, i ∈ S

}

.

2. Take f∞∗ ∈ C(D) such that f∗(i) =

{

1 if x∗i > 0;

2 if x∗i = 0.

v∗ is the value vector and f∞∗ an optimal policy (STOP).

Remark

An optimal stopping problem may be considered as a special case of the replacement problem that is

discussed in section 8.1.1. In that section it is shown that an O(N3) of Algorithm 4.11 is possible.

158 CHAPTER 4. TOTAL REWARD

Example 4.12

S = {1, 2, 3, 4, 5}. The stopping rewards are: r1 = 0, r2 = 2, r3 = 2, r4 = 3 and r5 = 0 and there are no

costs for the continuing action (ci = 0, 1 ≤ i ≤ 5). The states 1 and 5 are absorbing; in state i (2 ≤ i ≤ 4)

there is a probability 1
2 to go to state i+ 1 and a probability 1

2 to go to state i− 1. The dual LP program

is:

max 2x2 + 2x3 + 3x4

subject to:

x1 − 1
2
y2 = 1

x2 + y2 − 1
2y3 = 1

x3 − 1
2y2 + y3 − 1

2y4 = 1

x4 − 1
2
y3 + y4 = 1

x5 − 1
2y4 = 1

x1, x2, x3, x4, x5, y2, y3, y4 ≥ 0

The optimal solution of the problem is:

x1 = 1, x2 = 3
2 , x3 = 0, x4 = 3

2 ; x5 = 1; y2 = 0; y3 = 1 and y4 = 0. Hence, the optimal policy is: continue

in state 3 and stop in the other states. The expected total reward is: v1 = 0, v2 = 2, v3 = 2 1
2
, v4 = 3 and

v5 = 0.

Let S0 = {i ∈ S | ri ≥ −ci +
∑

j pijrj}, i.e. S0 is the set of states in which immediate stopping is not

worse than continuing for one period and than choose to stop. The set S0 follows directly from the data

of the model. An optimal stopping problem is monotone if pij = 0 for all i ∈ S0, j /∈ S0.

Theorem 4.33

In a monotone optimal stopping problem a one-step look-ahead policy, i.e. a policy that stops in the states

of S0 and continues outside S0, is an optimal policy.

Proof

Let v be the value vector of the optimal stopping problem. Define w by wi :=

{

ri, i ∈ S0;

vi, i /∈ S0.

The value vector is the solution of the optimality equation: vi = max
{

ri,−ci+
∑

j pijvj

}

, i ∈ S. Therefore,

w ≤ v. Furthermore, w is feasible for the LP problem, namely:

If i ∈ S0 : wi = ri ≥ −ci +
∑

j pijrj = −ci +
∑

j∈S0
pijrj = −ci +

∑

j∈S0
pijwj = −ci +

∑

j pijwj.

If i /∈ S0 : wi = vi ≥ −ci +
∑

j pijvj ≥ −ci +
∑

j pijwj.

It is obvious that wi ≥ ri, i ∈ S. Because v is the smallest solution of the LP problem, we have

v = w, i.e. vi = ri, i ∈ S0, i.e. the stopping action is in S0 optimal. If i /∈ S0, then we obtain,

ri < −ci +
∑

j pijrj ≤ −ci +
∑

j pijvj ≤ vi: continue outside S0 is optimal.

Example 4.13

N different real numbers are drawn, one by one. The second number has a probability of 1
2 to come on

the right of the first number on the line of the real numbers (also a probability of 1
2 to come on the left of

the first number). The third number has a probability of 1
3 to come in each of the three intervals on the

right line, where the intervals are generated by the first two numbers. Etc. After each draw there are two

possibilities: the last draw is the largest up to now or this is not the case. Only when the last number is

the largest up to now we have the option to stop with as reward that largest number. If the last number is

4.12. SPECIAL MODELS 159

not the largest up to now or when we don’t use the option to stop when the last number is the largest, we

have to continue, unless all N numbers are drawn. Which policy maximizes the probability to stop with

the largest of all N numbers?

We make the following model for this problem. Let S = {1, 2, . . . , N}, where state i means that the

i-th draw is the largest up to now. A(i) = {1, 2}, 1 ≤ i ≤ N − 1; A(N) = {1}; ci = 0, i ∈ S. As ri we

take the probability that, given that the i-th draw gives the largest number of the first i numbers, it is

the largest number of all N numbers. The probability that the (i+ 1)-th number is the largest number of

the first i + 1 numbers is 1
i+1 ; the probability that the (i + 2)-th number is the largest of the first i + 2

numbers is 1
i+2 , etc. Hence,

ri =
(

1− 1
i+1

)(

1− 1
i+2

)

· · ·
(

1− 1
N

)

= i
N .

The transition probabilities are:

pij = the probability that the numbers (i+ 1) up to and including number (j − 1) are

smaller than number i and number j is larger that number i, j ≥ i+ 1.

=
(

1− 1
i+1

)(

1− 1
i+2

)

· · ·
(

1− 1
j−1

)

· 1
j

= i
(j−1)j

.

S0 = {i ∈ S | ri ≥ −ci +
∑

j pijrj} = {i ∈ S | i
N
≥∑N

j=i+1
i

(j−1)j
· j

N
}

= {i ∈ S | 1
i

+ 1
i+1

+ · · ·+ 1
N−1

≤ 1}.

Because 1
i + 1

i+1 + · · ·+ 1
N−1 is monotone decreasing in i, we have S0 = {i ∈ S | i ≥ i∗}, where i∗ is defined

by i∗ := min{i | 1
i + 1

i+1 + · · · + 1
N−1 ≤ 1}. Because obviously S0 is closed, the problem is monotone

and therefore the optimal policy chooses the stopping action as soon as i∗ drawn are made and that draw

results in the largest number up to now. The value vector can be computed as follows.

If i ≥ i∗: vi = ri = i
N .

If i < i∗: vi = −ci +
∑

j pijvj =
∑N

j=i+1
i

(j−1)j · vj = i ·∑N
j=i+1

1
(j−1)j · vj .

For 2 ≤ i ≤ i∗ − 1, we have:

vi−1 = (i− 1) ·∑N
j=i

1
(j−1)j · vj = (i− 1) ·

{

1
i(i−1)vi +

∑N
j=i+1

1
(j−1)j · vj

}

= 1
i vi + i−1

i vi = vi.

Therefore, we obtain

v1 = v2 = · · · = vi∗−1 = (i∗ − 1) ·∑N
j=i∗

1
(j−1)j · vj

= (i∗ − 1) ·∑N
j=i∗

1
(j−1)j ·

j
N = i∗−1

N ·∑N
j=i∗

1
j−1 .

Example 4.14

Problems like searching a target can often be modeled as an optimal stopping problem. Suppose that we

are searching for an object with value r and that there is an a priori probability p that the object is in the

search area. If we search in this area, for each search there are searching costs c and there is a probability

β that we find the object, if it is in this area. A maximum of N searches is allowed. Of course, when the

object is found, then we stop; but if the object is not found, will we do another search?

Let S = {0, 1, . . . , N − 1}, where state i means that i failured searches have been done.

In state i, we have the posteriori probability pi =
p(1−β)i

p(1−β)i+(1−p) that the object is present.

Hence, we obtain ri = 0 and ci = c − pi · β · r, i ∈ S, and pij =

{

1− pi · β , i ∈ S, j = i+ 1;

0 , i ∈ S, j 6= i+ 1.

S0 = {i | ri ≥ −ci +
∑

j pijrj} = {i | ci ≥ 0} = {i | pi ≤ c
β·r }.

160 CHAPTER 4. TOTAL REWARD

It is easy to verify that p0 ≥ p1 ≥ · · · ≥ pN−1. Hence, S0 = {i | i ≥ i∗}, where i∗ := min{ | pi ≤ c
β·r}. It

is obvious that S0 is closed. Therefore, to stop in S0 and continue outside S0 is optimal.

This result is intuitively clear: S0 consists of the states where the expected netto costs (ci) are nonnegative.

A formula for the stopping states can also be given in the original data, namely

pi ≤ c
β·r ⇔ p(1−β)i

p(1−β)i+(1−p)
≤ c

β·r ⇔ p(1 − β)i ≤ (1−p)c
β·r−c

⇔ p(1− β)i ≤ (1−p)c
β·r−c ⇔ (1 − β)i ≤ 1−p

p · c
β·r−c

⇔ i ≥ log
{

1−p
p

· c
β·r−c

}

log (1−β) = i∗.

4.13 Bibliographic notes

The study of Markov decision models with the expected total reward criterion originated with the book

How to gamble if you must by Dubins and Savage ([75]), with appeared in 1965. The name contracting

was introduced by Van Nunen and Wessels, who have studied this model systematically (cf. [302] and

[305]. The concept of excessive MDPs was introduced by Hordijk ([123], p. 5). Veinott ([311]) introduced

transient policies. In [243] and [244] Rothblum has studied normalized MDPs. He has generalized the

Miller-Veinott ([199]) policy iteration algorithm for finding a deterministic policy that maximizes the

expected discounted reward for all discount factors close enough to 1.

Many properties on square matrices, eigenvalues and spectral radius can be found in books on linear

algebra and linear operators (e.g. [163]). Books on nonnegative matrices and Markov (decision) chains are

written by Seneta ([261]) and Rothblum ([247]).

The linear program (4.15) and the correspondence with the stationary and deterministic policies as

given in Theorem 4.7 was derived by Kallenberg ([148]).

Lemma 4.5 is due to Hordijk and Tijms ([132]). The equivalence results presented in Theorem 4.8,

Theorem 4.9, Theorem 4.10 and Theorem 4.11 are based on papers written by Veinott ([311]), Rothblum

([243] and [244]), and Hordijk and Kallenberg ([123], [148] and [129]). A related paper is [77]. Algorithm

4.1 and the observations mentioned in Remark 1 and Remark 2 are due to Kallenberg ([148]).

Theorem 4.12 is based on a fundamental paper written Blackwell in 1962 ([29]). Blackwell called such

a policy 1-optimal. Later, this property was called Blackwell optimal in honor to Blackwell. The concept

p-summable and Theorem 4.13 have its roots in [148]. The proof of Theorem 4.13 follows the line of

reasoning in the proof of Theorem 6.1 in [236]. The concept conserving was presented by Dubins and

Savage ([75]). Example 4.5 appeared in [300].

The material of Section 4.6 with the computation of an optimal transient policy was developed by

Hordijk and Kallenberg ([148], [129]). The results in Section 4.7 are contributed by Van Nunen and

Wessels ([302], [305]), and by Hordijk and Kallenberg ([148], [129]).

The treatment in Section 4.8 of a finite horizon MDP as a transient MDP with the special simplex

algorithms (Algorithms 4.7 and 4.8) was proposed by Kallenberg ([147]). A related paper is [124].

Seminal papers on positive and negative MDPs are [30] and [285]. The sections 4.9 and 4.10 deal with

linear programming and follow Kallenberg ([148], section 3.5 and 3.6). For value iteration we refer to Van

der Wal ([297]) and for policy iteration to Puterman ([227]). References for convergent MDPs are Hordijk

([121], [122], [123] and Van der Wal ([297]).

Gambling theory can be found in [75]. For the proof of the optimality of the timid policy (case p > 1
2
)

we refer to [238]. The proof for the bold policy (case p < 1
2) is based on unpublished work of Denardo [62].

4.14. EXERCISES 161

4.14 Exercises

Exercise 4.1

Consider the following model.

S = {1, 2}; A(1) = {1, 2}, A(2) = {1}; p11(1) = 1, p12(1) = 0; p11(2) = 0, p12(2) = 1; p21(1) = 0,

p22(1) = 0.5; r1(1) = r1(2) = r2(1) = 1. Define the sequence of stationary Markov policies π∞(n) by

π1a(n) :=

{

1− 1
n a = 1

1
n a = 2

and π21(n) := 1, n = 1, 2,

Prove that v1
(

π∞(n)
)

<∞ for n = 1, 2, . . . and supn v1
(

π∞(n)
)

= +∞.

Exercise 4.2

A policy R is called stopping if limt→∞ Pi,R{Xt = j, Yt = a} = 0 for all i, j and a.

a. Show that any transient policy is stopping.

b. Consider the model S = {1}; A(1) = {1, 2}; p11(1) = 1; p11(2) = 0.5 with policy R that takes

action 2 at the time points t = 2n, n = 1, 2, 3, Show that R is stopping, but not transient.

c. Show that a stationary policy π∞ is transient if and only if π∞ is stopping.

Exercise 4.3

Prove case 3 of Lemma 4.5.

Exercise 4.4

Consider the linear program max

{

∑

(i,a) xi(a)

∣

∣

∣

∣

∣

∑

(i,a){δij − pij(a)}xi(a) ≤ β, j ∈ S
xi(a) ≥ 0, (i, a) ∈ S × A

}

,

where βj > 0, j ∈ S, are arbitrarily chosen numbers.

a. Prove that if the MDP is contracting, then this linear program has a finite optimal solution.

b. Prove that if this linear program has a finite optimal solution, then the MDP is contracting.

c. Show that an MDP is contracting if and only if there exists a solution to the system

µi = maxa {1 +
∑

j pij(a)µj} , i ∈ S

µi ≥ 0 , i ∈ S

Exercise 4.5

Consider a contracting MDP. An action a ∈ A(i) is suboptimal if ri(a) +
∑

j pij(a)vj < vi.

Consider the dual linear program in Algorithm 4.5 and let f∞ ∈ C(D) be the policy corresponding to

some simplex tableau in which the x-variables have values xf
i (a), (i, a) ∈ S ×A.

Let df
i (a) be the value of the dual variable which corresponds to xf

i (a), (i, a) ∈ S × A.
Show the following properties:

a. If df
i (ai) > mina d

f
i (a) +

∑

j pij(ai){bj − vj(f
∞)}, where b is an upper bound of the value

vector v, then action ai is an suboptimal action.

b. b := v(f∞) − min(i,a) {df
i (a)/µi}

1−α · µ is an upper bound of the value vector v, where α and µ are

such that µi > 0, i ∈ S, α ∈ [0, 1) and
∑

j pij(a)µj ≤ α · µi for all (i, a) ∈ S × A.

Exercise 4.6

Consider the following model:

S = {1, 2, 3, 4, 5, 6, 7}; A(1) = A(2) = {1, 2}, A(3) = {1, 2, 3}, A(4) = {1, 2}, A(5) = {1, 2, 3},
A(6) = {1}, A(7) = {1, 2}; p11(1) = 1, p13(2) = 1, p21(1) = 1, p24(2) = 1, p33(1) = 0.5,

162 CHAPTER 4. TOTAL REWARD

p31(2) = 1, p37(3) = 1, p43(1) = 1, p42(1) = 1, p54(1) = 0.5, p53(2) = 1, p56(1) = 1,

p67(1) = 0.5, p77(1) = 0.5, p76(2) = 1 (the other transition probabilities are zero);

r1(1) = 0, r1(2) = 0, r2(1) = 0, r2(2) = 2, r3(1) = 1, r3(2) = 1, r3(3) = 1, r4(1) = 1,

r4(2) = 1, r5(1) = 1, r5(2) = 2, r5(3) = 3, r6(1) = 1, r7(1) = 1, r7(2) = 1.

Use Algorithm 4.9 to determine an optimal policy. Take βi = 1
7 , i ∈ S.

Exercise 4.7

Consider the following model:

S = {1, 2, 3}; A(1) = {1, 2}, A(2) = A(3) = {1}; p11(1) = p12(2) = p23(1) = p33(1) = 1

(the other transition probabilities are zero); r1(1) = 0, r1(2) = 2, r2(1) = −1, r3(1) = 0.

a. Is this model convergent?

b. Determine the value vector v and show that v has the property anne.

c. Compute the value vector and an optimal policy by linear programming.

d. What happens in value iteration, given by (4.44)?

e. Is the problem stable?

Exercise 4.8

Show that the red-black gambling model is transient.

Exercise 4.9

Consider an optimal stopping problem with the data:

S = {1, 2, 3, 4}; r1 = 0, r2 = 1, r3 = 2, r4 = 2; ci = 0, 1 ≤ i ≤ 4.

p11 = 1
2 , p12 = 1

2 , p13 = 0, p14 = 0; p21 = 1
8 , p22 = 1

8 , p23 = 1
2 , p24 = 1

4 ;

p31 = 1
3
, p32 = 1

3
, p33 = 1

3
, p34 = 0; p41 = 1

4
, p42 = 1

8
, p43 = 1

2
, p44 = 1

8
.

Determine an optimal policy for this problem.

Exercise 4.10

Every night a thief is going for robbery and he will capture an amount of k with probability pk for

k = 0, 1, . . . , n. The probability to be caught is equal to p, and if he is caught, he will loose the total

captures of all previous nights and he must stop. At which captured amount, the thief will stop with

robbery? Show that the solution of this problem is: the thief stops as soon as he has captured the amount
1−p

p ·
∑n

j=0 pj · j and gives an intuitive explanation of this result.

Hint:

Use as state space S = {0, 1, . . .}, where state i means that the thief has i as total amount and that he

is not yet caught. Assume that the results of the optimal stopping problem are also true for this infinite

state space.

Exercise 4.11 Optimal stopping problem

Consider a person who wants to sell an asset for which he is offered an amount of money at the beginning

of each week. We assume that these offers are independent and that an offer of amount j will be made

with probability pj , 0 ≤ j ≤ N . He has to decide immediately either to accept or to reject the offer. If the

offer is not accepted, the offer is lost and a cost c is occurred. Which policy will maximize the expected

total income?

a. Formulate this problem as an optimal stopping problem.

b. Show that this problem has an optimal control-limit policy.

4.14. EXERCISES 163

Exercise 4.12 How to serve in tennis

Consider the example How to serve in tennis as described in section 1.3.2. Let v(i, j, s) be the probability

of winning the next game in tennis when the score is (i, j) and s is the number of the service which is due

to the server (s = 1 or s = 2); let v(4) = 1 and v(5) = 0. Since winning (loosing) a point will not decrease

(increase) the probability of winning a game, we have the relations:

v(i+ 1, j, 1) ≥ v(i, j, 1); v(i+ 1, j, 1) ≥ v(i, j, 2); v(i, j, 1) ≥ v(i, j, 2); v(i, j, 2) ≥ v(i, j + 1, 1).

a. Give the optimality equation for this model.

b. Show the optimality of the policy, which is mentioned in section 1.3.2 as the optimal policy.

164 CHAPTER 4. TOTAL REWARD

Chapter 5

Average reward - general case

5.1 Introduction

5.2 Classification of MDPs

5.2.1 Definitions

5.2.2 Classification of Markov chains

5.2.3 Classification of Markov decision chains

5.3 Stationary, fundamental and deviation matrix

5.3.1 The stationary matrix

5.3.2 The fundamental and the deviation matrix

5.4 Extension of Blackwell’s theorem

5.5 The Laurent series expansion

5.6 The optimality equation

5.7 Policy iteration

5.8 Linear programming

5.9 Value iteration

5.10 Bibliographic notes

5.11 Exercises

5.1 Introduction

When decisions are made frequently, so that the discount rate is very close to 1, or when performance

criterion cannot easily be described in economic terms with discount factors, the decision maker may

prefer to compare policies on the basis of their average expected reward instead of their expected total

discounted reward. Consequently, the average reward criterion occupies a cornerstone of queueing control

theory especially when applied to controlling computer systems and communication networks. In such

systems, the controller makes frequent decisions and usually assesses system performance on the basis of

throughput rate or the average time a job remains in the system. This optimality criterion may also be

appropriate for inventory systems with frequent restocking decisions.

In the criterion of average reward the limiting behavior of 1
T

∑T
t=1 rXt

(Yt) is considered for T →∞. Since

limT→∞
1
T

∑T
t=1 rXt

(Yt) may not exist and interchanging limit and expectation is not allowed in general,

there are four different evaluation measures which can be considered:

165

166 CHAPTER 5. AVERAGE REWARD - GENERAL CASE

1. Lower limit of the average expected reward:

φi(R) = lim infT→∞
1
T

∑T
t=1 Ei,R{rXt

(Yt)}, i ∈ S, with value vector φ = supR φ(R).

2. Upper limit of the average expected reward:

φi(R) = lim supT→∞
1
T

∑T
t=1 Ei,R{rXt

(Yt)}, i ∈ S, with value vector φ = supR φ(R).

3. Expectation of the lower limit of the average reward:

ψi(R) = Ei,R{lim infT→∞
1
T

∑T
t=1 rXt

(Yt)}, i ∈ S, with value vector ψ = supR ψ(R).

4. Expectation of the upper limit of the average reward:

ψi(R) = Ei,R{lim supT→∞
1
T

∑T
t=1 rXt

(Yt)}, i ∈ S, with value vector ψ = supR ψ(R).

As already mentioned in Section 1.2.2, these four criteria are equivalent in the sense that an optimal

deterministic policy for one criterion is also optimal for the other criteria. We will use criterion 1, the

lower limit of the average expected reward.

In this chapter we start with the classification of MDP models on the basis of the chain structure. Because

the average reward criterion depends on the limiting behaviour of the underlying stochastic processes, this

structure is of interest. In the subsequent section the stationary matrix, the fundamental matrix and the

deviation matrix of a Markov chain is discussed. These matrices play an important role in the average

reward criterion and also in more sensitive criteria. The most sensitive criteron is Blackwell optimality.

Laurent series expansion relates the average reward to the total discounted reward. This is the subject of

section 5.5. The last sections of this chapter deal with the optimality equation and with the methods of

policy iteration, linear programming and value iteration.

5.2 Classification of MDPs

5.2.1 Definitions

There are several ways to classify MDPs. The first one distinguishes between communicating and non-

communicating. An MDP is communicating if for every i, j ∈ S there exists a policy f∞ ∈ C(D), which

may depend on i and j, such that in the Markov chain P (f) state j is accessible from state i. An MDP

is weakly communicating if S = S1 ∪ S2, where S1 ∩ S2 = ∅, S1 is a closed communicating set under some

policy f∞ ∈ C(D) and S2 is a (possibly empty) set of states which are transient under all policies.

A second kind of classification concerns the ergodic structure. One distinguish between irreducible,

unichain and multichain MDPs. An MDP is irreducible (also called completely ergodic) if the Markov

chain P (f) is irreducible for every f∞ ∈ C(D). An MDP is a unichain MDP if the Markov chain P (f) is

a unichain Markov chain (exactly one ergodic class plus a possibly empty set of transient states) for every

f∞ ∈ C(D). An MDP is multichain if there exists a policy f∞ ∈ C(D) for which the Markov chain P (f)

has (at least) two ergodic classes.

The next result is obvious.

Lemma 5.1

An irreducible MDP is communicating and unichain.

5.2. CLASSIFICATION OF MDPS 167

5.2.2 Classification of Markov chains

For a single Markov chain it is easy to determine whether or not the Markov chain belangs to a certain

class. Easy means polynomially solvable, i.e. the problem belongs in terms of the complexity theory to

the class P of problems solvable in polynomial-time.

Consider a Markov chain with transition matrix P . The classification of the Markov chain can be executed

in the associated directed graph G(P) =
(

V (P), A(P)
)

, where the nodes V (P) are the states of the Markov

chain and the arcs of A(P) satisfy A(P) = {(i, j) | pij > 0}.
Since a strongly connected component of G(P) is closed if and only if the corresponding states in the

Markov chain are an ergodic class, the following algorithm determines the ergodic classes E1, E2, . . . , Em

and the set T of transient states.

Algorithm 5.1 Ergodic classes and transient states of a Markov chain

Input: A Markov chain.

Output: The ergodic sets E1, E2, . . . , Em and the set T of transient states.

1. a. Determine the strongly connected components of G(P), say C1, C2, . . . , Cn.

b. m; = 0; T := ∅.

2. for i = 1, 2, . . . , n do

if Ci is closed then begin m := m+ 1; Em := Ci end

else T := T ∪ Ci

The determination of the strongly connected components of a graph can be done in O(p) = O(N2), where

p is the number of arcs of the graph (see [287]). For the examination whether the strongly connected

components are closed or open, it is also sufficient to consider the arcs of the graph. Therefore, Algorithm

5.1 has complexity O(N2).

5.2.3 Classification of Markov decision chains

An MDP has
∏

i∈S |A(i)| different deterministic policies and each policy induces a Markov chain. There-

fore, MDPs are also called Markov decision chains. The approach to analyse all Markov chains separately

is prohibitive. The problem to determine whether or not an MDP belongs to a certain class is a combi-

natorial problem. It turns out that all classification problems are easy, i.e. polynomially solvable, except

one. Checking the unichain condition is an NP-hard problem.

For the analysis of the chain structure we use two directed graphs, G1 and G2, both with as node set the

states of the MDP. In G1 = (S, A1) the arc set A1 = {(i, j) | pij(a) > 0 for every a ∈ A(i)}. Hence, a

path from i to j in G1 means that state j is accessible from state i under every policy. In G2 = (S, A2)

the arc set A2 = {(i, j) | pij(a) > 0 for some a ∈ A(i)}, and a path from i to j in G2 means that state j is

accessible from state i under some policy. Let M :=
∑

i∈S |A(i)|, then the construction of the graphs G1

and G2 has complexity O
(
∑

j∈S{
∑

i∈S |A(i)|}
)

= O(M ·N).

Communicating

The question whether or not an MDP is communication is solved by the following lemma.

168 CHAPTER 5. AVERAGE REWARD - GENERAL CASE

Lemma 5.2

An MDP is communicating if and only if the graph G2 is strongly connected.

Proof

⇒ Suppose that G2 is not strongly connected, i.e. there are nodes i and j such that in G2 is no path

from i to j. This implies that for every f∞ ∈ C(D) in the Markov chain P (f) state j is not accessible

from state i. Consequently, the MDP is not communicating.

⇐ Suppose that G2 is strongly connected and take any pair i, j ∈ S. Since G2 is strongly connected

there is a path from i to j. Hence, j is accessible from i under some policy. This implies the property

communicating.

The above Lemma implies the following algorithm for checking the communicating property of an MDP.

Since the construction of G2 has complexity O(M ·N), and the determination of the strongly connected

components is of order N2 ≤M ·N , the total complexity is O(M ·N).

Algorithm 5.2 Checking the communicating property of an MDP

Input: A Markov decision problem.

Output: The property ’communicating’ or the property ’noncommunicating’.

1. Construct the graph G2.

2. Determine the strongly connected components of G2, say C1, C2, . . . , Cn.

3. if n = 1 then the MDP is communicating (STOP)

else the MDP is noncommunicating (STOP)

If the outcome of Algorithm 5.2 is ’noncommunicating’ (n ≥ 2) one may ask whether the MDP is perhaps

weakly communicating. If two or more of the strongly connected components are closed, then the MDP is

not weakly communicating, since in that case there are two disjunct sets of states which both are ergodic

under all policies. If only one of the strongly connected components is closed, say C1, one can try to find

a state outside C1, say state i, for which there is a positive transition probability to C1 under all actions

a ∈ A(i). If such state does not exist, then there is a policy with the property that starting outside C1

one never enters C1. Hence, the MDP is not weakly communicating. Continuing in this way yields the

following algorithm.

Algorithm 5.3 Checking the communicating and weakly communicating property of an MDP

Input: A Markov decision problem.

Output: The property ’communicating’ and if the MPD is ’noncommunicating’ we obtain either the

property ’weakly communicating’ or the property ’not weakly communicating’.

1. Construct the graph G2.

2. a. Determine the strongly connected components of G2, say C1, C2, . . . , Cn.

b. m := 0; T := ∅.

3. for i = 1, 2, . . . , n do

if Ci is closed then begin m := m+ 1; Em := Ci end

else T := T ∪ Ci

5.2. CLASSIFICATION OF MDPS 169

4. if m ≥ 2 then the MDP is not weakly communicating (STOP)

else if T = ∅ then the MDP is communicating (STOP)

else go to step 5

5. a. S1 := E1, S2 := ∅.
b. repeat

k := 0;

for every i ∈ T do

if
∑

j∈S1∪S2
pij(a) > 0 for every a ∈ A(i) then begin S2 := S2 ∪ {i}; T := T\{i}; k := 1

end

until k = 0

6. if T = ∅ then the MDP is weakly communicating (STOP)

else the MDP is not weakly communicating.

For the complexity of Algorithm 5.3 we remark that the steps 1 until 4 are executed only once and

have complexity O(M · N). Step 5 is executed at most N times and each step has complexity of order
∑

i∈T

∑

a∈A(i) |S1 ∪ S2| ≤M ·N . Hence, the complexity of step 5, and also the overall complexity of the

algorithm is O(M ·N2).

Irreducibility

For the irreducibility we use graph G1. If G1 is strongly connected, then the MDP is irreducible, because

each pair of states communicates under every policy. If G1 is not strongly connected we condense graph G1

to graph Gc
1. The condensed graph Gc

1 has a (compound) vertex for each strongly connected component of

G1. Let ik and il be the compound vertices of Gc
1 corresponding to the strongly connected components Ck

and Cl, respectively, and let Vk and Vl be the vertex sets in G1 of Ck and Cl, respectively. Then, (ik, il) is

an arc in Gc
1 if every Markov chain in the MDP has a positive one-step transition from some state of Vk

to some state of Vl, i.e. if maxr∈Vk

{

mina∈A(r)

∑

s∈Vl
prs(a)

}

> 0.

Since states in the same strongly connected component communicate under every policy, an arc (ik, il)

in Gc
1 means that any s ∈ Vl is accessible from any r ∈ Vk under every policy. It is easy to verify that the

construction of the condensed graph Gc
1 has complexity O(M · N). The operation ’condensation’ can be

repeated until there are no changes in the graph. Let {Gc
1}∗ be the finally, after repeated condensations,

obtained graph.

Example 5.1

Let S = {1, 2, 3, 4}; A(1) = {1, 2}, A(2) = {1}, A(3) = {1}, A(4) = {1}.
p12(1) = 1; p13(2) = 1; p23(1) = p24(1) = 0.5; p32(1) = p34(1) = 0.5;

p41(1) = 0.5, p42(1) = p43(1) = 0.25.

The graph at the right hand side presents the MDP model. Graph G1 is the

same, but without the arcs (1, 2) and (1, 3).

The strongly connected components of G1 are: C1 = {1} and C2 = {2, 3, 4}.
Gc

1 = (V c
1 , A

c
1) with V c

1 = {1∗, 2∗}, where 1∗ corresponds to state 1 and 2∗ to

the states 2, 3 and 4, and Ac
1 = {(1∗, 2∗), (2∗, 1∗)}.

s s

s s
@

@
@

@
@

@
@

@-

?

-

I
??

�

6�
	

1 2

3 4

After condensing Gc
1, we obtain {Gc

1}∗, consisting of a single vertex.

170 CHAPTER 5. AVERAGE REWARD - GENERAL CASE

The next lemma shows that irreducibility is equivalent to the property that {Gc
1}∗ consists of a single

vertex.

Lemma 5.3

An MDP is irreducible if and only if the ultimate condensation {Gc
1}∗ consists of a single vertex.

Proof

⇒ Suppose that {Gc
1}∗ has at least two vertices. Then, there is a (compound) vertex, say i, without

an incoming arc (if each vertex has an incoming arc, there is a circuit and the graph can be condensed).

Therefore, in each state of the (compound) vertices j 6= i an action can be chosen with transition

probability 0 to the states of i. The Markov chain under such policy is not irreducible.

⇐ Let {Gc
1}∗ consists of a single vertex. From the definition of condensation it follows that each two

states communicate under any policy, i.e. the Markov chain is irreducible.

Algorithm 5.4 Checking the irreducibility property of an MDP

Input: A Markov decision problem.

Output: The property ’irreduclble’ or ’not ’irreduclble’.

1. Construct the graph G1; G := G1.

2. Determine the strongly connected components of G, say C1, C2, . . . , Cn.

3. if all components consist of one vertex then go to step 4

else begin construct the condensed graph of G, say Gc; G := Gc; return to step 2 end

4. if n = 1 then the MDP is irreducible (STOP)

else the MPD is not irreducible (STOP)

The construction of G1, the determination of the strongly connected components and the condensation

operation have complexity of at most O(M ·N). In a new iteration the number of vertices of G decreases,

so the number of iterations is at most N and the overall complexity of Algorithm 5.4 is O(M ·N2).

The last classification question concerns the distinction between unichain and multichain. It turns out

that this decision problem is NP-complete, so there is no hope of a polynomial algorithm.

Suppose that there exists a policy that results in multiple ergodic classes. Such a policy serves as a

certificate that the answer is ”yes”. Since the determination of the ergodic classes of a Markov chain is

polynomially (see Algorithm 5.1), the problem is in NP .

To prove that the problem is NP-complete we use a reduction to the 3-satisfiability problem (3SAT). An

instance of 3SAT consists of n Boolean variables x1, x2, . . . , xn, and m clauses C1, C2, . . . , Cm, with three

literals per clause. Each clause is the disjunction of three literals, where a literal is either a variable xi

or its negative xi, for example C = x2 ∪ x4 ∪ x5. The question is whether there is an assigment of values

(”true” or ”false”) to the variables such that all clauses are satisfied.

Suppose that we are given an instance of 3SAT , with n variables and m clauses.

We construct an MDP as follows:

(a) two special states a and b;

(b) 4n states si, s
∗
i , ti, fi, i = 1, 2, . . . , n;

(c) m states cj, j = 1, 2, . . . , m.

5.2. CLASSIFICATION OF MDPS 171

For the actions and the transition probabilities, we have:

A(a) = {1} and pasi
(1) = 1

n+m , 1 ≤ i ≤ n; pacj
(1) = 1

n+m , 1 ≤ j ≤ m.

A(b) = {1} and pbs∗
i
(1) = 1

n , 1 ≤ i ≤ n.

A(si) = {1, 2} and psiti
(1) = 1, 1 ≤ i ≤ n; psifi

(2) = 1, 1 ≤ i ≤ n.

A(s∗i) = {1, 2} and ps∗
i
ti

(1) = 1, 1 ≤ i ≤ n; ps∗
i
fi

(2) = 1, 1 ≤ i ≤ n.

A(ti) = {1, 2} and ptia(1) = 1, 1 ≤ i ≤ n; ptib(2) = 1, 1 ≤ i ≤ n.

A(fi) = {1, 2} and pfia(1) = 1, 1 ≤ i ≤ n; pfib(2) = 1, 1 ≤ i ≤ n.

A(cj) = {1, 2, 3} and action a corresponds to the a-th literal of clause Cj . In particilar, if the a-th literal

in clause Cj is of the form xi, then pcjti
(a) = 1; if the a-th literal in clause Cj is of the form xi, then

pcjfi
(a) = 1.

Example 5.2

Suppose that n = 4, m = 2 and C1 = x1∪x2∪x4, C2 = x1∪x2∪x3. Below we draw the corresponding MDP.

The transition probabilities are 1, except from a (the probabilities are 1
6
) and from b (the probabilities are

1
4).

s
s
s
s
s
s
s
s

s

s

s

s

s

s

s

s

s s

s

s

6

?

-
Q

Q
Q

Qs

Q
Q

Q
QQs

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

S
S

S
Sw

S
S

S
SSw

S
S

S
S
Sw

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

%
%

%
%

%
%

%
%

%
%

%
%%

�

!!!!!!!!!!

*

e
e

e
e

e
e

e
e

e
e

e
ee

R

aaaaaaaaaa

j

=
�
)
9
y
i
Y

I

7

��
333

:
zz

:
zz

:

zz

:
zz

y
99

y
99

y
99

y
99

e
e

e
e

e
e

e
e

e
e

e
ee

I
aaaaaaaaaa

Y

%
%

%
%

%
%

%
%

%
%

%
%%

	

!!!!!!!!!!

�

RR

jj

qq

--

--

11

**

��

a b

c1

c2

s1

s2

s3

s4

s∗
1

s∗
2

s∗
3

s∗
4

t1

f1

t2

f2

t3

f3

t4

f4

We claim that we have a ”yes” instance of 3SAT if and only if the correponding MDP is multichain.

Suppose that we have a ”yes” instance of 3SAT . Consider an assignment of the variables such that all

clauses are satisfied. We define the following policy:

(1) At every state cj, consider a literal in the clause which is ”true”. If that literal is unnegated,

say xk, pick in state cj the action that moves to state tk; if that literal is negated, say xk,

pick in state cj the action that moves to state fk.

172 CHAPTER 5. AVERAGE REWARD - GENERAL CASE

(2) At every state si, let the next state be ti if xi is ”true”, and fi if xi is ”false”.

(3) At every state s∗i , let the next state be fi if xi is ”true”, and ti if xi is ”false”.

(4) At every state ti, let the next state be a if xi is ”true”, and b if xi is ”false”.

(5) At every state fi, let the next state be b if xi is ”true”, and a if xi is ”false”.

(6) In the states a and b is only one action.

First, look at state a as starting state of the Markov chain. At the next time point the Markov chain is in

some state si or in some state cj.

If the next state is si, then the following happens:

- if xi is ”true”: the next state is ti and return to state a;

- if xi is ”false”: the next state is fi and return to state a.

If the next state is cj, then the following happens:

- if the chosen action corresponds to an unnegated variable xk: the next state is tk and return to state a;

- if the chosen action corresponds to a negated variable xk: the next state is fk and return to state a.

We conclude that a is a recurrent state and, starting from a, state b is never visited.

Next, look at state b as starting state of the Markov chain. At the next time point the Markov chain

is in some state s∗i and the following happens:

- if xi is ”true”: the next state is fi and return to state b;

- if xi is ”false”: the next state is ti and return to state b.

We conclude that b is a recurrent state and, starting from b, state a is never visited. Therefore, the MDP

is multichain.

For the converse, suppose that the MDP is multichain, and fix a policy that results in multiple ergodic

classes. Given, the structure of the possible transitions, the state belongs to the set {a, b} once every three

transitions. Since we have multiple ergodic classes, it follows that a and b are both recurrent but do not

belong to the same ergodic class. In particular, b is not accessible from a, and a is not accessible from b.

Consider the following assignment of the variables: if in state si action 1 is chosen, set xi ”true”, and

if in state si action 2 is chosen, set xi ”false”. We need to show that with this assignment all clauses are

satisfied.

Suppose that the transition out of si leads to ti (i.e. xi = 1). Since b is not accessible from a, it follows

that b is not accessible from ti, and therefore the action out of ti leads back to a. Since a is not accessible

from b, the transaction out of s∗i leads to fi and then back to b. Similarly, suppose that the transition out

of si leads to fi (i.e. xi = 0). Since b is not accessible from a, it follows that b is not accessible from fi,

and therefore the action out of fi leads back to a. Since a is not accessible from b, the transaction out of

s∗i leads to ti and then back to b.

Consider now a clause Cj and suppose that the transition in state cj leads to ti, i.e. xi is part of clause

Cj. Since b is not accessible from a, it follows that ti leads back to a. Using the remarks above, it follows

that the transition out of si leads to ti, and therefore xi is set to ”true”, and the clause is satisfied.

Suppose that the transition in state cj leads to fi, i.e. xi is part of clause Cj. Since b is not accessible

from a, it follows that fi leads back to a. Using the earlier remarks, it follows that the transition out of si

leads to fi, and therefore xi is set to ”false”, and the clause is satisfied.

By the above arguments, we have shown the following theorem.

Theorem 5.1

The determination problem whether or not an MDP is unichain or multichain is NP-complete.

5.3. STATIONARY, FUNDAMENTAL AND DEVIATION MATRIX 173

Example 5.2 (continued)

Consider the assignment x1 = 1, x2 = 0, x3 = 1, x4 = 0. As corresponding policy we take action 1 in

state c1 and action 2 in state c2. The Markov chain of this policy is presented in the figure below. It is

easy to see that this chain is has two ergodic classes.

s
s
s
s
s
s
s
s

s

s

s

s

s

s

s

s

s s

s

s

6

?

-

%
%

%
%

%
%

%
%

%
%

%
%%

�

!!!!!!!!!!

*

e
e

e
e

e
e

e
e

e
e

e
ee

R

aaaaaaaaaa

j

=

9
y

I

��

:

zz

:

zz

99

y

99

y

e
e

e
e

e
e

e
e

e
e

e
ee

I
aaaaaaaaaa

Y

%
%

%
%

%
%

%
%

%
%

%
%%

	

!!!!!!!!!!

�

jj

qq

11

**

a b

c1

c2

s1

s2

s3

s4

s∗
1

s∗
2

s∗
3

s∗
4

t1

f1

t2

f2

t3

f3

t4

f4

5.3 Stationary, fundamental and deviation matrix

5.3.1 The stationary matrix

Consider a policy f∞ ∈ C(D). In average reward MDPs the limiting behavior of P n(f) as n tends to

infinity plays an important role. In general, limn→∞ P n(f) does not exist (a counterexample is left to the

reader). Therefore, we consider other types of convergence.

Let {bn}∞n=0 be a sequence. This sequence is called Cesaro convergent with Cesaro limit b if

limn→∞
1
n

∑n−1
k=0 bk exits and is equal to b.

We denote this convergence by limn→∞ bn =c b or bn →c b. The sequence is said to be Abel convergent

with Abel limit b if

limα↑1(1− α)
∑∞

n=0 α
nbn exits and is equal to b.

This convergence is denoted by limn→∞ bn =a b or bn →a b. Ordinary convergence implies both Cesaro

and Abel convergence, but the converse statements are not true in general (see Exercise 5.2). The next

result is well known in the theory of the summability of series (e.g. Powell and Shah [225], p. 9).

174 CHAPTER 5. AVERAGE REWARD - GENERAL CASE

Theorem 5.2

If the sequence {bn}∞n=0 is Cesaro convergent to b, then {bn}∞n=0 is also Abel convergent to b.

Remark

The converse statement of Theorem 5.2 is not true in general (see Exercise 5.3).

Theorem 5.3

Let P be any stochastic matrix, i.e. the matrix of a Markov chain. Then,

(1) P ∗ := limn→∞
1
n

∑n−1
k=0 P

k exits, i.e. P n →c P
∗.

(2) P ∗P = PP ∗ = P ∗P ∗ = P ∗.

Proof

Let B(n) = 1
n

∑n−1
k=0 P

k. Since P k is stochastic for every k, B(n) is also a stochastic matrix. Hence, the se-

ries
{

B(n)
}∞

n=1
is bounded. Therefore, each infinite subsequence of

{

B(n)
}∞

n=1
has a point of accumulation.

Furthermore, we have

B(n) +
1

n
{P n − I} = B(n)P = PB(n), n ∈ N. (5.1)

Let J = limk→∞ B(nk), where
{

B(nk)
}∞

k=1
is a convergent subsequence of

{

B(n)
}∞

n=1
. From (5.1) we

obtain

J = JP = PJ. (5.2)

Let
{

B(mk)
}∞

k=1
also be a convergent subsequence of

{

B(n)
}∞

n=1
with limit matrix K. From (5.1) it also

follows that

K = KP = PK. (5.3)

Hence, J = P nJ = JP n and K = P nK = KP n for every n. Therefore, J = B(n)J = JB(n) and

K = B(n)K = KB(n) for every n, implying that J = KJ = JK and K = JK = KJ , i.e. J = K. The

sequence
{

B(n)
}∞

n=1
has exactly one point of accumulation, i.e. P ∗ := limn→∞

1
n

∑n−1
k=0 P

k exits and is

the Cesaro limit of the sequence {P n}∞n=1. Hence, we have shown that P ∗P = PP ∗ = P ∗P ∗ = P ∗.

The matrix P ∗ is called the stationary matrix of the stochastic matrix P .

Corollary 5.1

limα↑1
∑∞

n=0 α
n(P n − P ∗) = 0.

Proof

Since P n is Cesaro convergent to P ∗, P n−P ∗ is Cesaro convergent to 0, and consequently Abel convergent

to 0, i.e. limα↑1
∑∞

n=0 α
n(P n − P ∗) = 0.

Let P be any stochastic matrix with ergodic classes E1, E2, . . . , Em and transient states T . By renumbering

of the states the matrix can be written in the following so-called standard form:

P =

P1 0 · · · · · 0

0 P2 0 · · · · 0

· · · · · 0

· · · · · 0

· · · · · 0

0 · · · · 0 Pm 0

A1 A2 · · · · Am Q

, (5.4)

5.3. STATIONARY, FUNDAMENTAL AND DEVIATION MATRIX 175

where the matrix Pk corresponds to the ergodic class Ek, 1 ≤ k ≤ m, and the matrix Q to the transient

states. It is well known (e.g. Doob [74] p. 180) that Qn → 0 for n→∞. Since

(I −Q)(I +Q+ · · ·+Qn−1) = I −Qn, (5.5)

the right hand side of (5.5) tends to I, i.e. I − Q is nonsingular and (I −Q)−1 =
∑∞

n=0 Q
n. 1 From the

theory of Markov chains it is also well known (see e.g. e.g. Chung [40] p. 33) that the stationary matrix

of an ergodic class has strictly positive, identical rows, say πk for Pk, and that πk is the unique solution

of the following system of linear equations

{

∑

i∈Ek (δij − pij)xi = 0, j ∈ Ek
∑

i∈Ek xi = 1
(5.6)

Since (5.6) is a system of |Ek| + 1 equations and |Ek| variables, one of the equations, except the last

normalization equation, can be deleted for the computation of πk. The following results are also well

known (see e.g. Feller [88]).

Lemma 5.4

Let ak
i be the probability that, starting from state i ∈ T , the Markov chain will be absorbed in ergodic class

Ek, 1 ≤ k ≤ m. Then, ak
i , i ∈ T , is the unique solution of the linear system (I − Q)x = bk, where

bk = Ake.

Theorem 5.4

Let P be any stochastic matrix written in the standard form (5.4). Then,

P ∗ =

P ∗
1 0 · · · · · 0

0 P ∗
2 0 · · · · 0

· · · · · ·
· · · · · ·
· · · · · ·
0 · · · · 0 P ∗

m 0

A∗
1 A∗

2 · · · · A∗
m 0

, (5.7)

where P ∗
k has identical rows πk, which are the unique solution of (5.6) and A∗

k = {I −Q}−1{Ake}{πk}T ,
1 ≤ k ≤ m.

Algorithm 5.5 Determination of the stationary matrix P ∗

Input: A stochastic matrix P .

Output: The stationary matrix P ∗.

1. Determine with Algorithm 5.1 the ergodic classes E1, E2, . . . , Em and the transient states T .

2. Write P in standard form (5.4).

3. for k = 1, 2, . . . , m do

begin

determine the unique solution πk
j , j ∈ Ek, of the linear system

1A series
P∞

n=0 An is a generalization of the geometric series and is often referred to as the Neumann series.

176 CHAPTER 5. AVERAGE REWARD - GENERAL CASE

{
∑

i∈Ek
(δij − pij)xi = 0, j = 2, 3, . . . , |Ek|

∑

i∈Ek
xi = 1;

determine the unique solution ak
i , i ∈ T , of the linear sytem

∑

j∈T (δij − pij)xj =
∑

l∈Ek
pil, i ∈ T .

end

4. p∗ij :=

xk
j i ∈ Ek, j ∈ Ek, k = 1, 2, . . . , m

ak
i x

k
j i ∈ T, j ∈ Ek, k = 1, 2, . . . , m

0 else

Example 5.3

Consider the Markov chain with transition matrix P =

0.5 0 0 0.5 0

0 0 0 0.4 0.6

0 0.2 0.4 0 0.4

0.7 0 0 0.3 0

0 0 0 0 1

.

Using Algorithm 5.1 we obtain the ergodic classes E1 = {1, 4}, E2 = {5}, T = {2, 3}.

The standard form of the matrix is: P =

0.5 0.5 0 0 0

0.7 0.3 0 0 0

0 0 1 0 0

0 0.4 0.6 0 0

0 0 0.4 0.2 0.4

.

k = 1: π1 is the unique solution of

{

0.5x1 − 0.7x2 = 0

x1 + x2 = 1
→ π1

1 = 7
12
, π1

2 = 5
12
.

a1 is the unique solution of

{

x1 = 0.4

−0.2x1 + 0.6x2 = 0
→ a1

4 = 2
5 , a

1
5 = 2

15 .

k = 2: π2 = 1 (state 3 is an absorbing state) and a2 is the unique solution of
{

x1 = 0.6

−0.2x1 + 0.6x2 = 0.4
→ a2

4 = 3
5
, a2

5 = 13
15
.

The stationary matrix P ∗ =

7
12

5
12 0 0 0

7
12

5
12

0 0 0

0 0 1 0 0
7
30

5
30

9
15 0 0

7
90

5
90

13
15 0 0

.

5.3.2 The fundamental matrix and the deviation matrix

Theorem 5.5

Let P be an arbitrary stochastic matrix. Then, I − P + P ∗ is nonsingular and Z := (I − P + P ∗)−1

satisfies Z = limn→∞
1
n

∑n
i=1

∑i−1
k=0 (P − P ∗)k.

5.3. STATIONARY, FUNDAMENTAL AND DEVIATION MATRIX 177

Proof

Since P ∗P = PP ∗ = P ∗P ∗ = P ∗ (see Theorem 5.3) it follows, by induction on n, that

(P − P ∗)n = P n − P ∗, n ∈ N. Let B := P − P ∗. Since

I − Bi = (I − B)(I + B + · · ·+Bi−1), (5.8)

we have, by averaging (5.8),

I − 1

n

n
∑

i=1

Bi = (I −B) · 1

n

n
∑

i=1

i−1
∑

k=0

Bk. (5.9)

Since 1
n

∑n
i=1 B

i = 1
n

∑n
i=1(P

i − P ∗) = 1
n

∑n
i=1 P

i − P ∗, we obtain

lim
n→∞

1

n

n
∑

i=1

Bi = lim
n→∞

1

n

n
∑

i=1

P i − P ∗ = P ∗ − P ∗ = 0,

i.e. I − B = I − P + P ∗ is nonsingular and Z = limn→∞
1
n

∑n
i=1

∑i−1
k=0 (P − P ∗)k.

The matrix Z = (I −P +P ∗)−1 is called the fundamental matrix of P . The deviation matrix D is defined

by D := Z − P ∗ = limn→∞
1
n

∑n
i=1

∑i−1
k=0 (P − P ∗)k − P ∗.

Theorem 5.6

The deviation matrix D satisfies

(1) D = limn→∞
1
n

∑n
i=1

∑i−1
k=0 (P k − P ∗).

(2) P ∗D = DP ∗ = (I − P)D+ P ∗ − I = D(I − P) + P ∗ − I = 0.

Proof

(1) Since (P − P ∗)k = (P k − P ∗) for k = 1, 2, . . . , we obtain
∑n

i=1

∑i−1
k=0 (P − P ∗)k = n · I +

∑n
i=2

∑i−1
k=1 (P − P ∗)k = n · I +

∑n
i=2

∑i−1
k=1 (P k − P ∗) and

∑n
i=1

∑i−1
k=0 (P k − P ∗) = n · (I − P ∗) +

∑n
i=2

∑i−1
k=1 (P k − P ∗).

Therefore,

limn→∞
1
n

∑n
i=1

∑i−1
k=0 (P k − P ∗) = limn→∞

1
n
{n · (I − P ∗) +

∑n
i=2

∑i−1
k=1 (P − P ∗)k

= Z − P ∗.

(2) P ∗D = limn→∞
1
n

∑n
i=1

∑i−1
k=0 P

∗(P k − P ∗) = limn→∞
1
n

∑n
i=1

∑i−1
k=0 (P ∗ − P ∗) = 0.

(I − P)D = limn→∞
1
n

∑n
i=1

∑i−1
k=0 (I − P)(P k − P ∗)

= limn→∞
1
n

∑n
i=1

∑i−1
k=0 (P k − P k+1)

= limn→∞
1
n

∑n
i=1 (I − P k) = I − P ∗.

Similarly, it can be shown that DP ∗ = 0 and D(I − P) = I − P ∗.

The fundamental and the deviation matrix can be computed as follows. From (5.4) and (5.7) it follows

that

I − P + P ∗ =

C1 0 · · · · · 0

0 C2 0 · · · · 0

· · · · · ·
· · · · · ·
· · · · · ·
0 · · · · 0 Cm 0

D1 D2 · · · · Dm I −Q

,

178 CHAPTER 5. AVERAGE REWARD - GENERAL CASE

where Ck := I − Pk + P ∗
k and Dk := −Ak +A∗

k, 1 ≤ k ≤m. Hence,

Z = (I − P + P ∗)−1 =

C−1
1 0 · · · · · 0

0 C−1
2 0 · · · · 0

· · · · · ·
· · · · · ·
· · · · · ·
0 · · · · 0 C−1

m 0

S1 S2 · · · · Sm (I −Q)−1

,

where Sk := −(I −Q)−1DkC
−1
k , 1 ≤ k ≤m. The deviation matrix is Z − P ∗.

Example 5.3 (continued)

I − P + P ∗ =

13
12 − 1

12 0 0 0

− 7
60

67
60

0 0 0

0 0 1 0 0
7
30 − 7

30 0 1 0
7
90

5
90

7
15 −1

5
3
15

→ C1 =

(

13
12
− 1

12

− 7
60

67
60

)

and C2 = (1).

By inverting, C−1
1 =

(

67
72

5
72

7
72

65
72

)

and C−1
2 = (1). Since I −Q =

(

1 0

−1
5

3
5

)

, by inverting, we obtain

(I−Q)−1 =

(

1 0
1
3

5
3

)

. Hence, S1 = −(I−Q)−1D1C
−1
1 = −

(

1 0
1
3

5
3

)(

7
30 − 7

30
7
90

5
90

)(

67
72

5
72

7
72

65
72

)

=

(

− 7
36

7
36

− 7
36
− 1

36

)

and S2 = −(I −Q)−1D2C
−1
2 = −

(

1 0
1
3

5
3

)(

0
7
15

)

(1) =

(

0

−7
9

)

. Therefore, we have computed

Z =

67
72

5
72 0 0 0

7
72

65
72

0 0 0

0 0 1 0 0

− 7
36

7
36 0 1 0

− 7
36 − 1

36 −7
9

1
3

5
3

and D =

25
72 −25

72 0 0 0

−35
72

35
72

0 0 0

0 0 0 0 0

− 77
180

1
36 −3

5 1 0

− 49
180 − 1

12 −74
45

1
3

5
3

.

In the theorems 5.5 and 5.6 the fundamental matrix Z and the deviation matrix D are expressed as Cesaro

limits. These matrices can also be expressed in Abelian form as the next theorem shows.

Theorem 5.7

(1) Z = limα↑1
∑∞

n=0 α
n(P − P ∗)n.

(2) D = limα↑1
∑∞

n=0 α
n(P n − P ∗).

Proof

(1) Similar as the proof that (I −Q)−1 =
∑∞

n=0 Q
n, it can be shown that

H(α) :=
∑∞

n=0

{

α(P − P ∗)
}n

=
{

I − α(P − P ∗)
}−1

.

Hence, I = H(α)
{

I − α(P − P ∗)
}

= H(α)(I − P + P ∗) + (1 − α)H(α)(P − P ∗). Since P n − P ∗ is

Cesaro convergent to 0, P n− P ∗ is also Abel convergent to 0, i.e. lima↑1 (1− α)H(α) = 0. Therefore,

Z = (I − P + P ∗)−1 = limα↑1
∑∞

n=0 α
n(P − P ∗)n.

5.3. STATIONARY, FUNDAMENTAL AND DEVIATION MATRIX 179

(2) Because
∑∞

n=0 α
n(P n − P ∗) = I − P ∗ +

∑∞
n=1 α

n(P n − P ∗) = I − P ∗ +
∑∞

n=1 α
n(P − P ∗)n

=
∑∞

n=0 α
n(P − P ∗)n − P ∗,

we obtain

limα↑1
∑∞

n=0 α
n(P n − P ∗) = limα↑1

∑∞
n=0 α

n(P − P ∗)n − P ∗ = Z − P ∗ = D.

The following theorem gives the relation between average rewards, discounted rewards (over an infinite

horizon) and total rewards over a finite horizon.

Theorem 5.8

Let f∞ be a deterministic policy. Then,

(1) φ(f∞) = P ∗(f)r(f).

(2) φ(f∞) = limα↑1 (1− α)vα(f∞).

(3) vT (f∞) = Tφ(f∞) +D(f)r(f) − P T (f)D(f)r(f) for any T ∈ N.

Proof

(1) φ(f∞) = lim infT→∞
1
T

∑T
t=1 P

t(f)r(f) = P ∗(f)r(f).

(2) Since P ∗ is the Cesaro limit of P t, it is also the Abel limit, i.e.

φ(f∞) = P ∗(f)r(f) = limα↑1 (1− α)
∑∞

t=0 {αP (f)}tr(f) = vα(f∞).

(3) We apply induction on T .

T = 1: φ(f∞) +D(f)r(f) − P (f)D(f)r(f) =
{

P ∗(f) + {I − P (f)}D(f)
}

r(f) = r(f) = v1(f),

using that P ∗(f) + {I − P (f)}D(f) = I (see Theorem 5.6, part (2)).

Suppose that the statement is true for T periods. Then, we can write

(T + 1)φ(f∞) +D(f)r(f) − P T+1(f)D(f)r(f) =

Tφ(f∞) + P ∗(f)r(f) +D(f)r(r) − P T+1(f)D(f)r(f) = (by the induction hypothesis)

vT (f∞) + P T (f)D(f)r(f) + P ∗(f)r(f) − P T+1(f)D(f)r(f) =

vT (f∞) + P T (f)
{

D(f) + P ∗(f) − P (f)D(f)
}

r(f) = (using Theorem 5.6, part (2))

vT (f∞) + P T (f)r(f) = vT+1(f∞).

The regular case

A Markov chain P is called a regular Markov chain if the chain is irreducible and aperiodic. In that case it

can be shown 2 that P ∗ = limn→∞ P n. Since (P−P ∗)n = P n−P ∗ for n = 1, 2, . . . , we have (P−P ∗)n → 0

if n→∞. Therefore,

Z = (I − P + P ∗)−1 =

∞
∑

n=0

(P − P ∗)n.

Because D = Z − P ∗ and Z = I +
∑∞

n=1 (P − P ∗)n = I +
∑∞

n=1 (P n − P ∗), we obtain

D =

∞
∑

n=0

(P n − P ∗),

i.e. D represents the total deviation with respect to the stationary matrix. This explains the name

deviation matrix.

2For the proof see e.g. J. Kemeny and L. Snell: Finite Markov chains, Van Nostrand, 1960. p. 70.

180 CHAPTER 5. AVERAGE REWARD - GENERAL CASE

5.4 Extension of Blackwell’s theorem

The next theorem shows that the interval [0, 1) can be partitioned in a finite number of subintervals such

that in each subinterval there exists a deterministic policy which is optimal over the whole subinterval.

Theorem 5.9

There are numbers αm, αm−1, . . . , α0, α−1 and deterministic policies f∞m , f∞m−1, . . . , f
∞
0 such that

(1) 0 = αm < αm−1 < · · · < α0 < α−1 = 1;

(2) vα(f∞j) = vα for all α ∈ [αj, αj−1), j = m,m− 1, . . . , 0.

Proof

For any deterministic policy f∞, vα(f∞) is the unique solution of the linear system {I −αP (f)}x = r(f).

By Cramer’s rule 3 vα
i (f∞) is a rational function in α for each component i. Suppose that a deterministic

Blackwell optimal policy does not exist. For any fixed α a deterministic α-discounted optimal policy exists.

This implies a series {αk, k = 1, 2, . . .} and a series {fk, k = 1, 2, . . .} such that

α1 ≤ α2 ≤ · · · with limk→∞ αk = 1 and vα = vα(f∞k) > vα(f∞k−1) for α = αk, k = 2, 3,

Since there are only a finite number of deterministic policies, there must be a couple of policies, say f∞

and g∞, such that for some nondecreasing subsequence αkn
, n = 1, 2, . . . with limn→∞αkn

= 1,

vα(f∞) > vα(g∞) for α = αk1 , αk3, . . .

vα(f∞) < vα(g∞) for α = αk2 , αk4, . . .
(5.10)

Let h(α) = vα(f∞) − vα(g∞), then hi(α) is a continuous rational function in α on [0, 1) for each i ∈ S.

From (5.10) it follows that hi(α) has an infinite number of zeros, which is in contradiction with the

rationality of hi(α). Hence, there exists a deterministic Blackwell optimal policy, i.e. a policy f∞0 such

that vα(f∞0) = vα for all α ∈ [α0, 1) for some 0 ≤ α0 < 1.

With similar arguments it can be shown that for each fixed α ∈ [0, 1) there is a lower bound L(α) < α

and a deterministic policy f∞L(α) such that vα(f∞L(α)) = vα for all α ∈
(

L(α), α
)

. Similarly, for each fixed

α ∈ (0, 1] there is an upper bound U(α) > α and a deterministic policy f∞U(α) such that vα(f∞U(α)) = vα

for all α ∈
(

α, U(α)
)

.

The open intervals
(

− 1, U(0)
)

,
{(

L(α), U(α)
)

| α ∈ (0, 1)
}

and
(

L(1), 2
)

are a covering of the compact

set [0, 1]. By the Heine-Borel-Lebesque covering theorem 4 the interval [0, 1] is covered by a finite number

of intervals, say
(

− 1, U(0)
)

,
{(

L(αj), U(αj)
)

, j = m − 1, m− 2, . . . , 1
}

and
(

L(1), 2
)

. We may assume

that

αm := 0 < αm−1 < · · · < α0 < α−1 := 1, L(αm−1) < U(0), L(1) < U(α1)

and

L(αj) < L(αj−1) < U(αj) < U(αj−1), j = m− 1, m− 2, . . . , 2.

Since the rational functions vα(f∞L(αj−1)
) = vα(f∞U(αj)) = vα for all α ∈

(

L(αj−1), U(αj)
)

we have

vα(f∞L(αj−1)) = vα(f∞U(αj)
), j = 0, 1, . . . , m.

Let fj = fU(αj), j = 0, 1, . . . , m. Then, vα(f∞j) = vα for all α ∈ (αj, αj−1), j = 0, 1, . . . , m. Since vα(f∞)

is continuous in α, also vα(f∞j) = vα for α = αj, j = 0, 1, . . . , m.

3see e.g. J.B. Fraleigh and R.A. Beauregard: Linear Algebra, Addison Wesley, 1987, p. 214.
4See e.g. A.C. Zaanen: Integration, North Holland, 1967.

5.5. THE LAURENT SERIES EXPANSION 181

Corollary 5.2

For α ∈ [0, 1), the value vector vα is a continuous, piecewise rational function in α with no singular points.

Example 5.4

Let S = {1, 2}; A(1) = {1, 2, 3}, A(2) = {1}, A(3) = {1}; p11(1) = 0, p12(1) = 1; p11(2) = 1, p12(2) = 0;

p11(3) = 0.5, p12(3) = 0.5; r1(1) = 1, r1(2) = 0.5, r1(3) = 0.75, r2(1) = 0.

There are three deterministic policies: f∞1 , f∞2 , f∞3 with f1(1) = 1, f2(1) = 2 and f3(1) = 3.

vα
1 (f∞1) = 1, vα

2 (f∞1) = 0; vα
1 (f∞2) = 0.5

1−α , v
α
2 (f∞2) = 0; vα

1 (f∞3) = 0.75
1−0.5α, v

α
2 (f∞1) = 0.

Hence, vα
1 =

{

1 if 0 ≤ α ≤ 0.5;

0.5
1−α if 0.5 ≤ α < 1.

The value vector vα is in the interval [0, 1) indeed a continuous, piecewise rational function in α with no

singular points.

5.5 The Laurent series expansion

Theorem 5.8 part (2) shows a relation between discounted and average reward when the discount factor

tends to 1. This relation is based on the Laurent expansion of vα(f∞) close to α = 1 as expressed in the

next theorem.

Theorem 5.10

Let uk(f), k = −1, 0, . . . be defined by: u−1(f) := P ∗(f)r(f), u0(f) := D(f)r(f) and for k ≥ 1

uk(f) := −D(f)uk−1(f). Then, αvα(f∞) =
∑∞

k=−1 ρ
kuk(f) for α0(f) < α < 1, where ρ = 1−α

α
and

α0(f) = ‖D(f)‖
1+‖D(f)‖ .

Proof

Let x(f) := 1
α ·
∑∞

k=−1 ρ
kuk(f) = φ(f∞)

1−α + 1
α ·
∑∞

k=0 ρ
kuk(f). Since uk(f) = D(f){−D(f)}k r(f) for k ≥ 0,

the series
∑∞

k=0 ρ
kuk(f) is well defined if ‖ρD(f)‖ < 1, i.e. α ≥ ‖D(f)

1+‖D(f)‖ . Since vα(f∞) is the unique

solution of the linear system {I − αP (f)}x = r(f), it is sufficient to show that {I − αP (f)}x(f) = r(f),

i.e. y(f) := r(f) − {I − αP (f)}x(f) = 0. We can write,

y(f) = r(f) − {I − αP (f)}P∗(f)r(f)
1−α − {I − αP (f)}D(f)

α

∑∞
k=0 {−ρD(f)}kr(f)

= r(f) − P ∗(f)r(f) −
{

α
(

I − P (f)
)

+ (1− α)I
}D(f)

α

∑∞
k=0 {−ρD(f)}kr(f)

= {I − P ∗(f)}r(f) − {I − P (f)}D(f)
∑∞

k=0 {−ρD(f)}kr(f) − 1−α
α D(f)

∑∞
k=0 {−ρD(f)}kr(f)

= {I − P ∗(f)}r(f) − {I − P ∗(f)}∑∞
k=0 {−ρD(f)}kr(f) +

∑∞
k=0 {−ρD(f)}k+1r(f)

= {I − P ∗(f)}r(f) −∑∞
k=0 {−ρD(f)}kr(f) + P ∗(f)r(f) +

∑∞
k=1 {−ρD(f)}kr(f)

= {I − P ∗(f)}r(f) − r(f) −∑∞
k=1 {−ρD(f)}kr(f) + P ∗(f)r(f) +

∑∞
k=1 {−ρD(f)}kr(f)

= 0.

Corollary 5.3

vα(f∞) = φ(f∞)
1−α + u0(f) + ε(α), where ε(α) satisfies limα↑1 ε(α) = 0.

Proof

From Theorem 5.10, we obtain vα(f∞) =
φ(f)
1−α +

u0(f)
α +

∑∞
k=1

(1−α)k

αk+1 uk(f). By the series expansion

1
α = 1

1−(1−α) = 1 + (1− α) + (1− α)2 + · · · , we may write vα(f∞) = φ(f)
1−α + u0(f) + ε(α), where

limα↑1 ε(α) = 0.

182 CHAPTER 5. AVERAGE REWARD - GENERAL CASE

5.6 The optimality equation

In the discounted case, the value vector is the unique solution of an optimality equation. For the average

reward criterion a similar result holds, but the equation is more complicated.

Theorem 5.11

Consider the system

xi = maxa∈A(i)

∑

j pij(a)xj , i ∈ S

xi + yi = maxa∈A(i,x){ri(a) +
∑

j pij(a)yj} , i ∈ S
(5.11)

where A(i, x) := {a ∈ A(i) | xi =
∑

j pij(a)xj}, i ∈ S.
This system has the following properties:

(1) x = u−1(f0), y = u0(f0), where f∞0 is a Blackwell optimal policy, satisfies (5.11).

(2) If (x, y) is a solution of (5.11), then x = φ, the value vector.

Proof

Since f∞0 is a Blackwell optimal policy, for α sufficiently close to 1, say α ∈ [α0, 1), one can write

vα
i (f∞0) = vα

i = maxa∈A(i) {ri(a) + α
∑

j pij(a)v
α
j } ≥ ri(a) + α

∑

j pij(a)v
α
j , (i, a) ∈ S ×A.

Combining this result with Corollary 5.3 gives for all α ∈ [α0, 1):

φi(f
∞
0)

1−α
+ u0

i (f0) + εi(α) ≥ ri(a) + {1− (1− α)}∑j pij(a)
{

φj(f
∞
0)

1−α
+ u0

j(f0) + εj(α)
}

= ri(a) +
∑

j pij(a)
{

φj(f
∞
0)

1−α
+ u0

j (f0) + εj(α)
}

−

(1− α)
∑

j pij(a)
{

φj(f
∞
0)

1−α
+ u0

j(f0) + εj(α)
}

, (i, a) ∈ S ×A,
i.e.

1
1−α

{

φi(f
∞
0) −∑j pij(a)φj(f

∞
0)
}

+
{

u0
i (f0)− ri(a) −

∑

j pij(a)u
0
j(f0) +

∑

j pij(a)φj(f
∞
0)
}

+ε(α)≥0.

Since this result holds for all α ∈ [α0, 1), the first term multiplied by 1
1−α has to be nonnegative, i.e.

φi(f
∞
0) ≥

∑

j

pij(a)φj(f
∞
0) for all i ∈ S and a ∈ A(i). (5.12)

Furthermore, when φi(f
∞
0) =

∑

j pij(a)φj(f
∞
0), the second term has to be nonnegative, i.e.

u0
i (f0) ≥ ri(a) +

∑

j

pij(a)u
0
j(f0) −

∑

j

pij(a)φj(f
∞
0) = ri(a) +

∑

j

pij(a)u
0
j(f0)− φi(f

∞
0). (5.13)

For a = f0(i), i ∈ S, the inequalities in (5.12) and (5.13) are equalities, because:

φ(f∞0) = P ∗(f0)r(f0) = P (f0)P
∗(f0)r(f0) = P (f0)φ(f∞0)

and

u0(f0) = D(f0)r(f0) = {I − P ∗(f0) + P (f0)D(f0)}r(f0) = r(f0)− φ(f∞0) + P (f0)u
0(f0).

By these results, part (1) is shown. For part (2), let (x, y) be a solution of (5.11). Then, for any f∞ ∈ C(D),

x ≥ P (f)x, implying that x ≥ P n(f)x for all n ∈ N, and consequently, x ≥ P ∗(f)x. Furthermore, since

0 = P ∗(f){x − P (f)} and all elements of P ∗(f) and x − P (f) are nonnegative, p∗ij(f){x − P (f)x}j = 0

for all i, j ∈ S, implying that p∗ii(f){x− P (f)x}i = 0 for all i,∈ S. For an ergodic state i, p∗ii(f) > 0, and

consequently xi−
∑

j pij(f)xj = 0, i.e. f(i) ∈ A(i, x), and therefore, by (5.11) xi+yi ≥ ri(f)+
∑

j pij(f)yj .

5.6. THE OPTIMALITY EQUATION 183

The columns of P ∗(f) corresponding to the transient states are zero, implying that P ∗(f)(x + y) ≥
P ∗(f){r(f) + P (f)y} = φ(f∞) + P ∗(f)y, i.e.

φ(f∞) ≤ P ∗(f)x ≤ x. (5.14)

On the other hand, any solution of system (5.11) gives a policy g∞ which satisfies x = P (g)x and x+ y =

r(g) + P (g)y. Hence, x = P ∗(g)x and therefore,

φ(g∞) = P ∗(g)r(g) = P ∗(g){x+ y − P (g)y} = x+ P ∗(g){y − P (g)y} = x. (5.15)

From (5.14) and (5.15) it follows that xi = maxa∈A(i)

∑

j pij(a)xj = φi, i ∈ S.

Remarks

1. Since the x-vector in (5.11) is unique, namely x = φ, the set A(i, x) is also unique for all i ∈ S.

2. If policy f∞ satisfies φ = P (f)φ and φ+ y = r(f) + P (f)y for some vector y, then the policy is

average optimal, namely φ = P ∗(f)φ = P ∗(f){r(f) + P (f)y − y} = φ(f∞).

3. The proof suggests that a Blackwell optimal policy f∞0 is also average optimal, i.e. φ(f∞0) ≥ φ(R)

for every policy R. This result is shown below (Corollary 5.4).

4. If φ has identical components (e.g. if there is a unichain average optimal policy), then the first

equation of (5.11) is superfluous and (5.11) can be replced by the single optimality equation

x+ yi = maxa∈A(i){ri(a) +
∑

j

pij(a)yj}, i ∈ S. (5.16)

Theorem 5.12

limα↑1 (1− α)vα(R) ≥ φ(R) for all policies R.

Proof

Let R be an arbitrary policy, i any starting state and define xt :=
∑

(j,a) Pi,R{Xt = j, Yt = a} · rj(a) for

t = 1, 2, Since the sequence {xt | t = 1, 2, . . .} is bounded, we may write

(1 − α)−1vα
i (R) =

{
∑∞

t=1 α
t−1
}

· {∑∞
t=1 α

t−1xt

}

=
∑∞

t=1

{
∑t

s=1 xs

}

· αt−1.

(1− α)−2 =
∑∞

t=1 tα
t−1 for α ∈ (0, 1), and therefore, φi(R) =

{∑∞
t=1 tα

t−1
}

· (1− α)2 · φi(R). Hence,

(1− α)vα
i (R)− φi(R) = (1 − α)2 ·∑∞

t=1

{

1
t

∑t
s=1 xs − φi(R)

}

· tαt−1. Choose an arbitrary ε > 0. Since

φi(R) = lim infT→∞
1
T

∑T
t=1 xt, there exists Tε such that φi(R) < 1

T

∑T
t=1 xt + ε for all T > Tε.

Therefore, we obtain

(1− α)2
∑

t>Tε

{

1
t

∑t
s=1 xs − φi(R)

}

tαt−1>−ε(1 − α)2
∑

t>Tε
tαt−1≥−ε(1 − α)2

∑∞
t=1 tα

t−1 =−ε.

We also have,

(1− α)2
∑

t≤Tε

{

1
t

∑t
s=1 xs − φi(R)

}

tαt−1 ≥ (1− α)2min1≤t≤Tε

{

1
t

∑t
s=1 xs − φi(R)

}∑

t≤Tε
tαt−1 > −ε

for α sufficiently close to 1. Hence, (1 − α)vα
i (R) − φi(R) ≥ −2ε for α sufficiently close to 1, i.e.

limα↑1 (1− α)vα(R) ≥ φ(R).

Corollary 5.4

A Blackwell optimal policy f∞0 is also average optimal and consequently there exists a deterministic optimal

policy.

Proof

Let f∞0 be a Blackwell optimal policy and R an arbitrary policy. Then,

φ(f∞0) = limα↑1 (1 − α)vα(f∞0) = limα↑1 (1− α)vα ≥ limα↑1 (1− α)vα(R) ≥ φ(R).

184 CHAPTER 5. AVERAGE REWARD - GENERAL CASE

5.7 Policy iteration

In policy iteration a sequence of policies f∞1 , f∞2 , . . . is constructed such that φ(f∞k+1) ≥ φ(f∞k) and

vα(f∞k+1) > vα(f∞k) for all α ∈ (αk, 1). Hence, each new policy in the sequence differs from the previous

policies. Since C(D) is finite, the policy iteration method terminates after a finite number of iteration.

Theorem 5.13

Consider the following system

{I − P (f)}x = 0

x + {I − P (f)}y = r(f)

y + {I − P (f)}z = 0

(5.17)

Then, for every f∞ ∈ C(D), the system (5.17) has a solution
(

x(f), y(f), z(f)
)

, where x(f) and y(f) are

unique with x(f) = u−1(f) = φ(f∞) and y(f) = u0(f).

Proof

First, we will show that x(f) = u−1(f), y(f) = u0(f) and z(f) = u1(f) is a solution of (5.17). We use the

properties P ∗(f)D(f) = 0 and (I − P (f))D(f) = I − P ∗(f) (see Theorem 5.6).

{I − P (f)}x(f) = {I − P (f)}u−1(f) = {I − P (f)}P ∗(f)r(f) = 0.

x(f) + {I − P (f)}y(f) = P ∗(f)r(f) + {I − P (f)}D(f)r(f)

= {P ∗(f) +
(

I − P (f)
)

D(f)}r(f) = r(f).

y(f) + {I − P (f)}z(f) = D(f)r(f) − {I − P (f)}D2(f)r(f)

= {I −
(

I − P (f)
)

D(f)}D(f)r(f) = P ∗(f)D(f)r(f) = 0.

Next, we show the second part of the theorem. Let (x, y, z) be any solution of (5.17). Then, x = P (f)x

implies x = P ∗(f)x = P ∗(f){r(f) −
(

I − P (f)
)

y} = P ∗(f)r(f) = u−1(f). Since y + {I − P (f)}z = 0, we

have P ∗(f)y = 0, and consequently, {I − P (f) + P ∗(f)}y = {I − P (f)}y = r(f) − P ∗(f)r(f), i.e.

y = {I − P (f) + P ∗(f)}−1{I − P ∗(f)}r(f)

= Z(f){I − P ∗(f)}r(f) = {D(f) + P ∗(f)}{I − P ∗(f)}r(f) = D(f)r(f) = u0(f).

For every i ∈ S and f∞ ∈ C(D), the action set B(i, f) is defined by

B(i, f) =

{

a ∈ A(i)

∣

∣

∣

∣

∣

∑

j pij(a)φj(f
∞) > φi(f

∞) or
∑

j pij(a)φj(f
∞) = φi(f

∞) and ri(a) +
∑

j pij(a)u
0
j (f) > φi(f

∞) + u0
i (f)

}

.

(5.18)

Theorem 5.14

(1) If B(i, f) = ∅ for every i ∈ S, then f∞ is an average optimal policy.

(2) If B(i, f) 6= ∅ for at least one i ∈ S and the policy g∞ 6= f∞ satisfies g(i) ∈ B(i, f) if g(i) 6= f(i),

then φ(g∞) ≥ φ(f∞) and vα(g∞) > vα(f∞) for α sufficiently close to 1.

Proof

(1) Since B(i, f) = ∅ for every i ∈ S, we have, for any h∞ ∈ C(D),
∑

j pij(h)φj(f
∞) ≤ φi(f

∞) and

ri(h) +
∑

j pij(h)u
0
j (f) ≤ φi(f

∞) + u0
i (f) if

∑

j pij(h)φj(f
∞) = φi(f

∞).

Let R = (h, f, f, . . .). Then, vα(R) = r(h) + αP (h)vα(f∞) and, by Theorem 5.10,

5.7. POLICY ITERATION 185

αvα(f∞) = α
1−αφ(f∞) + u0(f) + ε1(α) = {1− (1− α)}φ(f∞)

1−α + u0(f) + ε1(α) · e

= φ(f∞)
1−α + u0(f) − φ(f∞) + ε1(α) · e,

where ε1(α) is such that limα↑1 ε1(α) = 0. Furthermore, we have

vα(R) = r(h) + P (h)
{

φ(f∞)
1−α + u0(f) − φ(f∞) + ε1(α) · e

}

= P(h)φ(f∞)
1−α + r(h) + P (h)u0(f) − P (h)φ(f∞) + ε1(α) · e.

Since vα(f∞) =
φ(f∞)
1−α + u0(f) + ε2(α) · e, where ε2(α) is such that limα↑1 ε2(α) = 0, we have

vα(f∞)−vα(R)=
1

1−α{φ(f∞)−P (h)φ(f∞)}+{u0(f)−r(h)−vP (h)u0(f)+P (h)φ(f∞)}+ε3(α)·e. (5.19)

Since φ(f∞)− P (h)φ(f∞) ≥ 0 and because, when {φ(f∞)− P (h)φ(f∞)}i = 0,

{u0(f) − r(h) − P (h)u0(f) + P (h)φ(f∞)}i = {u0(f) − r(h) − P (h)u0(f) + φ(f∞)}i ≥ 0, we obtain

vα(f∞)− vα(R) ≥ ε3(α) · e for α sufficiently close to 1, where ε3(α) is such that limα↑1 ε3(α) = 0.

Hence, vα(f∞) ≥ vα(R) + ε3(α) · e = r(h) + αP (h)vα(f∞) + ε3(α) · e, and consequently,

{I − αP (h)}vα(f∞) ≥ r(h) + αP (h)vα(f∞) + ε3(α) · e. Therefore,

vα(f∞) ≥ {I − αP (h)}−1{r(h) + ε3(α) · e} = vα(h∞) + ε3(α)
1−α · e.

From the Laurent expansion it follows that φ(f∞) ≥ φ(h∞), i.e. f∞ is an average optimal policy.

(2) Let R = (g, f, f, . . .). Then,

if g(i) = f(i), then the ith rows of P (f) and P (g) are identical and ri(f) = ri(g), i.e.

vα
i (R) = {r(g) + αP (g)vα(f∞)}i = {r(f) + αP (f)vα(f∞)}i = vα

i (f∞).

if g(i) 6= f(i), then g(i) ∈ B(i, f), and because (5.19) holds for h = g, we have

vα
i (f∞)− vα

i (R) = 1
1−α{φ(f∞)− P (h)φ(f∞)}i + {u0(f) − r(g)− P (g)u0(f) + P (g)φ(f∞)}i

+ ε3(α) · e for α sufficiently close to 1.

Hence, for α sufficiently close to 1, vα(R) = r(g) + αP (g)vα(f∞) > vα(f∞), i.e.

{I − αP (g)}vα(f∞) > r(g) → vα(f∞) > {I − αP (g)}−1r(g) = vα(f∞).

Again, by the Laurent expansion, it follows that φ(g∞) ≥ φ(f∞).

Algorithm 5.6 Determination of an average optimal policy by policy iteration (version 1)

Input: Instance of an MDP.

Output: An optimal deterministic policy f∞ and the value vector φ.

1. Select an arbitrary f∞ ∈ C(D).

2. Determine φ(f∞) and u0(f) as unique (x, y)-part in a solution of the system

{I − P (f)}x = 0

x + {I − P (f)}y = r(f)

y + {I − P (f)}z = 0

3. Determine for every i ∈ S

B(i, f) :=

{

a ∈ A(i)

∣

∣

∣

∣

∣

∑

j pij(a)φj(f
∞) > φi(f

∞) or
∑

j pij(a)φj(f
∞) = φi(f

∞) and ri(a)+
∑

j pij(a)u
0
j(f) > φi(f

∞)+u0
i (f)

}

.

186 CHAPTER 5. AVERAGE REWARD - GENERAL CASE

4. if B(i, f) = ∅ for every i ∈ S then

begin f∞ is an average optimal policy; φ(f∞) is the value vector φ; STOP end

else begin take g such that g 6= f and g(i) ∈ B(i, f) if g(i) 6= f(i); f := g; return to step 2

end

Example 5.5

Consider the MDP of Example 3.1. Start with the policy f∞, where f(1) = 3, f(2) = 2 and f(3) = 1.

Iteration 1:

The solution of the linear system gives: φ(f∞) =
(

11
2 , 4,

11
2

)

, u0(f) =
(

− 5
4 , 0,

5
4

)

.

B(1, f) = ∅, B(2, f) = {1, 3}; B(3, f) = {3}. g(1) = 3, g(2) = 3, g(3) = 3. f(1) = 3, f(2) = 3, f(3) = 3.

Iteration 2:

The solution of the linear system gives: φ(f∞) = (7, 7, 7), u0(f) = (−4,−2, 0). B(1, f) = ∅, B(2, f) = ∅,
B(3, f) = ∅. f∞ is an optimal policy and φ(f∞) = (7, 7, 7) is the value vector.

Modified algorithms

In this subsection we first show that the third part of the system in step 2 of Algorithm 5.6, i.e. the

subsystem y + I − P (f)z = 0, cannot be deleted; otherwise, the policy iteration algorithm may cycle.

Without the subsystem y + I − P (f)z = 0, the policy iteration algorithm becomes as follows.

Algorithm 5.7 Determination of an average optimal policy by policy iteration (second version)

Input: Instance of an MDP.

Output: An optimal deterministic policy f∞ and the value vector φ.

1. Select an arbitrary f∞ ∈ C(D).

2. Determine
(

x = φ(f∞), y
)

as (x, y)-part of the system

{

{I − P (f)}x = 0

x + {I − P (f)}y = r(f)

3. Determine for every i ∈ S

B(i, f) :=

{

a ∈ A(i)

∣

∣

∣

∣

∣

∑

j pij(a)φj(f
∞) > φi(f

∞) or
∑

j pij(a)φj(f
∞) = φi(f

∞) and ri(a) +
∑

j pij(a)yj > φi(f
∞) + yi

}

.

4. if B(i, f) = ∅ for every i ∈ S then

begin f∞ is an average optimal policy; φ(f∞) is the value vector φ; STOP end

else begin take g such that g 6= f and g(i) ∈ B(i, f) if g(i) 6= f(i); f := g; return to step 2

end

Example 5.6

S = {1, 2, 3}; A(1) = A(2) = {1}, A(3) = {1, 2}; r1(1) = r2(1) = r3(1) = r3(2) = 0.

p11(1) = 1, p12(1) = p13(1) = 0; p21(1) = 0, p22(1) = 1, p23(1) = 0; p31(1) = 1, p32(1) = p33(1) = 0;

p31(2) = 0, p32(2) = 1, p33(2) = 0.

This model has two deterministic policies: f∞1 and f∞2 with f1(3) = 1 and f2(3) = 2.

All policies are optimal and the value vector φ = (0, 0, 0,).

For policy f∞1 the linear system gives: x1 = x2 = x3 = 0; y1 = y3 and y2 can arbitrarily chosen.

For policy f∞2 the linear system gives: x1 = x2 = x3 = 0; y2 = y3 and y1 can arbitrarily chosen.

5.7. POLICY ITERATION 187

For policy f∞1 the sets B(i, f1) are: B(1, f1) = B(2, f1) = ∅; B(3, f1) =

{

∅ if y2 ≤ y1;
{2} if y2 > y1.

For policy f∞2 the sets B(i, f2) are: B(1, f2) = B(2, f2) = ∅; B(3, f2) =

{

∅ if y1 ≤ y2;
{2} if y1 > y2.

If we start with policy f∞1 and if we take y1 = 0, y2 = 1, y3 = 0, then the next policy is policy f∞2 .

For policy f∞2 , we can take y1 = 1, y2 = 0, y3 = 0, which gives as next policy f∞1 . So, we have a cycle.

We will present additional requirements to the solution y such that the policy iteration method has foolproof

convergence to an average optimal policy. Therefore, we first analyze the set of solutions (x, y) of the linear

system

{I − P (f)}x = 0; x+ {I − P (f)}y = r(f). (5.20)

Any solution of (5.20) satisfies x = P ∗(f)r(f) and consequently,

{I − P (f)}y = r(f) − φ(f∞). (5.21)

A solution y of equation (5.21) is called a relative value vector. It can easily be verified that a solution

of equation (5.21) is given by y1 = Z(f){r(f) − φ(f∞)}. Hence, for any solution y of (5.21), we have

{I − P (f)}(y − y1) = 0. Denote by n(f) the number of subchains (i.e. closed, irreducible sets of states)

of P (f). Then, we know from the theory of Markov chains (cf. Section 5.3) that

{P ∗(f)}ij =

n(f)
∑

m=1

am
i (f)πm

j (f), i, j ∈ S. (5.22)

where the row vector πm(f) is the unique stationary distribution on the mth subchain of P (f) and am
i (f)

is the absorption probability in the mth subchain, starting from state i. Note that the column vectors

am(f) satisfy {I − P (f)}am(f) = 0, 1 ≤ m ≤ n(f), and that the vectors a1(f), a2(f), . . . , an(f)(f) are

linearly independent. Since any solution of {I − P (f)}x = 0 implies {I − P ∗(f)}x = 0 and because the

rank of {I − P ∗(f)} is N − n(f), it follows that any solution of {I − P (f)}x = 0 is given by

x =

n(f)
∑

m=1

cma
m(f) (5.23)

with c1, c2, . . . , cn(f) arbitrary scalars. Consequently, by (5.23), any solution y of (5.21) satisfies

y = Z(f){r(f) − φ(f∞)} +

n(f)
∑

m=1

cma
m(f) (5.24)

with c1, c2, . . . , cn(f) arbitrary scalars. We also have

Z(f){r(f) − φ(f∞)} = {D(f) + P ∗(f)}{r(f) − φ(f∞)}
= D(f)r(f) −D(f)P ∗(f)r(f) + P ∗(f)r(f) − P ∗(f)P ∗(f)r(f)

= D(f)r(f) = u0(f).

Therefore, we have shown the following result.

Lemma 5.5

If (x, y) is a solution of (5.20), then x = φ(f∞) and y = u0(f) +
∑n(f)

m=1 cma
m(f), with c1, c2, . . . , cn(f)

arbitrary scalars.

188 CHAPTER 5. AVERAGE REWARD - GENERAL CASE

In order to prevent cycling in Algorithm 5.7, the following rules have been proposed in the literature.

Rule 1:

Set yi = 0 for the smallest i within each subchain of P (f).

Rule 2:

Choose y such that P ∗(f)y = 0.

Rule 3:

For any two policies f∞1 and f∞2 that have a common subchain C and that select identical actions in all

states belonging to C, the relative value vectors y(f1) and y(f2) are chosen such that yi(f1) = yi(f2) for

all states i ∈ C.

Notes

1. The requirement of rule 3 is feasible since it follows from Lemma 5.5 and the block structure of Z(f)

that the y-values of the states belonging to one subchain depend only upon the actions selected within

that subchain.

2. Consider the choice of y according to rule 1. Then, cm = −u0
i(m)(f), m = 1, 2, . . . , n(f), where i(m) is

the smallest i within subchainm of P (f). In this case rule 3 is verified, because if on common subchains

identical actions are chosen the same relative values are obtained. So, rule 1 is a special case of rule 3.

3. Consider the solution (x, y) chosen in Algorithm 5.6. Then, from the third system in step 2 of this

algorithm we obtain P ∗(f)y = 0, so in this algorithm rule 2 is satisfied. Because P ∗(f)y = 0, we have

{I −P (f)+P ∗(f)}y = r(f)−φ(f∞), implying y = Z(f){r(f)−φ(f∞)}, i.e. in this version we choose

the scalars cm = 0, m = 1, 2, . . . , n(f). So, Algorithm 5.6 satisfies rule 2 and rule 2 is a special case of

rule 3.

4. Note that Example 5.6 does not satisfy rule 3. Namely, the two policies f∞1 and f∞2 have the subchains

{1} and {2}, and select in these subchains the only available action 1. Therefore, by rule 3, for both

relative values vectors, say y1 and y2, we require y1
1 = y2

1 and y1
2 = y2

2 , which is not the case in this

example, because there we have chosen y1 = (0, 1, 0) and y2 = (1, 0, 0).

5. The rules 1 and 3 require the determination of the subchains for each policy generated by Algorithm

5.7. This needs O(N2) additional operations in each iteration.

Next, we present a modified version of Algorithm 5.7 in which rule 1 is implemented. Moreover, we show

the convergence of this algorithm.

Algorithm 5.8 Determination of an average optimal policy by policy iteration (third version)

Input: Instance of an MDP.

Output: An optimal deterministic policy f∞ and the value vector φ.

1. Select an arbitrary f∞ ∈ C(D).

2. Determine the ergodic structure of P (f) and let n(f) be the number of subchains.

3. Determine
(

x = φ(f∞), y
)

as (x, y)-part of the system

{

{I − P (f)}x = 0

x + {I − P (f)}y = r(f)

with yi = 0 for the smallest i within each subchain of P (f).

4. (a) for all (i, a) ∈ S ×A do si(a) :=
∑

j pij(a)φj(f
∞)

(b) for all i ∈ S do A1(i) := {a1 | si(a1) ≥ si(a) for all a ∈ A(i)}

5.7. POLICY ITERATION 189

(c) for all i ∈ S do choose g(i) ∈ A1(i), setting g(i) = f(i) if possible

(d) if g(i) = f(i) for all i ∈ S then go to step 5

otherwise begin for all i ∈ S do f(i) := g(i); go to step 2 end

5. (a) for all (i, a) ∈ S ×A do ti(a) := ri(a) +
∑

j pij(a)yj

(b) for all i ∈ S do A2(i) := {a2 ∈ A1(i) | ti(a2) ≥ ti(a1) for all a1 ∈ A1(i)}
(c) for all i ∈ S do choose g(i) ∈ A2(i), setting g(i) = f(i) if possible

(d) if g(i) = f(i) for all i ∈ S then

begin f∞ is an average optimal policy; x = φ(f∞) is the value vector φ; STOP end

otherwise begin for all i ∈ S do f(i) := g(i); go to step 2 end

The improvement step of the algorithm consists of two phases. First, improvement is sought through

the first optimality equation. If no strict improvement is possible, we seek an improvement decision rule

through the second optimality equation. When none improvement is available, the algorithm terminates.

Example 5.7

S = {1, 2, 3}; A(1) = A(2) = {1, 2}, A(3) = {1}; r1(1) = 3, r1(2) = 1; r2(1) = 0, r2(2) = 1; r3(1) = 2.

p11(1) = 1, p12(1) = p13(1) = 0; p11(2) = 0, p12(1) = 1, p13(1) = 0; p21(1) = 0, p22(1) = 1, p23(1) = 0;

p21(2) = p22(2) = 0, p23(2) = 1; p31(1) = p32(1) = 0, p33(1) = 1.

Start with the policy f(1) = 2, f(2) = 1, f(3) = 1.

Iteration 1:

P (f) has two subchains with states {2} and {3}, respectively. The linear system becomes:

x1 − x2 = 0

x1 + y1 − y2 = 1

x2 = 0

x3 = 2

y2 = 0

y3 = 0

The unique solution of this system is: x = (0, 0, 2), y = (1, 0, 0).

s1(1) = s1(2) = s2(1) = 0, s2(2) = 2, s3(1) = 2; A1(1) = {1, 2}, A1(2) = {2}, A1(3) = {1}.
g(1) = 2, g(2) = 2, g(3) = 1; f(1) = 2, f(2) = 2, f(3) = 1.

Iteration 2:

P (f) has one subchain with state {3}. The linear system becomes:

x1 − x2 = 0

x2 − x3 = 0

x1 + y1 − y2 = 1

x2 + y2 − y3 = 1

x3 = 2

y3 = 0

The unique solution of this system is: x = (2, 2, 2), y = (−2,−1, 0).

s1(1) = s1(2) = s2(1) = s2(2) = s3(1) = 2; A1(1) = {1, 2}, A1(2) = {1, 2}, A1(3) = {1}.
g(1) = 1, g(2) = 2, g(3) = 1; f(1) = 1, f(2) = 2, f(3) = 1.

190 CHAPTER 5. AVERAGE REWARD - GENERAL CASE

Iteration 3:

P (f) has two subchain with states {1} and {3}, respectively. The linear system becomes:

x2 − x3 = 0

x1 = 3

x2 + y2 − y3 = 1

x3 = 2

y1 = 0

y3 = 0

The unique solution of this system is: x = (3, 2, 2), y = (0,−1, 0).

s1(1) = 3, s1(2) = s2(1) = s2(2) = s3(1) = 2; A1(1) = {1}, A1(2) = {1, 2}, A1(3) = {1}.
g(1) = 1, g(2) = 2, g(3) = 1.

t1(1) = 3, t1(2) = 0, t2(1) = −1, t2(2) = 1, t3(1) = 2; A2(1) = {1}, A2(2) = {2}, A1(3) = {1}.
g(1) = 1, g(2) = 2, g(3) = 1. Since g = f , policy f∞ with f(1) = 1, f(2) = 2, f(3) = 1 is an average

optimal policy with value vector φ = (3, 2, 2).

Denote by y(f) an arbitrary y-solution to (5.20).

Lemma 5.6

Let f∞, g∞ ∈ C(D) and define the vectors u, v, ∆φ and ∆ y by:

u := {P (g)−I}φ(f∞), v := r(g)+{P (g)−I}y(f)−φ(f∞), ∆φ := φ(g∞)−φ(f∞) and ∆ y := y(g)−y(f).
Then, u = {I − P (g)}∆φ, v = {I − P (g)}∆ y+ ∆φ and P ∗(g)u = P ∗(g){v −∆φ} = 0.

Proof

{I − P (g)}∆φ = {I − P (g)}{φ(g∞)− φ(f∞)} = 0− {I − P (g)}φ(f∞) = u.

{I − P (g)}∆ y = {I − P (g)}{y(g) − y(f)} = r(f) − φ(f∞) − {I − P (g)}y(f)
= v + φ(f∞) − φ(g∞) = v −∆φ.

Since P ∗(g){I − P (g)} = 0, obviously, P ∗(g)u = 0 and P ∗(g){v −∆φ} = 0.

Let P (g) have m subchains. Then, P (g) and P ∗(g) can, after renumbering of the states, be written in

standard form as (cf. (5.4) and (5.7)):

P =

P1(g) 0 · · · · · 0

0 P2(g) 0 · · · · 0

· · · · · 0

· · · · · 0

· · · · · 0

0 · · · · 0 Pm(g) 0

A1(g) A2(g) · · · · Am(g) Q(g)

and P ∗ =

P ∗
1 (g) 0 · · · · · 0

0 P ∗
2 (g) 0 · · · · 0

· · · · · ·
· · · · · ·
· · · · · ·
0 · · · · 0 P ∗

m(g) 0

A∗
1(g) A∗

2(g) · · · · A∗
m(g) 0

.

Partition the vectors φ(f∞), φ(g∞), y(f), y(g), ∆φ, ∆ y, u and v consistent with the above partition.

Denote u = (u1, u2, . . . , um, um+1) and for the vectors φ(f∞), φ(g∞), y(f), y(g), ∆φ, ∆ y and v, we use

a similar partition.

5.7. POLICY ITERATION 191

Lemma 5.7

Suppose that ui = 0 for i = 1, 2, . . . , m. Then, we have

(1) (∆φ)i = P ∗
i (g)vi for i = 1, 2, . . . , m.

(2) (∆φ)m+1 = {I −Q(g)}−1{um+1 +
∑m

j=1 Aj(g)(∆φ)j}.
(3) (∆ y)m+1 = {I −Q(g)}−1{vm+1 − (∆φ)m+1 +

∑m
j=1 Aj(g)(∆ y)j}.

Proof

(1) Take any 1 ≤ i ≤ m. Since, by Lemma 5.6, {I −Pi(g)}(∆φ)i = ui = 0, we have (∆φ)i = Pi(g)(∆φ)i,

implying (∆φ)i = P ∗
i (g)(∆φ)i. Also from Lemma 5.6, we have vi = {I − Pi(g)}(∆ y)i + (∆φ)i, and

consequently, P ∗
i (g)vi = 0 + P ∗

i (g)(∆φ)i = (∆φ)i.

(2) By Lemma 5.6, um+1 =
[

{I −P (g)}(∆φ)
]m+1

= −∑m
j=1 Aj(g)(∆φ)j + {I −Q(g)}(∆φ)m+1. Hence,

(∆φ)m+1 = {I −Q(g)}−1{um+1 +
∑m

j=1 Aj(g)(∆φ)j}}.
(3) vm+1 =

[

{I − P (g)}(∆ y+ ∆φ)
]m+1

= −∑m
j=1 Aj(g)(∆ y)j + {I −Q(g)}(∆ y)m+1 + (∆φ)m+1.

Therefore, (∆ y)m+1 = {I −Q(g)}−1{vm+1 − (∆φ)m+1 +
∑m

j=1 Aj(g)(∆ y)j}.

Theorem 5.15

Let f∞ and g∞ be two subsequent policies in Algorithm 5.8. Suppose that P (g) has m subchains

R1, R2, . . . , Rm and let T the set of transient states. Then,

(1) If {P (g)φ(f∞)}j > φj(f
∞) for some stat j and if g(i) = f(i) for all i with {P (g)φ(f∞)}j = φj(f

∞),

then j ∈ T and φj(g
∞) > φj(f

∞).

(2) If P (g)φ(f∞) = φ(f∞) and
[

r(g) − φ(f∞) − {I − P (g)}y(f)
]

j
> 0 for some state j ∈ Ri

and if g(i) = f(i) for all i with
[

r(g) − φ(f∞) − {I − P (g)}y(f)
]

i
= 0, then φk(g∞) > φk(f∞)

for all k ∈ Ri.

(3) If P (g)φ(f∞) = φ(f∞) and
[

r(g) − φ(f∞) − {I − P (g)}y(f)
]

j
= 0 for all states j ∈ ∪m

i=1 Ri, and

furthermore,
[

r(g) − φ(f∞) − {I − P (g)}y(f)
]

k
> 0 for some k ∈ T , then φ(g∞) = φ(f∞) and

yk(g) > yk(f).

Proof

Let u, v,∆φ and ∆ y be defined as in Lemma 5.6. Then, by the determination of g in step 4 of Algorithm

5.8, we have P (g)φ(f∞) ≥ φ(f∞), i.e. u ≥ 0.

(1) Since P ∗(g)u = 0 (see Lemma 5.6) and because all elements of P ∗
i (g) are strictly positive, ui = 0 for

i = 1, 2, . . . , m. Therefore, if uj > 0, i.e. {P (g)φ(f∞)}j > φj(f
∞), then state j is transient and

um+1
j > 0. Because g(i) = f(i) for all states i that are recurrent in the Markov chain P (g), the

submatrices of P (g) and P (f) with respect to ∪m
i=1Ri are identical. Consequently, we obtain

(∆φ)i = P ∗
i (g)vi = P ∗

i (g)
{

ri(g) + {Pi(g) − I}yi(g) − φi(g∞)
}

= P ∗
i (g)ri(g)− P ∗

i (g)φi(g∞)} = φi(g∞)} − φi(g∞)} = 0, i = 1, 2, . . . , m.
.

Noting that {I −Q(g)}−1 ≥ I and applying Lemma 5.7 part (2), we have

(∆φ)m+1 = {I −Q(g)}−1{um+1 +
∑m

i=1 Ai(g)(∆φ)i} ≥ um+1 and consequently,

(∆φ)m+1
j ≥ um+1

j > 0, i.e. φj(g
∞) > φj(f

∞).

(2) Since u = 0 and vi
j > 0 for some j ∈ Ri, by Lemma 5.7 part (1), we have (∆φ)i

k = {P ∗
i (g)vi}k > 0 for

all k ∈ Ri, i.e. φk(g∞) > φk(f∞) for all k ∈ Ri.

192 CHAPTER 5. AVERAGE REWARD - GENERAL CASE

(3) Since u = 0 and vi = 0 for i = 1, 2, . . . , m, part (1) and (2) of Lemma 5.7 imply that (∆φ)i = 0 for

i = 1, 2, . . . , m+ 1, i.e. φ(g∞) = φ(f∞). Therefore, by Lemma 5.6, {I − Pi(g)}(∆ y)i = vi = 0 for

i = 1, 2, . . . , m. Consequently, (∆ y)i = P ∗
i (g)}(∆ y)i, so the vector (∆ y)i has identical components

for i = 1, 2, . . . , m. Hence, by Rule 1, (∆ y)i = 0 for i = 1, 2, . . . , m. By Lemma 5.7 part (3), we have

(∆ y)m+1 = {I −Q(g)}−1{vm+1 − (∆φ)m+1 +
∑m

i=1 Ai(g)(∆φ)i} = {I −Q(g)}−1vm+1 ≥ vm+1 .

Since vm+1
k > 0 for some k ∈ T , we obtain (∆ y)m+1

k ≥ um+1
k > 0, i.e. yk(g) > yk(f).

Theorem 5.16

Algorithm 5.8 terminates in a finite number of iterations with an average optimal policy and also with the

value vector.

Proof

From Theorem 5.15 it follows that Algorithm 5.8 has the following properties:

a. The average reward vectors of successive policies are monotone nondecreasing.

b. If improvement occurs for state j in step 4 (c) of the algorithm, then j is transient under P (g) and

φj(g
∞) > φj(f

∞). Note that φk(g∞) > φk(f∞) may hold for other states which are transient under

P (g).

c. If no improvement occurs in step 4 (c) and it occurs in step 5 (c) of the algorithm for state j, where j

in recurrent under P (g), then φk(g∞) > φk(f∞) for all states in the same recurrent class as j, and

possibly for other states which are transient under P (g).

d. If no improvement occurs in step 4 (c) and it occurs in step 5 (c) of the algorithm for state k, where

k in transient under P (g), then yk(g) > yk(f).

By the above observations, Algorithm 5.8 terminates in a finite number of iterations. At termination the

policy f∞ satisfies:
{

φ(f∞) ≥ P (h)φ(f∞) for all h∞ ∈ C(D)

r(f) + P (f)y(f) ≥ r(h) + P (h)y(f) for all h∞ ∈ C(D)

Furthermore, we have, by step 3 of Algorithm 5.8, the relation φ(f∞) + {I − P (f)}y(f) = r(f). Hence,

φ(f∞) ≥ P ∗(h)φ(f∞) and φ(f∞)+y(f) ≥ r(h)+P (h)y(f) for all h∞ ∈ C(D). The last inequality implies

P ∗(h)φ(f∞) ≥ P ∗(h)r(h) = φ(h∞) for all h∞ ∈ C(D). Therefore, φ(f∞) ≥ P ∗(h)φ(f∞) = φ(h∞) for all

h∞ ∈ C(D), i.e. f∞ is an average optimal policy. Furthermore, Algorithm 5.8 provides in step 3 the value

vector x = φ(f∞).

5.8 Linear programming

To obtain the value vector and an average optimal policy by linear programming, we need a property for

which the value vector is an extreme element. Such property, called superharmonicity, can be derived from

the optimality equation. In the context of average reward, a vector v ∈ R
N is superharmonic if there exists

a vector u ∈ R
N such that the pair (u, v) satisfies the following system of inequalities

{

vi ≥ ∑

j pij(a)vj for every (i, a) ∈ S × A
vi + ui ≥ ri(a) +

∑

j pij(a)uj for every (i, a) ∈ S × A
(5.25)

Theorem 5.17

The value vector φ is the (componentswise) smallest superharmonic vector.

5.8. LINEAR PROGRAMMING 193

Proof

Let f∞0 be a Blackwell optimal policy. From Theorem 5.11 it follows that

φi ≥ ∑

j pij(a)φj for every i ∈ S, a ∈ A(i)

φi + u0
i (f0) ≥ ri(a) +

∑

j pij(a)u
0
j (f0) for every i ∈ S, a ∈ A(i, φ)

(5.26)

where A(i, φ) := {a ∈ A(i) | φi =
∑

j pij(a)φj}, i ∈ S.
Let A∗(i) := {a ∈ A(i) | φi + u0

i (f0) < ri(a) +
∑

j pij(a)u
0
j (f0)}, i ∈ S, and define

si(a) := φi −
∑

j pij(a)φj ; ti(a) := φi + u0
i (f0)− ri(a) −

∑

j pij(a)u
0
j (f0), (i, a) ∈ S × A,

u := u0(f0) −M · φ. where M :=

min
{ ti(a)

si(a)

∣

∣

∣ a ∈ A∗(i), i ∈ S
}

if ∪i∈S A∗(i) 6= ∅
0 if ∪i∈S A∗(i) = ∅

Note that M ≤ 0.

For a ∈ A(i, φ), we have
{

φi =
∑

j pij(a)φj;

φi + ui = φi + u0
i (f0)−M · φi ≥ ri(a) +

∑

j pij(a){u0
j(f0) −M · φj} = ri(a) +

∑

j pij(a)uj .

For a ∈ A∗(i), we have

φi >
∑

j pij(a)φj ;

φi + ui = φi + u0
i (f0)−M · {si(a) +

∑

j pij(a)φj}
= ti(a) + ri(a) +

∑

j pij(a)u
0
j(f0) −M · si(a) −M ·

∑

j pij(a)φj ≥ ri(a) +
∑

j pij(a)uj.

For a /∈ {a ∈ A(i, φ) ∪A∗(i)}, we have

φi >
∑

j pij(a)φj ;

φi + ui = φi + u0
i (f0)−M · φi ≥ ti(a) + ri(a) +

∑

j pij(a){u0
j(f0) −M · φj}

= ti(a) + ri(a) +
∑

j pij(a)uj ≥ ri(a) +
∑

j pij(a)uj .

Hence, the value vector φ is superharmonic.

Suppose that y is also superharmonic with corresponding vector x, Then, y ≥ P (f0)y, implying that

y ≥ P ∗(f0)y ≥ P ∗(f0){r(f0) +
(

P (f0) − I
)

x} = P ∗(f0)r(f0) = φ(f∞0) = φ, i.e. φ is the smallest

superharmonic vector.

Corollary 5.5

From the proof of Theorem 5.17 it follows that there exists a solution of the modified optimality equation
{

xi = maxa∈A(i)

∑

j pij(a)xj , i ∈ S
xi + yi = maxa∈A(i){ri(a) +

∑

j pij(a)yj} , i ∈ S
(5.27)

with x = φ as unique x-vector in this solution.

Example 5.8

S = {1, 2, 3}; A(1) = A(2) = {1, 2}, A(3) = {1}; r1(1) = 3, r1(2) = 1, r2(1) = 0, r2(2) = 1; r3(1) = 2.

p11(1) = 1, p12(1) = p13(1) = 0; p11(2) = 0, p12(2) = 1, p13(2) = 0; p21(1) = 0, p22(1) = 1, p23(1) = 0;

p21(2) = p22(2) = 0, p23(1) = 1; p31(1) = p32(1) = 0, p33(1) = 1.

The modified optimality equation for this model is:

x1 = max{x1, x2}; x2 = max{x2}; x3 = max{x3}.
x1 + y1 = max{3 + y1, 1 + y2}; x2 + y2 = max{0 + y2, 1 + y3}; x3 + y3 = max{2 + y3}.

This equation has as solution x = (3, 2, 2) and y = (a, b− 1, b) for any a and b with 3 + a ≥ b.
The original optimality equation is considerably more complex, because the equations in the second part

depend on the values of x1, x2 and x3.

194 CHAPTER 5. AVERAGE REWARD - GENERAL CASE

Corollary 5.6

The value vector φ is the unique v-part of an optimal solution (u, v) of the linear program

min

∑

j

βjvj

∣

∣

∣

∣

∣

∑

j{δij − pij(a)}vj ≥ 0 for every (i, a) ∈ S ×A
vi +

∑

j

(

δij − pij(a)
)

uj ≥ ri(a) for every (i, a) ∈ S ×A

, (5.28)

where βj > 0, j ∈ S, is arbitrarily chosen.

The dual linear program of (5.28) is

max

∑

(i,a)

ri(a)xi(a)

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a) {δij − pij(a)}xi(a) = 0, j ∈ S
∑

a xj(a) +
∑

(i,a) {δij − pij(a)}yi(a) = βj , j ∈ S
xi(a), yi(a) ≥ 0, (i, a) ∈ S ×A

.

(5.29)

Theorem 5.18

Let (x, y) be an extreme optimal solution of (5.29). Then, any f∞ ∈ C(D), where xi

(

f(i)
)

> 0 if
∑

a xi(a) > 0 and yi

(

f(i)
)

> 0 if
∑

a xi(a) = 0, is an average optimal policy.

Proof

First, notice that f∞ is well defined, because for every j ∈ S,
∑

a xj(a) +
∑

a yj(a) =
∑

(i,a) pij(a)yi(a) + βj > 0, j ∈ S.
Let Sx :=

{

i ∈ S | ∑a xi(a) > 0
}

. Since xi

(

f(i)
)

> 0, i ∈ Sx, and yi

(

f(i)
)

> 0, i /∈ Sx, it follows from

the complementary slackness property of linear programming that

φi +
∑

j

{δij − pij

(

f(i)
)

}uj = ri

(

f(i)
)

, i ∈ Sx (5.30)

and
∑

j

{δij − pij

(

f(i)
)

}φj = 0, i /∈ Sx. (5.31)

The primal program (5.28) implies
∑

j{δij − pij(a)}φj ≥ 0, (i, a) ∈ S ×A. Suppose that for some k ∈ Sx,
∑

j{δkj − pkj(f(k))}φj > 0. Since xk

(

f(k)
)

> 0, this implies that
∑

j{δkj − pkj(f(k))}φj · xk

(

f(k)
)

> 0.

Furthermore,
∑

j{δij − pij(a)}φj · xi(a) ≥ 0, (i, a) ∈ S ×A. Hence,

∑

(i,a)

∑

j

{δij − pij(a)}φj · xi(a) > 0.

On the other hand, this result is contradictory to the constraints of the dual program (5.29) from which

follows that
∑

(i,a)

∑

j

{δij − pij(a)}φj · xi(a) =
∑

j

{

∑

(i,a)

(

δij − pij(a)
)

xi(a)
}

φj = 0.

This contradiction implies that

∑

j

{δij − pij

(

f(i)
)

}φj = 0, i ∈ Sx. (5.32)

From (5.31) and (5.32) it follows that

∑

j

{δij − pij

(

f(i)
)

}φj = 0, i ∈ S. (5.33)

5.8. LINEAR PROGRAMMING 195

Next, we show that Sx is closed under P (f), i.e. pij

(

f(i)
)

= 0, i ∈ Sx, j /∈ Sx. Suppose that pkl

(

f(k)
)

> 0

for some k ∈ Sx, l /∈ Sx. From the constraints of dual program (5.29) it follows that

0 =
∑

a

xl(a) =
∑

(i,a)

pil(a)xi(a) ≥ pkl

(

f(k)
)

xk

(

f(k)
)

> 0, (5.34)

implying a contradiction. We now show that the states of S\Sx are transient in the Markov chain induced

by P (f). Suppose that S\Sx has an ergodic state. Since Sx is closed, the set S\Sx contains an ergodic class,

say J = {j1, j2, . . . , jm}. Since (x, y) is an extreme solution and yj

(

f(j)
)

> 0, j ∈ J , the corresponding

columns in (5.29) are linearly independent. Because these columns have zeros in the first N rows, the

second parts of these vectors are also independent vectors. Since δjk − pjk

(

f(j)
)

= 0 − 0 = 0 for j ∈ J
and k /∈ J , the vectors bi, 1 ≤ i ≤ m, where bi has components δjik − pjik

(

f(ji)
)

, k ∈ J , are also

linear independent. However,
∑m

k=1 b
i
k =

∑m
k=1 {δjijk

− pjijk

(

f(ji)
)

} = 1− 1 = 0, i = 1, 2, . . . , m, which

contradicts the independence of b1, b2, . . . , bm.

We finish the proof as follows. From relation (5.32) it follows that φ = P (f)φ, and consequently we have

φ = P ∗(f)φ. Since that states of S\Sx are transient in the Markov chain induced by P (f), the columns

of P ∗(f) corresponding to S\Sx are zero-vectors. Hence, by (5.30),

φ(f∞) = P ∗(f)r(f) = P ∗(f)
{

φ+ {I − P (f)}u
}

= P ∗(f)φ = φ,

i.e. f∞ is an average optimal policy.

Algorithm 5.9 Determination of an average optimal policy by linear programming

Input: Instance of an MDP.

Output: An optimal deterministic policy f∞ and the value vector φ.

1. Select any vector β, where βj > 0, j ∈ S.

2. Use the simplex method to compute optimal solutions (u, v) and (x, y) of the linear programs

min

∑

j

βjvj

∣

∣

∣

∣

∣

∑

j{δij − pij(a)}vj ≥ 0 for every (i, j) ∈ S × A
vi +

∑

j

(

δij − pij(a)
)

uj ≥ ri(a) for every (i, j) ∈ S × A

and

max

∑

(i,a)

ri(a)xi(a)

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a){δij−pij(a)}xi(a) = 0, j ∈ S
∑

a xj(a) +
∑

(i,a){δij−pij(a)}yi(a) = βj , j ∈ S
xi(a), yi(a) ≥ 0, (i, a) ∈ S ×A

.

3. Take f∞ ∈ C(D) such that xi

(

f(i)
)

> 0 if
∑

a xi(a) > 0 and yi

(

f(i)
)

> 0 if
∑

a xi(a) = 0.

4. f∞ is an average optimal policy and v is the value vector (STOP).

The next example shows an optimal solution (x, y) of the dual program (5.29) which has in some state i

more than one positive xi(a) or yi(a) variable.

Example 5.9

Consider the MDP of Example 3.1. The dual linear program is:

max{x1(1) + 2x1(2) + 3x1(3) + 6x2(1) + 4x2(2) + 5x2(3) + 8x3(1) + 9x3(2) + 7x3(3)}
subject to the constraints

196 CHAPTER 5. AVERAGE REWARD - GENERAL CASE

x1(2) + x1(3)− x2(1)− x3(1) = 0

x2(1) + x2(3)− x1(2)− x3(2) = 0

x3(1) + x3(2)− x1(3)− x2(3) = 0

x1(1) + x1(2) + x1(3) + y1(2) + y1(3) − y2(1)− y3(1) = 1
3

x2(1) + x2(2) + x2(3) + y2(1) + y2(3) − y1(2)− y3(2) = 1
3

x3(1) + x3(2) + x3(3) + y3(1) + y3(2) − y1(3)− y2(3) = 1
3

x1(1), x1(2), x1(3), x2(1), x2(2), x2(3), x3(1), x3(2), x3(3) ≥ 0

If we solve this linear program, we obtain:

x1(1) = x1(2) = x1(3) = x2(1) = x2(2) = 0, x2(3) = 1
2 , x3(1) = 0, x3(2) = 1

2 , x3(3) = 0.

y1(1) = 0, y1(2) = 1
6 , y1(3) = 1

6 , y2(1) = y2(2) = y2(3) = y3(1) = y3(2) = y3(3) = 0.

Because x1(1) = x1(2) = x1(3) and y1(1) = 0, y1(2) = 1
6
, y1(3) = 1

6
, we can take in state 1 both action 2

and 3 for an optimal action.

In the average reward case there is in general no one-to-one correspondence between the feasible solutions

of the dual program (5.29) and the set of stationary policies. The natural formula for mapping feasible

solutions (x, y) to the set of stationary policies is:

πx,y
ia :=

xi(a)
P

a
xi(a) , a ∈ A(i), i ∈ Sx;

yi(a)
P

a
yi(a) , a ∈ A(i), i ∈ S\Sx.

In the next example two different solutions are mapped on the same deterministic policy.

Example 5.10

Consider the MDP with S = {1, 2, 3, 4}; A(1) = {1}, A(2) = A(3) = {1, 2}, A(4){1};
r1(1) = r2(1) = r2(2) = r3(1) = r3(2) = r4(1) = 1;

p11(1) = 0, p12(1) = 1, p13(1) = p14(1) = 0; p21(1) = p22(1) = 0, p23(1) = 1, p24(1) = 0;

p21(2) = p22(2) = p23(2) = 0, p24(2) = 1; p31(1) = p32(1) = 0, p33(1) = 1, p34(1) = 0;

p31(2) = 1, p32(2) = p33(2) = p34(2) = 0; p41(1) = p42(1) = p43(1) = 0, p44(1) = 1.

The dual linear program becomes (take β1 = β2 = β3 = β4 = 1
4).

max{x1(1) + x2(1) + x2(2) + x3(1) + x3(2) + x4(1)}
subject to the constraints

x1(1) − x3(2) = 0

− x1(1) + x2(1) + x2(2) = 0

− x2(1) + x3(2) = 0

− x2(2) = 0

x1(1) + y1(1) − y3(2) = 1
4

x2(1) + x2(2) − y1(1) + y2(1) + y2(2) = 1
4

x3(1) + x3(2) − y2(1) + y3(2) = 1
4

x4(1) − y2(2) = 1
4

x1(1), x2(1), x2(2), x3(1), x3(2), x4(1), y1(1), y2(1), y2(2), y3(2) ≥ 0.

The following two feasible solutions (x1, y1) and (x2, y2) are mapped on the same deterministic

policy f∞, where f(1) = f(2) = 1, f(3) = 2 and f(4) = 1 :

x1
1(1) = x1

2(1) = 1
4 , x

1
2(2) = x1

3(1) = 0, x1
3(2) = x1

4(1) = 1
4 ; y1

1(1) = y1
2(1) = y1

2(2) = y1
3(2) = 0 and

x2
1(1) = x2

2(1) = 1
6 , x

2
2(2) = x2

3(1) = 0, x2
3(2) = 1

6 , x
2
4(1) = 1

2 ; y2
1(1) = 1

6 , y
2
2(1) = y2

2(2) = 1
4 , y

2
3(2) = 1

12 .

5.8. LINEAR PROGRAMMING 197

For any π∞ ∈ C(S) we can define a feasible solution (xπ, yπ) of the dual program as follows. Consider the

Markov chain induced by P (π) and suppose that this Markov chain hasm recurrent sets, say S1, S2, . . . , Sm,

and let T be the set of transient states. Define (xπ, yπ) by

xπ
i (a) := {βTP ∗(π)}i · πia, (i, a) ∈ S ×A (5.35)

yπ
i (a) := {βTD(π) + γTP ∗(π)}i · πia, (i, a) ∈ S × A, (5.36)

where γi :=

0 i ∈ T ;

maxl∈Sj

{

−
P

k∈S
βkdkl(π)

P

k∈Sj
p∗

kl
(π)

}

i ∈ Sj , 1 ≤ j ≤ m.

Notice that γ is constant on every ergodic set.

Theorem 5.19

(xπ, yπ), defined by (5.35) and (5.36), is a feasible solution of the dual program (5.29).

Proof
∑

(i,a){δij − pij(a)}xπ
i (a) =

∑

j x
π
j (a)−∑(i,a) pij(a)x

π
i (a) = {βTP ∗(π)}j − {βTP ∗(π)P (π)}j = 0.

∑

j x
π
j (a) +

∑

(i,a){δij − pij(a)}yπ
i (a)

= {βTP ∗(π)}j + {βTD(π) + γTP ∗(π)}j − {βTD(π)P (π) + γTP ∗(π)P (π)}j
=

{

βT {P ∗(π) +D(π)(I − P (π)}
}

j
+ {γTP ∗(π)(I − P (π))}j

=
{

βT {P ∗(π) + I − P ∗(π)}
}

j
= βj .

The nonnegativity of xπ
i (a) is obvious. For the nonnegativity of yπ

i (a) we distinguish between

i ∈ T and i ∈ Sj for some 1 ≤ j ≤ m. Notice that yπ
i (a) = {∑k βkdki(π) +

∑

k γkp
∗
ki(π)} · πia.

If i ∈ T :

p∗ki(π) = 0 for all k and therefore, by Theorem 5.7, dki(π) =
∑∞

t=0 {P t(π)}ki.

Hence, yπ
i (a) = {∑k βk · (

∑∞
t=0 {P t(π)}ki) · πia ≥ 0.

If i ∈ Sj :

p∗ki(π) = 0 for all k /∈ (Sj ∪ T). Hence,

yπ
i (a) = {∑k∈S βkdki(π) +

∑

k∈Sj
γkp

∗
ki(π)} · πia

≥ {∑k∈S βkdki(π) +
∑

k∈Sj

{

−
P

k∈S βkdki(π)
P

k∈Sj
p∗

ki
(π)

}

p∗ki(π)
}

· πia

=
∑

k∈S βkdki(π) −∑k∈S βkdki(π) = 0.

Theorem 5.20

The correspondence between the stationary policies and the feasible solutions of program (5.29) preserves

the optimality property, i.e.

(1) If π∞ is an average optimal policy, then (xπ, yπ) is an optimal solution of (5.29).

(2) If (x, y) is an optimal solution of (5.29), then the stationary policy πx,y is an average optimal

policy.

Proof

(1) Since (xπ, yπ) is feasible for (5.29) it is sufficient to show that
∑

(i,a) ri(a)x
π
i (a) =

∑

βjφj.
∑

(i,a) ri(a)x
π
i (a) =

∑

(i,a) ri(a){βTP ∗(π)}i · πia = {βTP ∗(π)}iri(π) = βTφ(π∞) = βTφ.

(2) The proof of this part has the same structure as the proof of Theorem 5.18.

198 CHAPTER 5. AVERAGE REWARD - GENERAL CASE

Suppose that (v = φ, u) is an optimal solution of the primal program (5.28).

Let Sx :=
{

i ∈ S | ∑a xi(a) > 0
}

and A+(i) :=
{

a ∈ A(i) | πx,y
ia > 0

}

, i ∈ S. Since

xi(a) > 0, i ∈ Sx, a ∈ A+(i) and yi(a) > 0, i /∈ Sx, a ∈ A+(i), it follows from the complementary

slackness property of linear programming that

φi +
∑

j

{δij − pij(a)}uj = ri(a), i ∈ Sx, a ∈ A+(i) (5.37)

and
∑

j

{δij − pij(a)}φj = 0, i /∈ Sx, a ∈ A+(i). (5.38)

The primal program (5.28) implies
∑

j{δij − pij(a)}φj ≥ 0, (i, a) ∈ S × A. Suppose that for some

k ∈ Sx and some ak ∈ A+(k),
∑

j{δkj − pkj(ak)}φj > 0. Since πx,y
kak

> 0, we also have xkak
> 0, and

∑

j{δkj − pkj(ak)}φj · xk(ak) > 0. Furthermore,
∑

j{δij − pij(a)}φj · xi(a) ≥ 0, (i, a) ∈ S ×A. Hence,

∑

(i,a)

∑

j{δij − pij(a)}φj · xi(a) > 0.

On the other hand, this result is contradictory to the constraints of the dual program (5.29) from

which follows that

∑

(i,a)

∑

j{δij − pij(a)}φj · xi(a) =
∑

j

{

∑

(i,a)

(

δij − pij(a)
)

xi(a)
}

φj = 0.

This contradiction implies that

∑

j

{δij − pij(a)}φj = 0, i ∈ Sx, a ∈ A+(i). (5.39)

From (5.38) and (5.39) it follows that

∑

j

{δij − pij(a)}φj = 0, i ∈ S, a ∈ A+(i). (5.40)

Next, we show that Sx is closed under P (πx,y), i.e. pij(π
x,y) = 0, i ∈ Sx, j /∈ Sx. Suppose that

pkl(π
x,y) > 0 for some k ∈ Sx, l /∈ Sx. Since pkl(π

x,y) =
∑

a pkl(a)π
x,y
ka , there exists an action ak such

that pkl(ak) > 0 and πx,y
kak

> 0. From the constraints of dual program (5.29) it follows that

0 =
∑

a

xl(a) =
∑

(i,a)

pil(a)xi(a) ≥ pkl(ak)xk(ak) > 0, (5.41)

implying a contradiction.

Next, we show that the states of Sx are the recurrent states of the Markov chain induced by P (πx,y).

Let xi =
∑

a xi(a), i ∈ S. Since xi(a) = πx,y
ia · xi for all (i, a), the constraints of (5.29) imply

xT = xTP (πx,y), and consequently, xT = xTP ∗(πx,y). Because, for i ∈ T, xi =
∑

j xjp
∗
ji(π

x,y) = 0,

we have T ⊆ S\Sx. Suppose that T 6= S\Sx. Since Sx is closed under P (πx,y), there exists an ergodic

set S1 ⊆ S\Sx. Hence, 0 =
∑

j /∈S1

∑

i∈S1
pij(π

x,y), implying 0 =
∑

j /∈S1

∑

i∈S1

∑

a pij(a)yi(a). We

also have, denoting
∑

a yi(a) by yi, i ∈ S,

5.8. LINEAR PROGRAMMING 199

0 <
∑

j∈S1
βj =

∑

j∈S1
yj −

∑

j∈S1

∑

(i,a) pij(a)yi(a)

=
∑

j∈S1
yj −

∑

j∈S

∑

(i,a) pij(a)yi(a) +
∑

j /∈S1

∑

(i,a) pij(a)yi(a)

=
∑

j∈S1
yj −

∑

j∈S

∑

i∈S1

∑

a pij(a)yi(a) −
∑

j∈S

∑

i/∈S1

∑

a pij(a)yi(a)

+
∑

j /∈S1

∑

i∈S1

∑

a pij(a)yi(a) +
∑

j /∈S1

∑

i/∈S1

∑

a pij(a)yi(a)

=
∑

j∈S1
yj −

∑

j∈S

∑

i∈S1

∑

a pij(a)yi(a) −
∑

j∈S

∑

i/∈S1

∑

a pij(a)yi(a)

+
∑

j /∈S1

∑

i/∈S1

∑

a pij(a)yi(a)

=
∑

j∈S1
yj −

∑

i∈S1
yi −

∑

j∈S

∑

i/∈S1

∑

a pij(a)yi(a) +
∑

j /∈S1

∑

i/∈S1

∑

a pij(a)yi(a)

= −∑j∈S

∑

i/∈S1

∑

a pij(a)yi(a) +
∑

j /∈S1

∑

i/∈S1

∑

a pij(a)yi(a)

= −∑j∈S1

∑

i/∈S1

∑

a pij(a)yi(a) ≤ 0,

implying a contraction. So, Sx is the set of the recurrent states in the Markov chain P (πx,y).

We finish the proof as follows. From (5.40) it follows that

φi =
∑

j pij(a)φj , i ∈ S, a ∈ A+(i) =
∑

j

∑

a pij(a)π
x,y
ia φj =

∑

j pij(π
x,y)φj , i ∈ S.

or, in vector notation, φ = P (πx,y)φ, implying φ = P ∗(πx,y)φ. Since S\Sx is the set of transient

states, we have p∗ij(π
x,y) = 0, j ∈ S\Sx. Therefore, we can write using (5.37),

φ(πx,y) = P ∗(πx,y)r(πx,y) = P ∗(πx,y){φ+
(

I − P (πx,y)
)

u} = P ∗(πx,y)φ = φ,

implying that policy πx,y is an average optimal policy.

We have seen in the proof of Theorem 5.20 that Sx is the set of states that are recurrent in the Markov

chain induced by P (πx,y). In the proof of Theorem 5.18 it was shown that the states of S\Sx are transient

in the Markov chain induced by P (f). In the last case Sx may contain also transient states as the next

example shows.

Example 5.11

Consider the MDP with S = {1, 2, 3}; A(1) = A(2) = {1}, A(3) = {1, 2}; r1(1) = 1, r2(2) = 2, r3(1) = 4,

r3(2) = 3. p11(1) = p12(1) = 0, p13(1) = 1; p21(1) = p22(1) = 0, p23(1) = 1; p31(1) = 1, p32(1) = 0,

p33(1) = 0; p31(2) = 0, p32(2) = 1, p33(3) = 0.

The dual linear program becomes (take β1 = β2 = 1
4 , β3 = 1

2).

max{x1(1) + 2x2(1) + 4x3(1) + 3x3(2)}
subject to the constraints

x1(1) − x3(1) = 0

x2(1) − x3(2) = 0

x1(1) − x2(1) + x3(1) + x3(2) = 0

− x1(1) + y1(1) − y3(1) = 1
4

x2(1) + y2(1) − y3(2) = 1
4

x3(1) + x3(2) − y1(1) − y2(1) + y3(1) + y3(2) = 1
2

x1(1), x2(1), x3(1), x3(2), y1(1), y2(1), y3(1), y3(2) ≥ 0.

The solution (x, y) with x1(1) = x2(1) = x3(1) = x3(2) = 1
4 , y1(1) = y2(1) = y3(1) = y3(2) = 0 is an

extreme optimal solution. The two deterministic policies of this model are both optimal policies with

Sx = S = {1, 2, 3}, and both Markov chains have a transient state in Sx.

If π∞ is an optimal stationary policy and if (x, y) is a feasible solution of program (5.29) with πx,y = π,

then in general (x, y) is not an optimal solution of (5.29). Below we give an example of this phenomenon.

200 CHAPTER 5. AVERAGE REWARD - GENERAL CASE

Example 5.12

Consider the MDP with S = {1, 2, 3}; A(1) = A(2) = {1, 2}, A(3) = {1}; r1(1) = 1, r1(2) = 0, r2(1) = 0,

r2(2) = 0, r3(1) = 0. p11(1) = 0, p12(1) = 1, p13(1) = 0; p11(2) = p12(2) = 0, p13(2) = 1;

p21(1) = 0, p22(1) = 1, p23(1) = 0; p21(2) = 1, p22(2) = p23(2) = 0; p31(1) = p32(1) = 0, p33(1) = 1.

The dual linear program becomes (take β1 = β2 = β3 = 1
3).

max x1(1)

subject to the constraints

x1(1) + x1(2) − x2(2) = 0

− x1(1) + x2(2) = 0

− x1(2) = 0

x1(1) + x1(2) + y1(1) + y2(1) − y2(2) = 1
3

x2(1) + x2(2) − y1(1) + y2(2) = 1
3

x3(1) − y2(1) = 1
3

x1(1), x1(2), x2(1), x2(2), x3(1), y1(1), y2(1), y2(2) ≥ 0.

The deterministic policy f∞ with f(1) = 1, f(2) = 2, f(3) = 1 is an optimal policy. The solution (x, y)

with x1(1) = 1
6 , x1(2) = 0, x2(1) = 0, x2(2) = 1

6 , x3(1) = 2
3 , y1(1) = 0, y1(2) = 1

3 , y2(2) = 1
6 is a

feasible solution with πx,y = f . However, However, (x, y) is not an optimal solution of the linear program

(5.29), because the optimal solution of (5.29) is (x∗, y∗) with x∗1(1) = 1
3
, x∗1(2) = 0, x∗2(1) = 0, x∗2(2) = 1

3
,

x∗3(1) = 1
3 , y

∗
1(1) = 0, y∗2(1) = 0, y∗3(1) = 0.

Theorem 5.21

Let f∞ be a deterministic policy. Then, the corresponding feasible solution (xf , yf) is an extreme feasible

solution of (5.29).

Proof

Suppose that (xf , yf) is not an extreme feasible solution of (5.29). Then, there exist feasible solutions

(x1, y1) and (x2, y2) of (5.29) such that (xf , yf) = λ · (x1, y1) + (1− λ) · (x2, y2) for some λ ∈ (0, 1) and

(x1, y1) 6= (x2, y2). Since xf
i (a) = yf

i (a) = 0 for a 6= f(i), i ∈ S, we have x1
i (a) = x2

i (a) = y1
i (a) = y2

i (a) = 0

for a 6= f(i), i ∈ S.

Consider the N -dimensional vectors also denoted as xf , yf , x1, y1, x2 and y2 with the components

xf
i = xf

i

(

f(i)
)

, yf
i = yf

i

(

f(i)
)

, x1
i = x1

i

(

f(i)
)

, x2
i = x2

i

(

f(i)
)

, y1
i = y1

i

(

f(i)
)

, y2
i = y2

i

(

f(i)
)

for all i ∈ S.

Then, these vectors are solutions of the linear system

{

xT {I − P (f)} = 0

xT + yT {I − P (f)} = βT
(5.42)

We shall show that this system has a unique solution, which yields the desired contradiction. From (5.42)

it follows that xT = xTP (f), and consequently, xT = xTP ∗(f) = βTP ∗(f), implying that the x-part of

(5.42) is unique. Furthermore, we obtain from (5.42)

yT {I − P (f) + P ∗(f)} = βT {I − P ∗(f)} + yTP ∗(f).

Since the matrix I − P (f) + P ∗(f) is nonsingular with inverse Z(f) = D(f) + P ∗(f) (see Theorem 5.5),

we have

yT = βT {I − P ∗(f)}{D(f) + P ∗(f)} + yTP ∗(f){D(f) + P ∗(f)} = βTD(f) + yTP ∗(f).

5.8. LINEAR PROGRAMMING 201

Consider the Markov chain induced by P (f). Suppose that there are m ergodic sets, say S1, S2, . . . , Sm,

and let T be the set of transient states. Since the columns of P ∗(f) corresponding with the transient states

T are zero, y is unique on T , namely yi = {βTD(f)}i, i ∈ T . By the definition of γ, which is part of the

definition of yf (see 5.36), in each ergodic set Sk there is a state, say state ik, such that yf
ik

= 0. Then also

y1
ik

= y2
ik

= 0 for k = 1, 2, . . . , m. Define the vector z by zi := y1
i − y2

i , i ∈ Sk, and the Markov matrix R

by rij := {P (f)}ij for i, j ∈ Sk. Then, the equation (5.42), the uniqueness of x and the property zik
= 0

imply that zT = zTR, and consequently zT = zTR∗. Because Sk is an ergodic set, R∗ has strictly positive

elements and identical rows. Hence, we obtain

zi =
∑

j∈Sk

zjr
∗
ji = r∗ii ·

∑

j∈Sk

zj , i ∈ Sk. (5.43)

Hence, 0 = zik
= r∗ikik

·∑j∈Sk
zj . Because r∗ikik

> 0, we have
∑

j∈Sk
zj = 0, which implies by (5.43) that

zi = 0 for all i ∈ Sk. Therefore, we have shown that y1 = y2, which implies that also the y-part of (5.42)

is unique.

Remark

Let f∞ be the deterministic policy obtained in iteration k of the policy iteration Algorithm 5.6. This

policy corresponds, by Theorem 5.21, to an extreme feasible solution of (5.29). Furthermore, by Theorem

5.14, φ(fk+1) ≥ φ(fk) for k = 1, 2, The value of the objective function satisfies

∑

(i,a) ri(a)x
fk

i (a) =
∑

i ri(fk){βTP ∗(fk)}i = βTP ∗(fk)r(fk) = βTφ(f∞k),

which is nondecreasing in k. Hence, we have the following result.

Theorem 5.22

The policy iteration Algorithm 5.6 is equivalent to a block-pivoting simplex algorithm.

Example 5.5 (continued)

Since program (5.29) has 2N equalities, we introduce artificial variables wj and zj for all j ∈ S, where

wj corresponds to
∑

(i,a) {δij − pij(a)}xi(a) = 0 and zj to
∑

a xj(a) +
∑

(i,a) {δij − pij(a)}yi(a) = βj

for all j ∈ S. In this example we take β1 = β2 = β3 = 1
3

and we start with the policy f∞, where

f1(1) = 3, f1(2) = 2 and f1(3) = 1. Note that in the Markov chain induced by P (f1) all states are

recurrent. Below we state a corresponding simplex tableau with the variables x1(3), x2(2), x3(1) in the

basis. They are exchanged with the artificial variables w1, z2 and z1, respectively.

x1(1) x1(2) w1 x2(1) z2 x2(3) z1 x3(2) x3(3) y1(2) y1(3) y2(1) y2(3) y3(1) y3(2)

x1(3) 1
3

1 1 0 0 0 0 1 0 0 1 1 −1 0 −1 0

w2 0 0 −1 0 1 0 1 0 −1 0 0 0 0 0 0 0

w3 0 0 1 1 −1 0 −1 0 1 0 0 0 0 0 0 0

x3(1) 1
3

1 0 −1 1 0 0 1 0 0 1 1 −1 0 −1 0

x2(2) 1
3

0 0 0 1 1 1 0 0 0 −1 0 1 1 0 −1

z3 0 −1 0 1 −1 0 0 −1 1 1 −1 −2 1 −1 2 1

5 10 1 −8 6 4 −1 11 −9 −7 7 11 −7 4 −11 −4

In the second iteration of the policy iteration method we have the policy f∞, where f2(1) = 3, f2(2) = 3

and f3(3) = 3. Note that in the Markov chain induced by P (f2) state 3 is recurrent and the states 1 and 2

are transient. The tableau below is obtained from the previous one by exchanging x1(3) with y1(3), x2(2)

with y2(3) and z3 with x3(3) (the pivot elements are bold in the previous tableau).

202 CHAPTER 5. AVERAGE REWARD - GENERAL CASE

x1(1) x1(2) w1 x2(1) z2 x2(3) z1 x3(2) z3 y1(2) x1(3) y2(1) x2(2) y3(1) y3(2)

y1(3) 1
3

1 1 0 0 0 0 1 0 0 1 1 −1 0 −1 0

w2 0 0 −1 1 1 0 1 0 −1 0 0 0 0 0 0 0

w3 0 0 1 −1 −1 0 −1 0 1 0 0 0 0 0 0 0

x3(1) 0 0 −1 1 1 0 0 0 0 0 0 −1 0 0 0 0

y2(3) 1
3

0 0 1 1 1 1 0 0 0 −1 0 1 1 0 −1

x3(2) 1 1 2 1 0 0 1 1 1 1 0 2 0 1 0 0

7 6 4 −5 2 7 −2 7 −2 7 0 3 0 3 0 0

This tableau corresponds to the optimal policy f∞, although it is not an optimal simplex tableau, because

the reduced costs of x3(2) is negative, namely -2. To obtain an optimal simplex tableau we have to

exchange x3(2) with w3. Below we have this optimal simplex tableau. Notice that it also gives the optimal

solution of the primal problem (5.28): φ1 = φ2 = φ3 = 7. (the shadow prices of z1, z2 and z3) and

u1 = −7, u2 = 0, u3 = 2 (the shadow prices of w1, w2 and w3).

x1(1) x1(2) w1 x2(1) z2 x2(3) z1 w3 z3 y1(2) x1(3) y2(1) x2(2) y3(1) y3(2)

y1(3) 1
3

1 1 0 0 0 0 1 0 0 1 1 −1 0 −1 0

w2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

x3(2) 0 0 1 −1 −1 0 0 0 1 0 0 0 0 0 0 0

x3(1) 0 0 −1 1 1 0 0 0 0 0 0 −1 0 0 0 0

y2(3) 1
3 0 0 1 1 1 1 0 0 0 −1 0 1 1 0 −1

x3(2) 1 1 1 2 1 1 1 1 −1 1 0 2 0 1 0 0

7 6 6 −7 0 7 0 7 2 7 0 3 0 3 0 0

5.9 Value iteration

For the method of value iteration the following scheme is used:
{

vn+1
i := maxa{ri(a) +

∑

j pij(a)v
n
j }, i ∈ S, n = 0, 1, . . .

v0
i arbitrarily chosen, i ∈ S

(5.44)

Let f∞n+1 ∈ C(D) be such that

vn+1 = r(fn+1) + P (fn+1)v
n, n = 0, 1, (5.45)

However, in general, neither the sequence {vn}∞n=0 nor the sequence {vn+1 − vn}∞n=0 is convergent as the

next example shows.

Example 5.13

Let S = {1, 2}, A(1) = A(2) = {1}, p11(1) = 0, p12(1) = 1, p21(1) = 1, p22(1) = 0, r1(1) = 2, r2(1) = 0,

and let v0 = (0, 0). Then, v2n = (2n, 2n) and v2n+1 = (2n + 2, 2n), n = 0, 1, Hence, no convergence

for the sequence {vn}∞n=0 nor for {vn+1 − vn}∞n=0.

Remark

We will show that φ = limn→∞
1
nv

n. However, this is - in general - numerically an instable computation

scheme if vn tends to infinity. Fortunately, we may also use the property φ = limn→∞
1
n

∑n
k=1{vk+1−vk}.

These properties can be shown by using the sequence {en}∞n=0, where

en := vn − n · φ− u, (5.46)

5.9. VALUE ITERATION 203

with u defined as in Theorem 5.17, i.e. u = u0(f0) −M · φ for some M and with f∞0 a Blackwell optimal

policy. In case the Markov chains P (f) are aperiodic for all f∞ ∈ C(D), which we may assume without

loss of the generality (see below in Lemma 5.10), we can show that φ = limn→∞{vn+1 − vn}.
Let f∞0 be a Blackwell optimal policy. From the proof of Theorem 5.17 it follows that (φ, u) satisfies for

any f∞ ∈ C(D)
{

φ ≥ P (f)φ

φ+ u ≥ r(f) + P (f)u
(5.47)

Furthermore, we define F0 := {f | φ = P (f)φ; φ+ u = r(f) +P (f)u}. Notice that f0 ∈ F0 and that every

f ∈ F0 is an average optimal policy, since φ(f∞) = P ∗(f)r(f) = P ∗(f){φ+ u− P (f)u} = P ∗(f)φ = φ.

Lemma 5.8

(1) If f ∈ F0, then P (f)en ≤ en+1 ≤ P (fn+1)e
n, n = 0, 1,

(2) {en}∞n=0 is bounded.

(3) φ = limn→∞
1
n
vn.

(4) φ = limn→∞
1
n

∑n
k=1{vk − vk−1}.

Proof

(1) Let n ∈ N0 and f ∈ F0 be arbitrarily chosen. Then,

P (f)en = P (f){vn − n · φ− u} = P (f)vn − n · P (f)φ− P (f)u

= {P (f)vn + r(f)} − n · P (f)φ− {P (f)u+ r(f)}
≤ vn+1 − (n+ 1) · φ− u = en+1.

P (fn+1)e
n = P (fn+1)v

n − n · P (fn+1)φ− P (fn+1)u

≥ P (fn+1)v
n − n · φ− {u+ φ− r(fn+1)} = vn+1 − (n+ 1) · φ− u = en+1.

(2) From part (1), we obtain

P n(f0)(v
0 − u) = P n(f0)e

0 ≤ P n−1(f0)e
1 ≤ · · · ≤ P 0(f0)e

n = en ≤ P (fn)en−1

≤ P (fn)P (fn−1)e
n−2 ≤ · · · ≤ P (fn)P (fn−1) · · ·P (f1)e

0

= P (fn)P (fn−1) · · ·P (f1)(v
0 − u),

implying that mini (v0
i − ui) · e ≤ en ≤ maxi (v0

i − ui).

(3) Since φ = 1
n
{vn − en − u} and {en}∞n=0 is bounded, we have φ = limn→∞

1
n
vn.

(4) From 1
n

∑n
k=1{vk − vk−1} = 1

n(vn − v0) and part (3), we obtain φ = limn→∞
1
n

∑n
k=1{vk − vk−1}.

Lemma 5.9

Let, for all i ∈ S, An(i) :=
{

a ∈ A(i)
∣

∣

∣ maxb{ri(b) +
∑

j pij(b)v
n−1
j } = ri(a) +

∑

j pij(a)v
n−1
j

}

and

A∗(i) := {a ∈ A(i) | φi =
∑

j pij(a)φj}. Then, for n sufficiently large, An(i) ⊆ A∗(i), i ∈ S.

Proof

Suppose the contrary. Then, there exists a pair (i, a) ∈ S×A and a sequence {nk}, k = 1, 2, . . . such that

a ∈ Ank
(i), k = 1, 2, . . . and a /∈ A∗(i). Since 1

nk
vnk

i = 1
nk
{ri(a) +

∑

j pij(a)v
nk−1

i }, and by part (3) of

Lemma 5.8, we obtain φi =
∑

j pij(a)φj, i.e. a ∈ A∗(i): contradiction.

Next, we show that we may assume that for every f∞ ∈ C(D) the Markov chain P (f) is aperiodic. In that

case we have P ∗(f) = limn→∞ P n(f). 5 Consider for an arbitrary λ ∈ (0, 1) the transition probabilities

pij(a)(λ) := λδij + (1− λ)pij(a), (i, a) ∈ S × A, j ∈ S. (5.48)

5See e.g. H.M. Taylor and S. Karlin: An introduction to stochastic modeling, 3rd edition, 1998, chapter 4.

204 CHAPTER 5. AVERAGE REWARD - GENERAL CASE

Since pii(a)(λ) ≥ λ > 0, i ∈ S, the transition matrix is aperiodic. Let φλ(f∞) be the average reward of

policy f∞ with respect to the transitions pij(a)(λ). The following lemma shows that φλ(f∞) = φ(f∞) for

all f∞ ∈ C(D).

Lemma 5.10

φλ(f∞) = φ(f∞) for all f∞ ∈ C(D).

Proof

Pλ(f)φ(f∞) = {λI + (1− λ)P (f)}φ(f∞) = λφ(f∞) + (1− λ)φ(f∞) = φ(f∞), and consequently,

P ∗
λ(f)φ(f∞) = φ(f∞). We also have

r(f) + Pλ(f)D(f)r(f) −D(f)r(f) = r(f) + {λI + (1− λ)P (f)}D(f)r(f) −D(f)r(f)

= r(f) + (λ− 1){I − P (f)}D(f)r(f)

= r(f) + (λ− 1){I − P ∗(f)}r(f)
= λr(f) + (1− λ)φ(f∞).

Hence, (1− λ)r(f) + {Pλ(f) − I}D(f)r(f) = (1− λ)φ(f∞). Multiplying this equality by P ∗
λ (f) gives

(1− λ)P ∗
λ (f)r(f) = (1− λ)P ∗

λ (f)φ(f∞)} = (1− λ)φ(f∞), i.e. φλ(f∞) = φ(f
∞).

Theorem 5.23

Let mi := lim infn→∞ en
i , Mi := lim supn→∞ en

i , and A∗(i) := {a ∈ A(i) | φi =
∑

j pij(a)φj}, i ∈ S.

Furthermore, let si(a) := ri(a)− φi +
∑

j pij(a)uj − ui for all (i, a) ∈ S × A.

Then, maxa∈A∗(i)

{

si(a) +
∑

j pij(a)mj

}

≤ mi ≤Mi ≤ maxa∈A∗(i)

{

si(a) +
∑

j pij(a)Mj

}

for all i ∈ S.

Proof

For n sufficiently large, we obtain by Lemma 5.9

maxa∈A∗(i)

{

si(a) +
∑

j pij(a)e
n
j

}

= maxa∈A∗(i)

{

ri(a) − φi +
∑

j pij(a)uj − ui +
∑

j pij(a)e
n
j

}

= maxa∈A∗(i)

{

ri(a) − φi +
∑

j pij(a)(uj + en
j) − ui

}

= maxa∈A∗(i)

{

ri(a) − φi +
∑

j pij(a)(v
n
j − n · φj) − ui

}

= maxa∈A∗(i)

{

ri(a) − (n + 1)φi +
∑

j pij(a)v
n
j − ui

}

= maxa∈A∗(i)

{

ri(a) +
∑

j pij(a)v
n
j

}

− (n+ 1)φi − ui

= vn+1
i − (n+ 1)φi − ui = en+1

i .

Hence,

mi = lim infn→∞ en+1
i = lim infn→∞ maxa∈A∗(i)

{

si(a) +
∑

j pij(a)e
n
j

}

≥ maxa∈A∗(i)

{

si(a) +
∑

j pij(a)
(

lim infn→∞ en
j

)}

= maxa∈A∗(i)

{

si(a) +
∑

j pij(a)mj

}

and

Mi = lim supn→∞ en+1
i = lim supn→∞ maxa∈A∗(i)

{

si(a) +
∑

j pij(a)e
n
j

}

≤ maxa∈A∗(i)

{

si(a)+
∑

j pij(a)
(

lim supn→∞ en
j

)}

= maxa∈A∗(i)

{

si(a)+
∑

j pij(a)Mj

}

.

Theorem 5.24

Under the aperiodicity assumption, the sequence {en}∞n=0 is convergent.

Proof

Suppose that mj = limk→∞ epk

j and Mj = limk→∞ eqk

j , j ∈ S, for some subsequences {pk} and {qk} of

{0, 1, 2, . . .}. Choose for every k ∈ N an integer h(k) such that rk := qh(k) − pk ≥ k. From Lemma 5.8

part (1), we obtain eqh(k) = erk+pk ≥ {P (f)}rk · epk for any f ∈ F0 and k ∈ N. Hence, for any f ∈ F0,

5.9. VALUE ITERATION 205

M = limk→∞ eqk = limk→∞ eqh(k) ≥ limk→∞ {P (f)}rk · epk

= limk→∞ {P (f)}k · epk =
{

limk→∞ {P (f)}k
}

·
{

limk→∞ epk
}

= P ∗(f)m.

Similarly, we obtain m ≥ P ∗(f)M .

Since m ≥ P ∗(f)M ≥ P ∗(f)P ∗(f)m = P ∗(f)m and P ∗(f){m−P ∗(f)m} = 0, we have mj = {P ∗(f)m}j ,
and similarlyMj = {P ∗(f)M}j , for every state recurrent under P (f). Therefore, mj ≥ {P ∗(f)M}j = Mj

for every recurrent state, i.e. mj = Mj for every state which is recurrent under P (f) for some f ∈ F0.

Let f∗ satisfy f∗(i) ∈ A∗(i) and {s(f∗) + P (f∗)M}i = maxa∈A∗(i) {si(a) +
∑

j pij(a)Mj}, i ∈ S. By

Theorem 5.23, s(f∗) + P (f∗)M ≥ M , implying P ∗(f∗)s(f∗) ≥ 0. Since (φ, u) is superharmonic, s(f∗) ≤ 0

and therefore P ∗(f∗)s(f∗) ≤ 0. Consequently, P ∗(f∗)s(f∗) = 0. Hence, sj(f∗) = 0 for j recurrent under

f∗. Take policy f∞ equal to f∞∗ in the states which are recurrent under P (f∗), and equal to a policy

f∞0 , where f0 ∈ F0, in the transient states of P (f∗). Then, f∞ ∈ F0 and the states which are recurrent

under P (f∗) are a subset of the states which are recurrent under P (f). Hence, mj = Mj for the states j

recurrent under P (f∗). By Theorem 5.23, we obtain s(f∗) + P (f∗)m ≤ m ≤ M ≤ s(f∗) + P (f∗)M , i.e.

P (f∗)(M −m) ≥M −m ≥ 0, and consequently,

P ∗(f∗)(M −m) ≥M −m ≥ 0. (5.49)

Since mj = Mj for the states which are recurrent under P (f∗), we have P ∗(f∗)(M−m) = 0, and by (5.49),

M = m.

Corollary 5.7

φ = limn→∞ (vn+1 − vn).

Proof

φ = (vn+1 − vn) − (en+1 − en). Since the sequence {en}∞n=0 converges, limn→∞ (en+1 − en) = 0, and

consequently, φ = limn→∞ (vn+1 − vn).

We will close this section by an algorithm to compute an ε-optimal policy under the following assumption.

Assumption 5.1

Every Markov chain P (f) is aperiodic and the value vector is constant, i.e. φ = φ0 · e.

Theorem 5.25

Let ln = mini (vn
i − vn−1

i) and un = maxi (vn
i − vn−1

i). Then,

(1) ln ↑ φ0 and un ↓ φ0.

(2) ln · e ≤ φ(f∞n) ≤ φ0 · e ≤ un · e for every n ≥ 1.

Proof

(1) vn+1 − vn ≥ {r(fn) + P (fn)vn} − {r(fn) + P (fn)vn−1} = P (fn){vn − vn−1}
≥ P (fn) ·mini {vn − vn−1}i · e = ln · e, implying ln+1 ≥ ln.

Similarly, it can be shown that un+1 ≤ un. Hence, by Corollary 5.7, we obtain ln ↑ φ0 and un ↓ φ0.

(2) For any n ≥ 1, we have un ≥ un+1 ≥ · · · ≥ limk→∞ un+k = φ0 and

φ(f∞n) = P ∗(fn)r(fn) = P ∗(fn){vn − P (fn)vn−1} = P ∗(fn){vn − vn−1}
≥ P ∗(fn) ·mini {vn − vn−1}i · e = mini {vn − vn−1}i · e = ln · e.

From the above theorem we can derive an algorithm. However, since φ = limn→∞
1
nv

n (see Lemma 5.8

part (3)), vn grows linearly in n, which may cause numerical difficulties. To overcome these difficulties, we

206 CHAPTER 5. AVERAGE REWARD - GENERAL CASE

use the following transformation. Let wn
i := vn

i − vn
N , i ∈ S, n ≥ 0 and gn := vn

N − vn−1
N , n ≥ 1. Then, we

have wn
i = {en

i +nφ0 +ui}−{en
N +nφ0 +uN} = {en

i −en
N}+{ui−uN}, which is a bounded sequence, and

gn = {en
N + nφ0 + uN}− {en−1

N + (n− 1)φ0 + uN} = {en
N − en−1

N }+ φ0, which is also a bounded sequence.

Furthermore, the recurrence relations become

gn+1 = vn+1
N − vn

N = maxa∈A(N) {rN(a) +
∑

j pNj(a)(v
n
j − vn

N)}

= maxa∈A(N) {rN(a) +
∑

j pNj(a)w
n
j },

and

wn+1
i = vn+1

i − vn+1
N = maxa∈A(i) {ri(a) +

∑

j pij(a)(v
n
j − vn

N)}+ (vn
N − vn+1

N)

= maxa∈A(i) {ri(a) +
∑

j pij(a)w
n
j } − gn+1, i ∈ S.

For the bounds ln and un, we obtain

ln = mini (vn
i − vn−1

i) = mini {(wn
i + vn

N) − (wn−1
i + vn−1

N)} = mini (wn
i −wn−1

i) + gn

and

un = maxi (vn
i − vn−1

i) = maxi {(wn
i + vn

N) − (wn−1
i + vn−1

N)} = maxi (wn
i −wn−1

i) + gn.

In step 2 of algorithm 5.10 (see below) we use v for wn, w for wn+1, g for gn+1, u for un+1 − gn+1 and l

for ln+1 − gn+1.

Algorithm 5.10 Value iteration (aperiodicity and constant value vector case)

Input: Instance of an MDP and some scalar ε > 0.

Output: An ε-optimal deterministic policy f∞ and a 1
2
ε-approximation of the value φ0.

1. Select v ∈ R
N arbitrarily; vN := 0.

2. a. yi(a) := ri(a) +
∑

pij(a)vj for all (i, a) ∈ S ×A.

b. g := maxa∈A(N) yN (a).

c. wi := maxa∈A(i) yi(a)− g for all i ∈ S.

d. Take f such that w = r(f) + P (f)v − g · e.
e. u := maxi (wi − vi); l := mini (wi − vi).

3. if u− l ≤ ε then

begin f∞ is an ε-optimal policy; 1
2(u + l) + g is an 1

2ε-approximation of φ0 (STOP) end

else begin v := w; return to step 2 end.

Example 5.14

Consider the MDP of Example 3.1. The value vector is constant (φ0 = 7). Although the requirement of

aperiodicity is not fulfilled, the algorithm works, as one can see below. Select ε = 0.1 and v0 = (0, 0, 0).

Iteration 1:

y1(1) = 1, y1(2) = 2, y1(3) = 3; y2(1) = 6, y2(2) = 4, y2(3) = 5; y3(1) = 8, y3(2) = 9, y3(3) = 7.

g = 9; w = (−6,−3, 0); f(1) = 3, f(2) = 1, f(3) = 2; u = 0, l = −6; v = (−6,−3, 0).

Iteration 2:

y1(1) = −5, y1(2) = −1, y1(3) = 0; y2(1) = 0, y2(2) = 1, y2(3) = 5; y3(1) = 2, y3(2) = 6, y3(3) = 7.

g = 7; w = (−7,−2, 0); f(1) = 3, f(2) = 3, f(3) = 3; u = 0, l = −1; v = (−7,−2, 0).

Iteration 3:

y1(1) = −6, y1(2) = 0, y1(3) = 3; y2(1) = −1, y2(2) = 2, y2(3) = 5; y3(1) = 1, y3(2) = 7, y3(3) = 7.

g = 7; w = (−4,−2, 0); f(1) = 3, f(2) = 3, f(3) = 3; u = 0, l = 0:

f∞ with f(1) = 3, f(2) = 3, f(3) = 3 is an optimal policy and φ0 = 7.

5.9. VALUE ITERATION 207

Relaxation and one-step look-ahead

The standard value iteration algorithm is given by

vn+1
i := maxa {ri(a) +

∑

j

pij(a)v
n
j }, i ∈ S, n = 0, 1, . . . (5.50)

In this subsection we make the following assumptions.

Assumption 5.2

(1) Every Markov chain P (f) is aperiodic.

(2) The one-step rewards ri(a), (i, a) ∈ S ×A, are strictly positive.

(3) The value vector φ is constant and this constant is denoted by φ0.

The assumptions (1) and (2) are without loss of generality: for (1) see Lemma 5.10 and for (2) note

that adding a constant to every ri(a) adds the same constant to the average rewards. Consider the

differences δn+1
i := vn+1

i − vn
i , i ∈ S. Then, we have φ0 = limn→∞ δn

i for every i ∈ S (see Corollary 5.7).

Furthermore, we have by Theorem 5.25 part (1), mini δ
n
i ↑ φ0 and maxi δ

n
i ↓ φ0. The algorithm stops

at a certain iteration n when the values maxi δ
n
i and mini δ

n
i are close enough to each other. Note that

if v0 := 0, then v1
i = maxa ri(a) > 0, i ∈ S. Furthermore, vn ↑ (easily demonstrated by induction), so

mini δ
n
i > 0 for all n ∈ N. We shall use the relative accuracy criterion

maxi δ
n
i

mini δn
i

≤ 1 + ε (5.51)

for some ε > 0. By Theorem 5.25 part (2), this stopping criterion implies that, at termination in iteration

n, we have ‖φ0 − φ(f∞n)‖∞ ≤ un − ln ≤ ε · ln.

The idea in relaxation is to replace the iterand vn+1 by v̂n+1, formed as a linear combination of vn+1 and

vn:

v̂n+1
i := ω · vn+1 + (1− ω) · vn = vn + ω · (vn+1 − vn) = vn + ω · δn+1, (5.52)

where ω is called an adaptive relaxation factor; adaptive means that the relaxation factor may depend on

the iteration index. For ω = 1, we obtain the standard value iteration algorithm, i.e. v̂n+1 = vn+1 for all

n = 0, 1,

In order to explore the effect of replacing the original vn+1 with the modified v̂n+1, we perform a one-step

ahead analysis. Therefore, we consider an estimation of vn+2. This estimator, denoted by wn+1, will

replace vn+1 in the iteration scheme. Such an estimator has the prospect to be closer to vn+2 than vn+1 ,

and in this way to improve the speed of the convergence of the algorithm. Hence, given the approximation

vn obtained in iteration n, the next iteration in which the approximation vn+1 is computed consists of

three steps:

(1) a ’first’ vn+1 is computed by (5.50) and let fn such that vn+1 = r(fn) + P (fn)vn;

(2) the relaxation v̂n+1
i := vn + ω · δn+1 is computed for some relaxation factor ω;

(3) wn+2 is computed using the policy f∞n and the relaxation v̂n+1
i and set vn+1 := wn+2.

The vector wn+2 is defined by

wn+2 := r(fn) + P (fn)v̂n+1 = r(fn) + P (fn){vn + ω · δn+1} = vn+1 + ω · gn+1, (5.53)

where gn+1 := P (fn)δn+1.

208 CHAPTER 5. AVERAGE REWARD - GENERAL CASE

Note that gn+1
i will represent the value of δn+2

i for the standard algorithm (ω = 1), if there is no change

in the decision for state i at the (n+ 2)th iteration, i.e. pij(fn) = pij(fn+1), j ∈ S and ri(fn) = ri(fn+1),

namely

gn+1
i =

∑

j pij(fn){vn+1
j − vn

j } =
∑

j pij(fn+1)v
n+1
j −∑j pij(fn)vn

j

= {vn+2
i − ri(fn+1)} − {vn+1

i − ri(fn)} = vn+2
i − vn+1

i = δn+2
i .

Next, we will argue what are good values for the relaxation factor ω. One way for finding a good ω is to

choose ω such that the values maxi δ
n+2
i and mini δ

n+2
i are close to each other. However, δn+2 is unknown,

since vn+2 is unknown. But we can use an estimator of δn+2, namely:

δ̂n+2 := wn+2 − v̂n+1 = {vn+1 + ω · gn+1} − {vn + ω · δn+1} = δn+1 + ω · (gn+1 − δn+1).

Now, we solve - as function of ω - the equation

δ̂n+2
max = δ̂n+2

min , (5.54)

where max and min are the states such that δ̂n+2
max = maxi δ̂

n+2
i and δ̂n+2

min = mini δ̂
n+2
i . The solution of

(5.53) yields the value ωn+1, where

ωn+1 :=
δn+1
max − δn+1

min

{δn+1
max − δn+1

min} − {gn+1
max − gn+1

min}
(5.55)

Below we present an algorithm that applies the above elements.

Algorithm 5.11 Value iteration with adaptive relaxation and one-step look-ahead

Input: Instance of an MDP and some scalar ε > 0.

Output: A nearly optimal deterministic policy f∞ and an approximation of the value vector φ0.

1. v := 0.

2. for all i ∈ S do begin yi := maxa{ri(a) +
∑

pij(a)vj}; δi := yi − vi end

3. for all i ∈ S do determine f(i) such that yi = ri

(

f(i)
)

+
∑

j pij

(

f(i)
)

vj.

4. for all i ∈ S do gi :=
∑

j pij

(

f(i)
)

δj .

5. Determine max such that δmax = maxi δi; determine min such that δmin = mini δi.

6. ω := δmax−δmin

{δmax−δmin}−{gmax−gmin} .

7. for all i ∈ S do wi := yi + ω · gi.

8. u := maxi (wi − vi); l := mini (wi − vi).

9. if u
l ≤ 1 + ε then

begin f∞ is an approximation of the optimal policy; 1
2 (u+l) is an approximation of φ0 (STOP)

end

else begin v := w; return to step 2 end.

However, finding the adaptive relaxation factor ω by considering only the states max and min neglects to

take account the influence of all other states and this might not be effective in certain iterations. Other

approaches, which we shall discuss below, may also seem quite worthwhile, in particular for cases where

the number of states is high, which is characteristic for MDPs. Such other approach is the minimum ration

criterion which is described below.

5.9. VALUE ITERATION 209

Inequality (5.51) defines the stopping criterion. If this condition has not been satisfied, it seems plausible

for the next iteration to find an ω that will minimize or at least reduce the term D(ω) := M(ω)
m(ω) , where

M(ω) := maxi δ̂
n+2
i = maxi {δn+1

i + ω · hn+1
i } and m(ω) := mini δ̂

n+2
i = mini {δn+1

i + ω · hn+1
i } with

hn+1 := gn+1 − δn+1. This criterion is meaningful if we take ω such that m(ω) > 0.

Since M(ω) is the maximum of a set of linear functions, M(ω) is a piecewise linear convex function (the

slopes of the line segments are nondecreasing in ω); similarly, m(ω) is a piecewise linear concave function

(the slopes of the line segments are nonincreasing in ω). Moreover, D(ω) is piecewise affine linear, i.e.

D(ω) = A+Bω
C+Dω and D(ω) is monotone on each segment, because on each segment D′(ω) = BC−AD

(C+Dω)2 .

Therefore, one is only interested in the endpoints of any segment, which are the breakpoints for M(ω) and

m(ω).

Denote the breakpoints of M(ω) as 0 = x0 < x1 < x2 < · · · < xK and let Ak +Bkω be the line segment

over the range xk−1 ≤ ω ≤ xk (k = 1, 2, . . . , K). From the properties of M(ω) it follows that {Ak} is a

decreasing sequence, while the sequence {Bk} is increasing. Similarly, let 0 = y0 < y1 < y2 < · · · < yL

denote the breakpoints of m(ω), while Cl + Dlω is the line segment over the range yl−1 ≤ ω ≤ yl

(l = 1, 2, . . . , L). Then, {Cl} is an increasing sequence and {Dl} an decreasing sequence.

Let Z := {xk, 0 ≤ k ≤ K} ∪ {yl, 0 ≤ l ≤ L} = {zj, 0 ≤ j ≤ J}, where the {zj, 0 ≤ j ≤ J} is

such arranged that 0 = z0 < z1 < z2 < · · · < zJ . Then, the minimum of D(ω) must occur at one of the

breakpoints {z0, z1, . . . , zJ}. Hence, a reasonable heuristic is a one-pass scan along the zj s. In each zj we

compute D(zj) =
M(zj)
m(zj) and we stop with ω∗ = zj when we for first time discover that D(zj) ≤ D(zj+1).

Another approach might be to try to retrieve quickly a ’good’ starting point for the optimal ω and

then continue the search from this starting point for the optimal ω∗. For this purpose we define the value

ω∗
1 such that M(ω∗

1) = minω M(ω) = minω {maxi (δn+1
i +ωhn+1

i)}; similarly let the value ω∗
2 be such that

m(ω∗
2) = maxω m(ω) = maxω {mini (δn+1

i + ωhn+1
i)}.

A good starting point for the search procedure could be either ω∗
1 or ω∗

2 . However, there is a danger

that by devoting to much effort to finding an optimal ω∗ in each iteration, we may lose on overall efficiency.

It was found empirically (reported in [115]) that the selection of ω∗ according to the simple rule

ω∗ =

{

ω∗
1 if D(ω∗

1) ≤ D(ω∗
2)

ω∗
2 otherwise

(5.56)

usually yields a near optimal relaxation factor. Hence, it is desirable to develop an efficient procedure for

finding ω∗
1 and ω∗

2 . We can use a linear program to solve the minmax problem for finding ω∗
1 . Notice that

M(ω) = maxi {δn+1
i + ω · hn+1

i }, which is the same as the minimum value of ω0 when ω0 is restricted to

the value that are at least δn+1
i +ω · hn+1

i for all i ∈ S. Hence, if (ω∗
0 , ω

∗
1) is the optimal value of the linear

program

min

{

ω0

∣

∣

∣

∣

∣

ω0 ≥ δn+1
i + ω1 · hn+1

i , i ∈ S
ω1 ≥ 0

}

. (5.57)

The corresponding dual linear program is

max

∑

i∈S

δn+1
i ui

∣

∣

∣

∣

∣

∣

∣

∑

i∈S ui = 1
∑

i∈S hn+1
i ui ≥ 0

ui ≥ 0, i ∈ S

. (5.58)

Since (5.57) has a finite optimal solution, also program (5.58) has a finite optimal solution. Let (ω∗
0 , ω

∗
1)

and u∗ be the optimal basic solutions of the linear programs (5.58) and (5.59), respectively. From the

complementary slackness property of linear programming we obtain

ω∗
1 ·
{

∑

i∈S

hn+1
i ui

}

= 0, i ∈ S. (5.59)

210 CHAPTER 5. AVERAGE REWARD - GENERAL CASE

As there are only two constraints for the dual, a basic feasible solution will have at most two positive

u∗i s, say u∗p and uq∗, and by the first constraint of (5.58), we have u∗p + u∗q = 1. If ω∗
1 = 0, then then

maxi {δn+1
i + ω · hn+1

i } ≥maxi δ
n+1
i for all ω ≥ 0, i.e. hn+1

i ≥ 0 for all i ∈ S. This is an exceptional case,

therefore we assume that ω∗
1 > 0. By property (5.59), we have hn+1

p u∗p +hn+1
q u∗q = 0. By the nonnegativity

of u∗, we obtain for the slopes hn+1
p and hn+1

q that hn+1
p ≤ 0 and hn+1

q > 0. The intuitive explanation for

the opposite sings of hn+1
p and hn+1

q is that the optimum ω∗
1 occurs where a downward slopping-line and

an upward slopping-line cross.

Since M(ω) is piecewise convex, ω∗
1 is the breakpoint where a change in sign of the hn+1s occurs. We

use this property in developing a greedy procedure for finding the value of ω∗
1 . This procedure has the

advantage that it skips some of the xk values. In this procedure we omit the iteration index, i.e. we denote

δ and h instead of δn+1 and hn+1, respectively.

Algorithm 5.12 Procedure for the computation of ω∗
1

Input: The vectors δ and h.

Output: The value ω∗
1

1. Set ω∗
1 := 0

2. Let M and k be such that M = maxi δi = δk (if k is not unique, select under the candidates that

state with the highest h-value); set H := hk.

3. Find ω1 such that ω1 = min{i |hi>0}
{

M−δi

hi−H

}

.

4. Let r be such that m = max{i |hi≤0}{δi + ω1 · hi} = δr + ω1 · hr.

5. ω∗
1 := ω∗

1 + ω1.

6. if m = M + ω1 ·H then STOP

else begin M := m; H := hr; δi := δi + ω1 · hi, i ∈ S; return to step 3 end

The formulation of the maxmin problem for finding the value ω∗
2 is as follows, where the variable ω0

represents in this case mini δ̂
n+1:

max

{

ω0

∣

∣

∣

∣

∣

ω0 ≤ δn+1
i + ω2 · hn+1

i , i ∈ S
ω2 ≥ 0

}

. (5.60)

which is equivalent to

min

{

−ω0

∣

∣

∣

∣

∣

−ω0 ≥ −δn+1
i − ω2 · hn+1

i , i ∈ S
ω2 ≥ 0

}

. (5.61)

Thus, by substituting the negative values for δn+1
i and hn+1

i , i ∈ S, the algorithm of finding the relaxation

value ω∗
2 is identical to that of finding ω∗

1 .

Remark

Herzberg and Yechiali [115] have tested this relaxation with one-step look-ahead analysis. They have

compared their approach with the standard value iteration algorithm. As expected, it appears that their

method slightly increases the work per iteration, but significantly decreases the total number of iterations.

The advantage of their approach rises with the increase of the dimensions (states and actions) of the

problem. The reduction of the computation time is about a factor 2 or 3.

5.10. BIBLIOGRAPHIC NOTES 211

5.10 Bibliographic notes

The concept ’communicating’ was introduced by Bather [12]. Platzman [217] introduced the notion ’weakly

communicating’ under the name simply connected. In Kallenberg [153] the classification of MDPs is

discussed and the question whether checking the unichain condition can be done in polynomial time was

raised in that paper. Tsitsiklis [293] has solved this problem by proving Theorem 5.1. From the paper

McCuaig [196] it follows that for deterministic MDPs (each transition probability in {0, 1}) this problem

is solvable in polynomial time. Feinberg and Yang have shown ([87]) that other special cases (the so-called

recurrent and absorbing cases) are also polynomially solvable.

Cesaro published in 1890 his idea concerning the convergence of averages ([37]). Theorem 5.3 can be

found in many textbooks on Markov chains, e.g. Kemeny and Snell [167]. The proof of this theorem and

also the theorems 5.5 and 5.6 follows Veinott [312]. Theorem 5.7 is due to Blackwell [29].

Blackwell [29] provided a theoretical framework for analyzing multichain models. His observation that

the average reward model may be viewed as a limit of expected discounted reard models, in which the

discount rate approaches 1, stimulated extensive research on average reward models. He introduced the

concept of the so-called 1-optimality, which later was renamed to Blackwell optimality. He also showed

that the partial Laurent series expansion, given in Corollary 5.3, provided a link between these two models.

The complete Laurent expansion, as presented in Theorem 5.10, is due to Miller and Veinott [199].

The average reward optimality equation (5.11) appears implicitly in Blackwell [29]; an explicit state-

ment appears in Derman’s book [69]. This optimality equation is extensively investigated by Schweitzer

and Federgruen [258]. Theorem 5.12 is a Tauberian result which can be found in Hordijk [120].

Howard [134] presented the policy iteration algorithm. However, he did not show that the algoritm

terminates in finitely many steps. Veinott [308] completed this analysis by establishing that the algorithm

cannot cycle. The anticycling rule 1 was proposed by Denardo and Fox [64], rule 2 by Blackwell [29]

and rule 3 by Schweitzer and Federgruen [259]. Further, Federgruen and Spreen ([82]) have proposed

a modification of Algorithm 5.7 which prevents cycling and avoids parsing the matrices P (f) into their

subchains. Spreen ([280]) has presented a choice rule for the relative value vector y which guarantees the

convergence and is weaker than the rules 1, 2 and 3. Moreover, the computational complexity is of this

variant is smaller.

The linear programming approach for the average reward criterion was independently introduced by

De Ghellinck [51] and Manne [193] for the completely ergodic case. The first analysis for the multichain

case has been presented in Denardo and Fox [64] who proved Theorem 5.17. Denardo [58] and Derman

[69] improved these results slightly. Hordijk and Kallenberg [126] have solved the remaining problems

and proved Theorem 5.18. Kallenberg [148] provides a comprehensive analysis of all aspects of linear

programming for MDP models. Altman and Spieksma ([5]) have presented a stochastic interpretation of

the decision variables that appear in the linear programs.

The value iteration scheme (5.44) was proposed by Bellman [17] and Howard [134]. Lemma 5.8 is due

to Brown [34]. The data transformation (5.48) to assure aperiodicity was proposed by Schweitzer [256].

Bounds on the value vector, as given in Theorem 5.25, can be found in Hastings [113]. Denardo [61] proved

the convergence of the sequence {en}∞n=0 under the unichain and aperiodicity assumption. This result was

generalized to the multichain case, as shown in Theorem 5.24, by Schweitzer and Federgruen ([257], [260]).

The basic idea for Algorithm 5.10, called the relative value iteration, is due to White [325], who presented

a convergent algorithm. The present implementation with monotone upper and lower bounds un and ln,

respectively, was proposed by Odoni ([207]). The relaxation with one-step look-ahead approach is analyzed

by Herzberg and Yechiali ([115]) and based on ideas from Popyack, Brown and White ([219]).

212 CHAPTER 5. AVERAGE REWARD - GENERAL CASE

5.11 Exercises

Exercise 5.1

Consider the following model:

S = {1, 2}; A(1) = A(2) = {1, 2}; p11(1) = 1, p12(1) = 0; p11(2) = 0, p12(2) = 1; p21(1) = 0,

p22(1) = 1; p21(2) = 1, p22(2) = 0; r1(1) = 2, r1(2) = 2; r2(1) = −2, r2(1) = −2.

In each state one can choose to stay in that state (action 1) or to move to the other state (action 2).

Consider the nonstationary policy R which, starting in state 1 at t = 1, takes action 2 and moves to

state 2 and remains there for until t = 1 + 3 = 4 and then returns to state 1, and remains there until

t = 4 + 32 = 13 periods, proceeds to state 2 and remains there until t = 13 + 33 = 40, etc. Compute for

this policy φ1(R) = lim infT→∞
1
T

∑T
t=1 Ei,R{rXt

(Yt)} and φ1(R) = lim supT→∞
1
T

∑T
t=1 E1,R{rXt

(Yt)}.

Exercise 5.2

a. Show that ordinary convergence implies Cesaro convergence.

b. Show, without making use of Theorem 5.2, that ordinary convergence implies Abel

convergence.

c. Give a counterexample that Cesaro convergence does not imply ordinary convergence.

d. Give a counterexample that Abel convergence does not imply ordinary convergence.

Exercise 5.3

Give a counterexample that Abel convergence does not imply Cesaro convergence.

Exercise 5.4

Consider the stochastic matrix

P =

0 0 0 0.5 0 0 0 0 0.5

0 0.25 0.25 0 0.25 0 0 0 0.25

0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0.5 0 0 0 0.25 0.25 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0.5 0 0 0 0 0.5

.

a. Determine the ergodic sets and the transient states; write the matrix in standard form.

b. Determine the stationary matrix P ∗.

Exercise 5.5

Consider the stochastic matrix

P =

0.5 0.5 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0.25 0 0 0.25 0.5

.

Determine the stationary matrix, the fundamental matrix and the deviation matrix.

5.11. EXERCISES 213

Exercise 5.6

Show that the deviation matrix D satisfies De = 0, i.e. the rows sum up to 0.

Exercise 5.7

Let P be an irreducible double stochastic matrix, i.e. an irreducible stochastic matrix with
∑n

i=1 pij = 1

for j = 1, 2, . . . , n: both the rows and the columns sum up to 1. Determine the stationary matrix P ∗.

Exercise 5.8

Consider the following MDP:

S = {1, 2}; A(1) = {1, 2, 3}, A(2) = {1}; r1(1) = 1, r1(2) = 3
4 , r1(3) = 1

2 ; r2(1) = 0;

p11(1) = 0, p12(1) = 1; p11(2) = 1
2 , p12(2) = 1

2 ; p11(3) = 1, p12(3) = 0; , p21(1) = 0, p22(1) = 1.

Determine for the deterministic policy f∞ with f(1) = 2, f(2) = 1:

a. On which subinterval of [0, 1) is f∞ an α-discounted optimal policy.

b. uk(f) for k = −1, 0, 1,

c. vT (f∞) for all T = 1, 2,

d. The Laurent expansion for vα(f∞) and α0(f) =
‖D(f)‖

1+‖D(f)‖ .

Exercise 5.9

Suppose that the MDP is irreducible. Then the value vector has identical components, say φ.

Show the following properties:

(1) (x, y) = (φ, u0(f0)) is a solution of the equation

x+ yi = maxa∈A(i){ri(a) +
∑

j pij(a)yj}, i ∈ S, where f∞0 is a Blackwell optimal policy.

(2) If (x, y) is a solution of the above equation, then x = φ and y = u0(f0) + c · e for some c ∈ R.

(3) Consider the following MDP, which is obviously not an irreducible model, but multichain.

S = {1, 2, 3}, A(1) = A(2) = {1, 2}, A(3) = 1. r1(1) = 3, r1(2) = 1, r2(1) = 0, r2(2) = 1, r3(1) = 2.

p11(1) = 1, p12(1) = p13(1) = 0; p11(2) = 0, p12(2) = 1, p13(2) = 0; p21(1) = 0, p22(1) = 1, p23(1) = 0;

p21(2) = p22(2) = 0, p23(2) = 1; p31(1) = p32(1) = 0, p33(1) = 1.

Show that the optimality equation of part (1) doesn’t has a solution for this multichain model.

Exercise 5.10

Suppose that the MDP is unichained. Then, for every f∞, the average reward vector φ(f∞) has identical

components, also denoted by φ(f∞).

Show the following properties:

(1) The linear system
{ x · e+ {I − P (f)}y = r(f)

y1 = 0
has a unique solution x = φ(f∞) and

y = u0(f) − u0
1(f) · e.

(2) Show that the set B(i, f), defined in (5.13), in the unichain case can be simplified to

B(i, f) = {a ∈ A(i) | ri(a) +
∑

j pij(a)yj > x+ yi},
where x and y are the solution of the system of part (1) of this exercise.

(3) Formulate the policy iteration algorithm for the unichain case.

(4) Consider the following MDP:

S = {1, 2}; A(1) = A(2) = {1, 2}; r1(1) = 4, r1(2) = 2, r2(1) = 3, r2(2) = 1.

p11(1) = 1
3 , p12(1) = 2

3 ; p11(2) = 2
3 , p12(2) = 1

3 ; p21(1) = 1
2 , p22(1) = 1

2 ; p21(2) = 1
2 , p22(2) = 1

2 .

Show that the model is a unichain MDP and compute an average optimal policy by the

algorithm of part (3), starting with the policy f∞, where f(1) = f(2) = 2.

214 CHAPTER 5. AVERAGE REWARD - GENERAL CASE

Exercise 5.11

Show the following properties for an MDP with ρ := mini,j,a pij(a) > 0:

(1) P (fn)yn ≤ yn+1 ≤ P (fn+1)y
n , n ∈ N, where yn = vn − vn−1.

(2) span yn+1 ≤ (1−Nρ) · span yn, n ∈ N.

(3) Algorithm 5.10 terminates in at most T iterations with T =
log{ ε

u0−l0
}

log(1−Nρ) .

Exercise 5.12

Consider the operators Lf and U defined on R
N by:

Lf x = r(f) + P (f)x and (Ux)i = maxa∈A(i) {ri(a) +
∑

j pij(a)xj}, i ∈ S.
Show that for any x ∈ R

N and f∞ ∈ C(D) (without any assumption about the chain structure):

(1) If Lf x ≤ y, then φ(f) ≤ maxi (y − x)i · e.
(2) If Lf x ≥ y, then φ(f) ≥ mini (y − x)i · e.
(3) mini (Ux− x)i · e ≤ φ(f∞x) ≤ φ ≤maxi (Ux− x)i · e, where fx satisfies Ux = Lfx

x.

Chapter 6

Average reward - special cases

6.1 The irreducible case

6.1.1 Optimality equation

6.1.2 Policy iteration

6.1.3 Linear programming

6.1.4 Value iteration

6.1.5 Modified policy iteration

6.2 The unichain case

6.2.1 Optimality equation

6.2.2 Policy iteration

6.2.3 Linear programming

6.2.4 Value iteration

6.2.5 Modified policy iteration

6.3 The communicating case

6.3.1 Optimality equation

6.3.2 Policy iteration

6.3.3 Linear programming

6.3.4 Value iteration

6.3.5 Modified policy iteration

6.4 Bibliographic notes

6.5 Exercises

6.1 The irreducible case

In this section we impose the following assumption:

Assumption 6.1

The Markov chain P (f) is irreducible for every f∞ ∈ C(D).

We have seen in section 5.2.3 that checking the irreducibility property can be done in polynomial time,

namely in O(M ·N2), where M :=
∑

i∈S |A(i)|. In this irreducible case, for every policy f∞ the stationary

matrix has identical and strictly positive rows, and consequently the vector φ(f) has identical components.

Therefore we may φ(f), and also the value vector φ, consider as a scalar. The irreducible case looks like

the discounted case. Most results are similar and can be obtained by the property that the stationary

matrix has identical rows with strictly positive elements.

215

216 CHAPTER 6. AVERAGE REWARD - SPECIAL CASES

6.1.1 Optimality equation

Theorem 6.1

Consider the optimality equation

x+ yi = maxa∈A(i)

{

ri(a) +
∑

j

pij(a)yj

}

, i ∈ S. (6.1)

Then, we have

(1) (x, y) =
(

φ, u0(f0)
)

, where φ is the value and f∞0 a Blackwell optimal policy, is a solution of the

optimality equation.

(2) If (x, y) is a solution of the optimality equation, then x = φ and y = u0(f0) + c · e for some c ∈ R.

Proof

(1) We have seen in Theorem 5.11 that
(

φ, u0(f0)
)

is a solution of (5.11). Since the vector φ has identical

components, A(i, φ) = A(i) for all i. Hence,
(

φ, u0(f0)
)

is a solution of (6.1).

(2) It also follows from Theorem 5.11 that if (x, y) is a solution of (5.11), then x = φ. From the optimality

equation, we obtain φ+y ≥ r(f0)+P (f0)y. Furthermore, the property {I−P (f0)}D(f0) = I−P ∗(f0)

implies, φ+ u0(f0) = r(f0) + P (f0)u
0(f0). Let z := y − u0(f0), then z ≥ P (f0)z, i.e. z − P (f0)z ≥ 0.

Since P ∗(f0){z −P (f0)z} = 0 and because P ∗(f0) has strictly positive elements, we have z = P (f0)z.

Consequently, z = P ∗(f0)z = c ·e for some c ∈ R, (the last equality because P ∗(f0) has identical rows).

Hence, y = u0(f0) + c · e.

Example 6.1

The following model, which was also used in Example 5.8, does not satisfy the irreducibility assumption.

We show that in that case the optimality equation (6.1) cannot be used.

S = {1, 2, 3}; A(1) = A(2) = {1, 2}, A(3) = 1; r1(1) = 3, r1(2) = 1, r2(1) = 0, r2(2) = 1, r3(1) = 2.

p11(1) = 1, p12(1) = p13(1) = 0; p11(2) = 0, p12(2) = 1, p13(2) = 0; p21(1) = 0, p22(1) = 1, p23(1) = 0;

p21(2) = p22(2) = 0, p23(2) = 1; p31(1) = p32(1) = 0, p33(1) = 1.

The optimality equation (6.1) becomes:

x+ y1 = max{3 + y1, 1 + y2}; x+ y2 = max{0 + y2, 1 + y3}; x+ y3 = 2 + y3.

The third equation gives x = 2. If we use this value in the first equation, we obtain:

2 + y1 = max{3 + y1, 1 + y2} ≥ 3 + y1, implying that the system is infeasible.

Remark

We give a heuristic derivation that this optimality equation can be derived from the optimality equation for

the discounted reward when the discount factor α tends to 1. First, we write the the optimality equation

for the discounted reward as 0 = maxa∈A(i)

{

ri(a) + α
∑

j pij(a)v
α
j − vα

i

}

, i ∈ S.
Then, we use the first terms of the Laurent expansion: vα = φ·e

1−α
+ u0 + ε(α). So, we obtain

0 = maxa∈A(i)

{

ri(a) + α
∑

j pij(a){ φ
1−α + u0

j} − { φ
1−α + u0

i }+ ε(α)
}

, i ∈ S.

0 = maxa∈A(i)

{

ri(a) + α
∑

j pij(a)u
0
j − φ− u0

i + ε(α)
}

, i ∈ S.

Denote φ by x and u0 by y and let α tends to 1. Then, we have

0 = maxa∈A(i)

{

ri(a)+
∑

j pij(a)yj −x− yi

}

, i ∈ S, i.e. x+ yi = maxa∈A(i)

{

ri(a)+
∑

j pij(a)yj

}

, i ∈ S.

6.1. THE IRREDUCIBLE CASE 217

6.1.2 Policy iteration

Theorem 6.2

The linear system
{ x · e+ {I − P (f)}y = r(f)

y1 = 0
has x = φ(f∞) and y = u0(f) − u0

1(f) · e. as unique

solution.

Proof

Multiply the first equality by P ∗(f):

x · P ∗(f)e + P ∗(f){I − P (f)}y = P ∗(f)r(f) = φ(f∞) · e → x · e = φ(f∞) · e, i.e. x = φ(f∞).

Since x = φ(f∞) = P ∗(f)r(f), the first equation can be written as:

{I − P (f) + P ∗(f)}y = r(f) − P ∗(f)r(f) + P ∗(f)y, implying

y = {I − P (f) + P ∗(f)}−1
{(

I − P ∗(f)
)

r(f) + P ∗(f)y
}

= {D(f) + P ∗(f)}
{(

I − P ∗(f)
)

r(f) + P ∗(f)y
}

= D(f)r(f) + P ∗(f)y = u0(f) + c · e.

Because y1 = 0, we have, c = −u0
1(f). Hence, y = u0(f) − u0

1(f) · e.
For every i ∈ S and f∞ ∈ C(D), we define the action set B(i, f) by

B(i, f) :=
{

a ∈ A(i) | ri(a) +
∑

j pij(a)u
0
j (f) > φ(f∞) + u0

i (f)
}

.

Since u0(f) and the solution y of the system in Theorem 6.1 differ a constant, we also have

B(i, f) =
{

a ∈ A(i) | ri(a) +
∑

j

pij(a)yj > φ(f∞) + yi

}

. (6.2)

Theorem 6.3
(1) If B(i, f) = ∅ for every i ∈ S, then f∞ is an average optimal policy.

(2) If B(i, f) 6= ∅ for at least one i ∈ S and the policy g∞g 6= f∞ satisfies g(i) ∈ B(i, f) if g(i) 6= f(i),

then φ(g∞) > φ(f∞).

Proof

(1) If B(i, f) = ∅ for every i ∈ S, then r(g) + P (g)u0(f) ≤ φ(f∞) · e+ u0(f) for all g∞ ∈ C(D).

Hence, P ∗(g)r(g) + P ∗(g)P (g)u0(f) ≤ φ(f∞) · P ∗(g)e+ P ∗(g)u0(f) for all g∞ ∈ C(D), i.e.

φ(g∞) · e+ P ∗(g)u0(f) ≤ φ(f∞) · e+ P ∗(g)u0(f). Therefore, φ(g∞) ≤ φ(f∞) for all g∞ ∈ C(D):

f∞ is average optimal.

(2) If g(i) = f(i), then row i of P (f) is identical to row i of P (g), and also ri(f) = ri(g). Hence,

{r(g) + P (g)u0(f)}i = {r(f) + P (f)u0(f)}i = {P ∗(f)r(f) + u0(f}i = φ(f∞) + u0
i (f), the last

but one equality because I + P (f)D(f) = P ∗(f) +D(f).

If g(i) 6= f(i), then g(i) ∈ B(i, f) and {r(g) + P (g)u0(f)}i > φ(f∞) + u0
i (f). Therefore, we have

r(g) + P (g)u0(f) > φ(f∞) · e+ u0(f). Since the elements of P ∗(g) are strictly positive, we

obtain P ∗(g)r(g) + P ∗(g)u0(f) > φ(f∞) · e+ P ∗(g)u0(f): φ(g∞) > φ(f∞).

Algorithm 6.1 Determination of an average optimal policy by policy iteration (irreducible case)

Input: Instance of an irreducible MDP.

Output: An optimal deterministic policy f∞ and the value φ.

1. Select an arbitrary f∞ ∈ C(D).

218 CHAPTER 6. AVERAGE REWARD - SPECIAL CASES

2. Determine the unique solution
(

x = φ(f∞), y
)

of the linear system

{ x · e+ {I − P (f)}y = r(f)

y1 = 0

3. for all i ∈ S do B(i, f) := {a ∈ A(i) | ri(a) +
∑

j pij(a)yj > φ(f∞) + yi}.

4. if B(i, f) = ∅ for every i ∈ S then

begin f∞ is an average optimal policy; φ(f∞) is the value φ (STOP) end

else begin select g 6= f such that g(i) ∈ B(i, f) if g(i) 6= f(i); f := g; return to step 2

end

Example 6.2

Apply Algorithm 6.1 to the following model (easy to check that the model is irreducible).

S = {1, 2}; A(1) = A(2) = {1, 2}; r1(1) = 4, r1(2) = 2, r2(1) = 3, r2(2) = 1;

p11(1) = 1
3
, p12(1) = 2

3
; p11(2) = 2

3
, p12(2) = 1

3
; p21(1) = 1

2
, p22(1) = 1

2
; p21(2) = 1

2
, p22(2) = 1

2
.

Start with f∞, where f(1) = 2, f(2) = 1.

Iteration 1:

The system is

x + 1
3y1 − 1

3y2 = 2

x − 1
2y1 + 1

2y2 = 1

y1 = 0

with solution x = 8
5 , y1 = 0, y2 = −6

5 .

B(1, f) = B(2, f) = {1}. Select g(1) = g(2) = 1. Then, f(1) = f(2) = 1

Iteration 2:

The system is

x + 2
3y1 − 2

3y2 = 4

x − 1
2y1 + 1

2y2 = 3

y1 = 0

with solution x = 24
7 , y1 = 0, y2 = −6

7 .

B(1, f) = B(2, f) = ∅: f∞, where f(1) = f(2) = 1, is an optimal policy and the value is 24
7 .

6.1.3 Linear programming

Since the value vector is the smallest superharmonic vector (cf. Theorem 5.17), in the case where φ is a

constant, φ is the unique x-solution of the linear program

min

x

∣

∣

∣

∣

∣

∣

x+
∑

j

{δij − pij(a)}yj ≥ ri(a), i ∈ S, a ∈ A(i)

. (6.3)

The dual of (6.3) is:

max

∑

i,a

ri(a)xi(a)

∣

∣

∣

∣

∣

∣

∣

∣

∑

i,a{δij − pij(a)}xi(a) = 0, j ∈ S
∑

i,a xi(a) = 1

xi(a) ≥ 0, i ∈ S, a ∈ A(i)

. (6.4)

Remark

We show that the dual linear program (6.4) can be considered as the dual linear program (3.32) for the

discounted reward in which the discount factor tends to 1. First, we remark that if we summing up the

constraints of (3.32), we obtain
∑

i,a (1 − α)xi(a) =
∑

j βj . If we take βj such that
∑

j βj = 1, add the

6.1. THE IRREDUCIBLE CASE 219

(redundant) constraint
∑

i,a (1 − α)xi(a) = 1 and multiply both the objective function as the constraints

of (3.32) with (1− α), the program becomes:

max

∑

i,a

ri(a)(1 − α)xi(a)

∣

∣

∣

∣

∣

∣

∣

∣

∑

i,a{δij − αpij(a)}(1− α)xi(a) = (1− α)βj , j ∈ S
∑

i,a(1− α)xi(a) = 1

(1 − α)xi(a) ≥ 0, i ∈ S, a ∈ A(i)

. (6.5)

Let α ↑ 1 and denote limα↑1 (1− α)xi(a) again by xi(a) for all (i, a) ∈ S ×A, then we get (6.4).

Theorem 6.4

Let (φ, y∗) and x∗ be optimal solutions of (6.3) and (6.4), respectively. Let f∞∗ ∈ C(D) be such that

x∗i
(

f∗(i)
)

> 0, i ∈ S. Then, f∞∗ is well-defined and an optimal policy.

Proof

Let x a feasible solution of (6.4) (notice that program (6.4) is feasible, because (6.3) has a finite optimal so-

lution) and let xi :=
∑

a xi(a), i ∈ S. Let π∞ ∈ C(S) defined by πi(a) :=
{

xi(a)
xi

if xi > 0, i ∈ S;

arbitrary if xi = 0, i ∈ S.
Hence, xi(a) = πi(a) · xi, (i, a) ∈ S × A and

∑

i,a {δij − pij(a)}πi(a) · xi = 0, j ∈ S. Therefore,

xT {I−P (π)} = 0, where {P (π}ij =
∑

a pij(a)πi(a) for all i, j ∈ S, i.e. x is a stationary distribution of the

Markov chain P (π). Since the chain is irreducible, we have xi > 0, i ∈ S. Therefore, x∗i =
∑

a x
∗
i (a) > 0

for all i ∈ S, i.e. f∞∗ is a well-defined policy. From the orthogonality property of linear programming

it follows that x∗i (a) ·
{

φ +
∑

j {δij − pij(a)}y∗j − ri(a)
}

= 0 for all (i, a) ∈ S × A. Hence, we have

φ · e + {I − P (f∗)}y∗ = r(f∗). Multiply the last equality by P ∗(f∗): φ · e = P ∗(f∗)r(f∗) = φ(f∞∗) · e,
implying that f∞∗ is an optimal policy.

Algorithm 6.2

Determination of an average optimal policy by linear programming (irreducible case)

Input: Instance of an irreducible MDP.

Output: An optimal deterministic policy f∞∗ and the value φ.

1. Determine an optimal solution of the linear program (6.4).

2. Select f∞∗ ∈ C(D) such that x∗i
(

f∗(i)
)

> 0 for every i ∈ S.

3. The value φ is the optimum value of program (6.4); f∞∗ is an optimal policy (STOP).

Example 6.3

Apply Algorithm 6.2 to the following model (easy to check that the model is irreducible).

S = {1, 2}; A(1) = A(2) = {1, 2}; r1(1) = 1, r1(2) = 0, r2(1) = 2, r2(2) = 5.

p11(1) = 1
2 , p12(1) = 1

2 ; p11(2) = 1
4 , p12(2) = 3

4 ; p21(1) = 2
3 , p22(1) = 1

3 ; p21(2) = 1
3 , p22(2) = 2

3 .

The linear program (6.4) is:

max{1 · x1(1) + 0 · x1(2) + 2 · x2(1) + 5 · x2(2)}
subject to

x1(1) + x1(2) = 1
2x1(1) + 1

4x1(2) + 2
3x2(1) + 1

3x2(2);

x2(1) + x2(2) = 1
2x1(1) + 3

4x1(2) + 1
3x2(1) + 2

3x2(2);

x1(1) + x1(2) + x2(1) + x2(2) = 1;

x1(1), x1(2), x2(1), x2(2) ≥ 0.

The optimal optimal solution is: x∗1(1) = 0, x∗1(2) = 4
13 , x

∗
2(1) = 0, x∗2(2) = 9

13 ; optimum = 45
13 .

Therefore, the optimal policy is: f∗(1) = 2, f∗(2) = 2 and the value φ = 45
13 .

220 CHAPTER 6. AVERAGE REWARD - SPECIAL CASES

As in the discounted case, there is a bijection between the feasible solutions of the dual program (6.5)

and the set C(S) of stationary policies. Let π∞ be a stationary policy and let x(π) be the stationary

distribution of P (π). Define xπ by

xπ
i (a) := xi(π) · πia, (i, a) ∈ S ×A. (6.6)

Reversely, let x be a feasible solution of (6.5). Define πx by

πx
ia :=

xi(a)
∑

a xi(a)
, (i, a) ∈ S × A. (6.7)

Theorem 6.5

The mapping (6.6) is a bijection between the feasible solutions of the dual program (6.5) and the set C(S)

with (6.7) as the reverse mapping. Furthermore, the extreme solutions of (6.5) correspond to the set C(D)

of deterministic policies.

Proof

Let π∞ be any stationary policy. Then, xπ, defined by (6.6), satisfies
{
∑

i,a{δij − pij(a)}xπ
i (a) =

∑

i{δij − pij(π)}xi(π) =
{

{x(π)}T {I − P (π)}
}

j
= 0, j ∈ S;

∑

i,a x
π
i (a) =

∑

i xi(π) = 1 and xπ
i (a) ≥ 0, (i, a) ∈ S ×A.

Hence, xπ is a feasible solution of (6.5).

Conversely, let x be a feasible solution of (6.5). From the proof of Theorem 6.4 it follows that
∑

a xi(a) > 0

for all i ∈ S; so, the policy πx is well-defined. Since πxπ

ia = πia for all (i, a) ∈ S × A, (6.6) is a bijection

with (6.7) as the reverse mapping.

Let f∞ ∈ C(D) and suppose xf is not an extreme point, i.e. xf = λx1+(1−λ)x2, where λ ∈ (0, 1), x1 6= x2

and x1, x2 are feasible solutions of (6.5). Since for all i ∈ S, we have xf
i (a) = 0 for a 6= f(i), also for all

i ∈ S, we have x1
i (a) = x2

i (a) = 0 for a 6= f(i). Therefore, both x1 and x2 are solutions of the same linear

system xT {I − P (f)} = 0, xT e = 1, which has a unique solution: x1 = x2, implying a contradiction,

showing that xf is an extreme point.

Finally, let x be an extreme point of (6.5). Since the sum of the first N components is zero in every

column, the rank of the whole system (N + 1 equations) is at most N . Therefore, any extreme solution

has at most N positive components. Since,
∑

a xi(a) > 0 for all i ∈ S, x has in each state exactly one

positive component. Hence, the corresponding policy is deterministic.

Next, we show the equivalence between linear programming and policy iteration. Consider a deterministic

policy f∞. We have seen that xf is an extreme point of (6.5) and that xf
i (f(i)) > 0 for every i ∈ S. In

the simplex tableau corresponding to xf , the column of a nonbasic variable xi(a) has as reduced costs (the

transformed objective function value) di(a) = x+
∑

j {δij − pij(a)}yj − ri(a).

Since xf
i (f(i)) > 0 for all i ∈ S, it follows from the complementary slackness property of linear

programming that di(f(i)) = 0 for all i ∈ S. This property implies x · e + {I − P (f)}y = r(f), and

consequently x ·e = P ∗(f)r(f) = φ(f∞) ·e. Hence, we have x = φ(f∞) and φ(f∞) ·e+{I−P (f)}y = r(f).

Since we also have φ(f∞) · e + {I − P (f)}u0(f) = r(f), we obtain {I − P (f)}{y − u0(f)} = 0, i.e.

y − u0(f) = P (f){y − u0(f)}. Hence, y − u0(f) = P ∗(f){y − u0(f)} = c · e for some scalar c.

This implies that the reduced costs satisfy di(a) = φ(f∞) +
∑

j {δij − pij(a)}u0(f) − ri(a). Since

a ∈ B(i, f) if and only if di(a) < 0, it follows that the set of actions from which g(i) may be chosen in

policy iteration corresponds to the possible choices for the pivot column in the simplex method, which

yieds the following theorem.

6.1. THE IRREDUCIBLE CASE 221

Theorem 6.6

(1) Any policy iteration algorithm is equivalent to a block-pivoting simplex algorithm.

(2) Any simplex algorithm is equivalent to a particular policy iteration algorithm.

Detecting nonoptimal actions

In this section we present conditions to detect nonoptimal actions in irreducible MDPs with average

rewards. They can be implemented in both the policy iteration and the linear programming algorithm.

Also an implementation in the so-called ’new policy iteration scheme’ (see Algorithm 6.5 in section 6.2.2)

is discussed.

The dual program for irreducible MDPs is (6.4). Since the equalities
∑

i,a{δij−pij(a)}xi(a) = 0, j ∈ S,

imply (by adding these N equalities) the trial identity
∑

j,a xj(a) =
∑

i,a xi(a), the linear program (6.4) is

degenerated. From Theorem 6.5 it follows that any basic solution x of (6.4) corresponds to a deterministic

policy f∞, i.e. x = xf for some f∞ ∈ C(D). Since xf
i > 0 for all i ∈ S (see the proof of Theorem 6.5), any

matrix I −P (f) has rank N −1. Hence, program (6.4) is equivalent to the nondegenerated linear program

max

∑

i,a

ri(a)xi(a)

∣

∣

∣

∣

∣

∑

i,a{δij − pij(a) + 1
N
}xi(a) = 1

N
, j ∈ S

xi(a) ≥ 0, i ∈ S, a ∈ A(i)

. (6.8)

For nondegenerated linear programs, the matrix A of the constraints and the basic solution x - corre-

sponding to f∞ ∈ C(D) - can be partitioned into A = (B,C) and x = (xB, xC), where xC = 0 and

(xB)i = xf
i , i ∈ S. Furthermore, we have BxB = {I − P T (f) + 1

N ee
T }xB = e

N . In the next lemma we

show relation between the matrix B and the fundamental matrix Z(f).

Lemma 6.1

B−1 = {(I − 1
N
eeT)Z(f) + eπ(f)T }T , where π(f) is the stationary vector of the irreducible matrix P (f).

Proof

We have to show that BT {(I− 1
N
eeT)Z(f)+ eπ(f)T } = I. Let X = BT {(I − 1

N
eeT)Z(f)+ eπ(f)T }, then

we can write

X = BT {(I − 1
N ee

T)Z(f) + eπ(f)T } = {I − P (f) + 1
N ee

T }{(I − 1
N ee

T)Z(f) + eπ(f)T }
= {Z(f) − 1

N ee
TZ(f) + eπ(f)T } − {P (f)Z(f) − 1

NP (f)eeTZ(f) + eπ(f)T }
+ { 1

N ee
TZ(f) − 1

N ee
TZ(f) + eπ(f)T }

= Z(f) − P (f)Z(f) + eπ(f)T = {I − P (f)}Z(f) + P ∗(f)

= {I − P (f)}{D(f) + P ∗(f)} + P ∗(f) = I − P ∗(f) + P ∗(f) = I.

Given the current simplex vertex (xB, xC), the simplex method works as follow:

1. Compute the minimum shadow price of the nonbasic variables xC . For the nonbasic variable xj(a) this

shadow price equals zj(a) − rj(a) = rT
BB

−1Aj,a − rj(a), where rB = r(f) and the column vector Aj,a

has elements δjk − pjk(a) + 1
N
, k ∈ S. Notice that if all shadow prices are nonnegative the algorithm

terminates with an average optimal policy f∞.

2. Select the index (j, a) of the minimum, i.e. most negative, shadow price. Then, xj(a) enters the basis

and xf
i leaves the basis.

From Lemma 6.1, we obtain {rT
BB

−1}T = {(I− 1
N ee

T)Z(f)+eπ(f)T }r(f) = (I− 1
N ee

T)Z(f)r(f)+φ(f∞)·e.
Hence,

222 CHAPTER 6. AVERAGE REWARD - SPECIAL CASES

zj(a) = {rT
BB

−1Aj,a}T =
∑

k {Aj,a}k · {(B−1)T rB}k
=

∑

k {δjk − pjk(a) + 1
N } ·

{

(I − 1
N ee

T)Z(f)r(f) + φ(f) · e
}

k

=
∑

k {δjk − pjk(a) + 1
N } ·

{

[Z(f)r(f)]k − 1
N

∑

i [Z(f)r(f)]i + φ(f∞)
}

= [Z(f)r(f)]j −
∑

k pjk(a)[Z(f)r(f)]k + 1
N

∑

k [Z(f)r(f)]k − 1
N

∑

i [Z(f)r(f)]i + φ(f∞)

= [Z(f)r(f)]j −
∑

k pjk(a)[Z(f)r(f)]k + φ(f∞).

Therefore, the shadow prices satisfy zj(a)− rj(a) = [Z(f)r(f)]j −
∑

k pjk(a)[Z(f)r(f)]k + φ(f∞)− rj(a).

Since the shadow prices are zero for all basic variables, we have φ(f∞) · e+ {I − P (f)}Z(f)r(f) = r(f),

i.e. Z(f)r(f) is a solution of the linear system

φ(f∞) · e+ {I − P (f)}y = r(f). (6.9)

However, this system has a solution which is unique up to a constant. Hence, the shadow prices also satisfy

zj(a)− rj(a) = yj −
∑

k pjk(a)yk + φ(f∞) − rj(a), where y is any solution to equation (6.9). Using (6.9)

the shadow prices can also be written as

zj(a) − rj(a) = {rj(f) − rj(a)}+
∑

k

{pjk(f) − pjk(a)}yk, (6.10)

where y is any solution to equation (6.9).

Theorem 6.7

Let f∞ be the policy of the current simplex tableau and let xj(a) be a nonbasic variable variable with

reduced costs zj(a) − rj(a).

If either δjk+
∑

l {pjl(f)−pjl(a)}{Z(f)}lk ≥ 0 for all k ∈ S or δjk+
∑

l {pjl(f)−pjl(a)}{Z(f)}lk < 0 for at

least one k and zj(a)−rj(a)+θ·{φ−φ(f∞)} > 0, where φ ≥ φ(f∞) and θ := mink
δjk+

P

l {pjl(f)−pjl(a)}{Z(f)}lk

πk(f)
,

then action a is nonoptimal and can be deleted from A(j).

Proof

We will show that this theorem follows from Theorem 3.21. Therefore, it is sufficient to show that

{B−1Aj,a}k = δjk +
∑

l {pjl(f) − pjl(a)}{Z(f)}lk for all k ∈ S. We have

{B−1Aj,a}k =
∑

l {B−1}lk · {Aj,a}l
=

∑

l {(I − 1
N ee

T)Z(f) + eπ(f)T }lk · {δjl − pjl(a) + 1
N }

=
∑

l

{

[Z(f)]lk − 1
N

∑

i [Z(f)]ik + πk(f)
}

· {δjl − pjl(a) + 1
N }

=
{

[Z(f)]jk − 1
N

∑

i [Z(f)]ik + πk(f)
}

−
{
∑

l [Z(f)]lk · pjl(a)− 1
N

∑

i [Z(f)]ikπk(f)
}

+
{

πk(f) − πk(f) + πk(f)
}

= {Z(f)}jk + πk(f) −∑l {Z(f)}lk · pjl(a)

= πk(f) +
∑

l {δjl − pjl(a)} · {Z(f)}lk , k ∈ S.
Hence, we have to show that πk(f) = δjk +

∑

l pjl(f)} · {Z(f)}lk − {Z(f)}jl for all k ∈ S. Since

I − {I − P (f)}Z(f) = I − {I − P (f)}{D(f) + P ∗(f)} = P ∗(f), this is true.

Remark

For the implementation of this suboptimality test, we need the values
∑

l {pjl(f)− pjl(a)}{Z(f)}lk for all

k ∈ S. However, we do not nee to compute the matrix Z(f) explicitly, but it suffices to update for each

(j, a) the vectors
∑

l {pjl(f)−pjl(a)}{Z(f)}lk , k ∈ S. This can be done by a computation scheme of order
∑

i |A(i)|. For the details, we refer to [176].

6.1. THE IRREDUCIBLE CASE 223

The next two lemmata present interesting formulas, which hold even for unichain MDPs. The are related

to the lemmata 3.6 and 3.6 for discounted MDPs.

Lemma 6.2

Let f∞, g∞ ∈ C(D). Then, φ(g∞) − φ(f∞) = π(g)T {r(g) − r(f) + [P (g) − P (f)]y(f)}, where y(f) is a

relative value vector, i.e. y(f) satisfies {I − P (f)}y = r(f) − φ(f∞) · e.

Proof

We can write

π(g)T {r(g)− r(f) + [P (g)− P (f)]y(f)} = φ(g∞) − π(g)T {r(f) − P (g)y(f) + P (f)y(f)}
= φ(g∞) − π(g)T {φ(f∞) · e+ [I − P (g)]y(f)}
= φ(g∞) − φ(f∞).

Lemma 6.3

Let f∞, g∞ ∈ C(D). Then, π(f)T = π(g)T
{

I − [P (g)− P (f)]Z(f)
}

.

Proof

We can write, using π(g)TP (g) = π(g)T , D(f)P (f) = P (f)D(f) and D(f)[I − P (f)] = I − P ∗(f),

π(g)T
{

I − [P (g)− P (f)]Z(f)
}

P (f) = π(g)T
{

P (f) − [P (g)− P (f)]{D(f)P (f) + P ∗(f)}
}

=

π(g)T
{

P (f) − P (g)D(f)P (f) − P (g)P ∗(f) + P (f)D(f)P (f) + P ∗(f)
}

=

π(g)T
{

P (f) −D(f)P (f) − P ∗(f) + P (f)D(f)P (f) + P ∗(f)
}

=

π(g)T
{

P (f){I −D(f) +D(f)P (f)}
}

= π(g)T
{

P (f){I −D(f)[I − P (f)]}
}

=

π(g)T
{

P (f){I − I + P ∗(f)]}
}

= π(g)TP ∗(f) = π(g)T e π(f)T = π(f)T .

The following theorem gives an interpretation of suboptimal actions in the sense that either π(f) ≥ π(g)

or π(f) 6≥ π(g) and φ(g∞) − φ(f∞) < θ · {φ − φ(f∞)} with φ an upper bound of the value and θ some

negative coefficient, defined by θ := mink 6=j
πk(f)−πk(g)

πk(f) .

Theorem 6.8

Let f∞ be the policy of the current simplex tableau, let xj(a) be a nonbasic variable with shadow price

zj(a)− rj(a) > 0, and let g∞ be the policy with f(i) = g(i), i 6= j and g(j) = a. Then, action a ∈ A(j) is

suboptimal if either π(f) ≥ π(g) or π(f) 6≥ π(g) and φ(g∞) − φ(f∞) < θ · {φ − φ(f∞)} with φ an upper

bound of the value and θ some negative coefficient, defined by θ := mink 6=j
πk(f)−πk(g)

πk(f)
.

Proof

We have, by Lemma 6.3, π(f)T = π(g)T
{

I − [P (g)− P (f)]Z(f)
}

for all f∞, g∞ ∈ C(D). By the special

case of g∞ in this theorem, the matrix [P (g)− P (f)]Z(f) has zero rows, except for row j which has the

elements
∑

l {pjl(g)−pjl(f)}{Z(f)}lk for k ∈ S. Hence, πk(f) = πk(g)−πj(g)·
∑

l {pjl(g)−pjl(f)}{Z(f)}lk
for k ∈ S. Therefore,

If k 6= j, then πk(f)−πk(g)
πj(g)

= δjk +
∑

l {pjl(f) − pjl(g)}{Z(f)}lk .

If k = j, then 0 ≤ πj(f)
πj(g)

= δjk +
∑

l {pjl(f) − pjl(g)}{Z(f)}lk .

Case 1: π(f) ≥ π(g)

Then, δjk +
∑

l {pjl(f) − pjl(g)}{Z(f)}lk ≥ 0 for all k ∈ S and the result follows from Theorem 6.7.

224 CHAPTER 6. AVERAGE REWARD - SPECIAL CASES

Case 2: π(f) 6≥ π(g)

In this case δjk +
∑

l {pjl(f) − pjl(g)}{Z(f)}lk < 0 for at least one k ∈ S. By Theorem 6.7 it is

sufficient to show that zj(a) − rj(a) +mink
δjk+

P

l {pjl(f)−pjl(a)}{Z(f)}lk

πk(f) · {φ− φ(f∞)} > 0.

From Lemma 6.2 and the property that element k and row k of r(g) − r(f) and P (g)− P (f) are zero

for k 6= j, we obtain

φ(g∞)− φ(f∞) = πj(g) · {rj(g)− rj(f) +
∑

l {pjl(g) − pjl(f)}yj(f) = −πj(g) · {zj(a) − rj(a)},
the last equality by relation (6.10). From the above lines, it follows that we have to show that

φ(f∞) − φ(g∞) + πk(f)−πk(g)
πk(f) · {φ− φ(f∞)} > 0 for all k 6= j, which is true by the assumption in the

formulation of this theorem.

6.1.4 Value iteration

In section 5.9 we presented Algorithm 5.10 for value iteration under the assumption that the value vector

is constant and the Markov chains P (f), f∞ ∈ C(D), are aperiodic. The last part of this assumption is

not a serious restriction: by a data transformation, the original model can be transformed into a model in

which every Markov chain P (f), f∞ ∈ C(D), is aperiodic and has the same average reward as the original

Markov chain. In case of irreducibility no better algorithm than Algorithm 5.10 is known.

6.1.5 Modified policy iteration

In average reward models, value iteration may converge very slowly, and policy iteration may be inefficient

in models with many states because of the need to solve large linear systems of equations. As in discounted

models, modified policy iteration provides a compromise between these two algorithms. It avoids many

value iterations and it avoids solving the linear system. We also can develop a modified policy iteration

algorithm for the average reward criterion in the case that all MDPs are irreducible. Let the operators T

and Tf , for f∞ ∈ C(D), be defined by

(Tx)i := maxa{ri(a) +
∑

j

pij(a)xj}, i ∈ S; Tf x := r(f) + P (f)x. (6.11)

Notice that for k ∈ N, T k
f x = r(f) + P (f)r(f) + · · ·+ P k−1(f)r(f) + P k(f)x = vk(f∞) + P k(f)x, where

vk(f∞) is the total reward over k periods when policy f∞ is used.

Algorithm 6.3 Modified value iteration (irreducible case)

Input: Instance of an irreducible MDP and some scalar ε > 0.

Output: An ε-optimal deterministic policy f∞ and a 1
2ε-approximation of the value φ.

1. Select x ∈ R
N and k ∈ N arbitrary; determine f such that Tf x = T x.

2. l := mini (Tx− x); u := maxi (Tx− x).

3. if u− l ≤ ε then

begin f∞ is an ε-optimal policy and 1
2 (u+ l) is a 1

2ε-approximation of the value φ (STOP) end

else begin x := T k
f x; return to step 2 end

We work in the remaining part of this subsection under the following strong aperiodicity assumption.

6.1. THE IRREDUCIBLE CASE 225

Assumption 6.2

pii(a) > 0 for all (i, a) ∈ S ×A.

We have seen in section 5.9 that the data transformation (5.48) gives strong aperiodicity without changing

the average reward. So, this assumption does not give an essential restriction.

If k = 1, the method becomes the standard value iteration method. We will also argue that policy iteration

corresponds to k =∞. Let {xn}, {f∞n } and {kn} be the values of x, f and k in iteration n+1 of Algorithm

6.3, i.e. Tfn
xn = T xn and xn+1 = T kn

fn
xn. Since, by Theorem 5.8, vk(f∞) = k·φ(f∞)+u0(f)−P k(f)u0(f)

for every policy f∞, we obtain

xn+1 = T kn

fn
xn = vkn(f∞n) + P kn(fn)xn = kn · φ(f∞n) + u0(fn) − P kn(fn){u0(fn)− xn}.

If kn →∞, then we have P kn(fn)→ P ∗(fn) and therefore P kn(fn){u0(fn)− xn} converges to a constant

vector. Hence, xn+1 and u0(fn) differ a constant vector for a large kn. In policy iteration with best

improving actions, a new policy in state i is obtained by maximizing ri(a) +
∑

j pij(a)u
0
j (fn), which gives

the same policy as maximizing ri(a)+
∑

j pij(a)x
n+1
j =

(

Txn+1
)

i
, which is the determination of the policy

in step 1 of Algorithm 6.3.

Lemma 6.4

Let gn := Txn − xn, ln := mini g
n
i , and un := maxi g

n
i for all i ∈ S and n ∈ N. Then,

ln ≤ φ(f∞n) ≤ φ ≤ un for all f∞ ∈ C(D) and all n ∈ N.

Proof

For all f∞ ∈ C(D), we have P ∗(f){r(f) + P (f)xn − xn} = φ(f∞) · e. So, with f = fn, we can write

φ(f∞n) · e = P ∗(fn){r(fn) + P (fn)xn − xn} = P ∗(fn){Txn − xn} ≥ P ∗(fn)ln · e = ln · e.
Clearly, φ(f∞n) ≤ φ, and with f = f∗, where f∞∗ is an average optimal policy, we obtain

φ · e = φ(f∞∗) · e = P ∗(f∗){r(f∗) + P (f∗)xn − xn} ≤ P ∗(f∗){Txn − xn} ≥ P ∗(f∗)un · e = un · e.

Lemma 6.5

The sequence {ln, n = 0, 1, . . .} is monotonically nondecreasing.

Proof

For n = 0, 1, . . ., we have

T xn+1 − xn+1 ≥ Tfn
xn+1 − xn+1 = T kn+1

fn
xn − T kn

fn
xn

= {r(fn) + P (fn)r(fn) + · · ·+ P kn(fn)r(fn)) + P kn+1(fn)xn}−
{r(fn) + P (fn)r(fn) + · · ·+ P kn−1(fn)r(fn) + P kn(fn)xn}

= P kn(fn){Tfn
xn − xn} = P kn(fn){T xn − xn} ≥ ln · P kn(fn)· = ln · e.

Hence, mini (Txn+1 − xn+1)i = ln+1 ≥ ln for n = 0, 1,

In the special case k = 1 (value iteration), also the sequence {un, n = 0, 1, . . .} is monotone, actually

nonincreasing (see Theorem 5.25). However, this is not the case if k ≥ 2, as the next example shows.

226 CHAPTER 6. AVERAGE REWARD - SPECIAL CASES

Example 6.4

S = {1, 2}; A(1) = {1}, A(2) = {1, 2}; r1(1) = 100, r2(1) = 0, r2(2) = 10.

p11(1) = 1, p12(1) = 0; p21(1) = 0.9, p22(1) = 0.1; p21(2) = 0.1, p22(2) = 0.9.

Start with x0 = (0, 0) and take k = 2.

Iteration 1:

(T x0)1 = 100 + 1× 0 = 100; (T x0)2 = max{0 + 0.9× 0 + 0.1× 0, 10 + 0.1× 0 + 0.9× 0} = 10.

f0(1) = 1, f0(2) = 2; l0 = 10, u0 = 100.

x1 = T 2
f0
x0 = Tf0{T x0} = (100 + 100, 10 + 0.1× 0, 10 + 0.1× 100 + 0.9× 10) = (200, 29).

Iteration 2:

(T x1)1 = 100 + 1× 200 = 300;

(T x1)2 = max{0 + 0.9× 200 + 0.1× 29, 10 + 0.1× 200 + 0.9× 29} = 182.9.

f1(1) = 1, f1(2) = 1; l1 = 100, u1 = 153.9. Hence, u1 > u0.

In the next lemma we show that the aperiodicity and irreducibility assumptions together imply that γ > 0,

where

γ := mini,j∈S minh1,h2,...,hN−1 {P (h1)P (h2) · · ·P (hN−1)}ij. (6.12)

Lemma 6.6

γ > 0, where γ is defined in (6.12).

Proof

It is sufficient to show that {P (h1)P (h2) · · ·P (hN−1)}ij > 0 for all h1, h2, . . . , hN−1 and for all i, j ∈ S.

Let h1, h2, . . . , hN−1 be arbitrary decision rules. We define for n = 0, 1, . . . , N − 1 and for i ∈ S:

S(i, 0) := {i}; and S(i, n) = {j ∈ S | {P (h1)P (h2) · P (hn)}ij > 0}, n = 1, 2, . . . , N − 1.

Then, it has to be shown that S(i, N − 1) = S for all i ∈ S. We first show S(i, n) ⊆ S(i, n + 1). Let

j ∈ S(i, n), i.e. {P (h1)P (h2) · P (hn)}ij > 0. Then, by the strong aperiodicity property, we have

{P (h1)P (h2) · · ·P (hn+1)}ij =
∑

k{P (h1)P (h2) · · ·P (hn)}ikP (hn+1)kj

≥ {P (h1)P (h2) · P (hn)}ijP (hn+1)jj > 0.

Hence, it remains to show that the sets S(i, n) are strictly increasing in n as long as S(i, n) 6= S. Suppose

S(i, n+1) = S(i, n) 6= S. Then, we have for all j ∈ S(i, n) and k /∈ S(i, n) that P (hn+1)jk = 0. Therefore,

S(i, n) is closed under P (hn+1), which contradicts the irreducibility of the Markov chain P (hn+1).

The following lemma implies that the sequence ln converges to the value φ exponentially fast.

Lemma 6.7

If n,m ∈ N satisfy
∑m−1

i=0 kn+i ≥ N − 1, then φ− ln+m ≤ (1− γ)(φ − ln).

Proof

It follows from the proof of Lemma 6.5 that gn+1 = Txn+1 − xn+1 ≥ P kn(fn){Txn − xn} = P kn(fn)gn.

Consequently, for all m = 1, 2, . . . , we have

gn+m ≥ P kn+m−1 (fn+m−1)P
kn+m−2 (fn+m−2) · · ·P kn(fn)gn. (6.13)

Let j0 such that un = gn
j0

. Then, for all i ∈ S and all h1, h2, . . . , hN−1, we can write

6.1. THE IRREDUCIBLE CASE 227

{P (h1)P (h2) · · ·P (hN−1)g
n}i =

∑

j {P (h1)P (h2) · · ·P (hN−)}ijgn
j

=
∑

j 6=j0
{P (h1)P (h2) · · ·P (hN−1)}ijgn

j + {P (h1)P (h2) · · ·P (hN−1)}ij0gn
j0

=
∑

j 6=j0
{P (h1)P (h2) · · ·P (hN−1)}ijgn

j + {P (h1)P (h2) · · ·P (hN−1)}ij0un

≥ ∑

j 6=j0
{P (h1)P (h2) · · ·P (hN−1)}ijln + {P (h1)P (h2) · · ·P (hN−1)}ij0un

=
{

1− {P (h1)P (h2) · · ·P (hN−1)}ij0
}

ln + {P (h1)P (h2) · · ·P (hN−1)}ij0un

= ln + {P (h1)P (h2) · · ·P (hN−1)}ij0(un − ln)

≥ ln + γ(un − ln) = (1− γ)ln + γun ≥ (1 − γ)ln + γφ,

the last inequality by Lemma 6.4. So, P (h1)P (h2) · · ·P (hN−1)g
n ≥ {(1− γ)ln + γφ} · e.

Then, also for k > N − 1 and all h1, h2, . . . , hk,

P (h1)P (h2) · · ·P (hk)gn ≥ {P (h1)P (h2) · · ·P (hk−N+1)}{P (hk−N+2)P (hk−N+3) · · ·P (hk)gn}
≥ {P (h1)P (h2) · · ·P (hk−N+1)}{(1− γ)ln + γφ} · e
= {(1− γ)ln + γφ} · e.

Hence, with (6.13), for all n,m such that
∑m−1

i=0 kn+i ≥ N − 1,

gn+m ≥ P kn+m−1 (fn+m−1)P
kn+m−2 (fn+m−2) · · ·P kn(fn)gn ≥ {(1− γ)ln + γφ} · e.

Therefore, ln+m ≥ (1− γ)ln + γφ, i.e. φ− ln+m ≤ (1− γ)(φ − ln).

Since ln converges to φ exponentially fast, f∞n is ε-optimal for n sufficiently large. The problem, however,

is to recognize how large n has to be. We next show that un − ln converges to 0, which provides the

finiteness of Algorithm 6.3. Define δ by

δ := mini,j∈S minf∞∈C(D) {P ∗(f)}ij > 0. (6.14)

Lemma 6.8

un − ln ≤ 1
δ
(φ− ln) for all n ∈ N.

Proof

φ · e ≥ φ(f∞n) · e = P ∗(fn){rfn) + P (fn)xn − xn} = P ∗(fn){Txn − xn} = P ∗(fn)gn.

Let j0 such that un = gn
j0

. Then, for all i ∈ S, we have

{P ∗(fn)gn}i =
∑

j 6=j0
p∗ij(fn)gn

j + p∗ij0(fn)gn
j0 ≥

∑

j 6=j0
p∗ij(fn)ln + p∗ij0un

= {1− p∗ij0(fn)}ln + p∗ij0un = ln + p∗ij0(fn)(un − ln)

≥ ln + δ(un − ln) = (1− δ)ln + δun.

Hence, P ∗(fn)gn ≥ {(1− δ)ln + δun} · e, and therefore, φ ≥ (1 − δ)ln + δun, i.e. un − ln ≤ 1
δ (φ− ln).

Corollary 6.1

un − ln → 0 for n→∞.

Theorem 6.9

Algorithm 6.3 is correct.

Proof

Since un − ln converges to 0, the algorithm terminates. By Lemma 6.4, ln ≤ φ(f∞n) ≤ φ ≤ un. Hence,

if un − ln < ε, then f∞n is an ε-optimal policy. Furthermore, |φ− 1
2(un + ln)| < 1

2ε, i.e. 1
2(un + ln) is a

1
2ε-approximation of φ.

228 CHAPTER 6. AVERAGE REWARD - SPECIAL CASES

6.2 The unichain case

Assumption 6.3

For every f∞ ∈ C(D) the Markov chain P (f) has exactly one ergodic class plus a possibly empty set of

transient states.

We have seen in section 5.2.3 that checking the unichain property is, in general, NP-complete. Also in the

unichain case, for every policy f∞ the stationary matrix has identical rows, and consequently the vector

φ(f) has identical components and we may φ(f) and the value vector φ consider as a scalar.

6.2.1 Optimality equation

We first argue that the result of Theorem 6.1 also holds in the unichain case. Following the proof of

Theorem 6.1, we obtain part (1) and part (2) up to and including the statements z − P (f0)z ≥ 0 and

P ∗(f0){z − P (f0)z} = 0. We have to give another proof that z = P ∗(f0)z, because the property that

P ∗(f0) has strictly positive elements doesn’t hold in the unichain case. The columns of P ∗(f0) are zero

for the transient states and therefore the vector P ∗(f0)z doesn’t depend on the values of zi for transient

states i. Hence, we have to show that zj = {P ∗(f0)z}j for the ergodic states j. But the states in this

(only) ergodic class generate an irreducible Markov chain and the proof is similar as in Theorem 6.1.

Example 6.5

S = {1, 2}; A(1) = {1, 2}, A(2) = {1}; r1(1) = 5, r1(2) = 10, r2(1) = −1.

p11(1) = 0.5, p12(1) = 0.5; p11(2) = 0, p12(2) = 1; p21(1) = 0, p22(1) = 1.

It is obvious that this MDP is unichain and not irreducible (state 2 is absorbing and state 1 transient

under all policies).

The optimality equation is:
{ x+ y1 = max{5 + 0.5y1 + 0.5y2, 10 + y2}
x+ y2 = −1 + y2

From the second equation we obtain x = −1. For y2 = 0 (y is unique up to a constant), the first equation

becomes −1 + y1 = max{5 + 0.5y1, 10}. This equation has the solution y1 = 12.

This model has two deterministic stationary policies: f∞1 and f∞2 with f1(1) = 1 and f2(1) = 2. Both

policies are average optimal (φ1(f
∞
1) = φ1(f

∞
2) = φ2(f

∞
1) = φ2(f

∞
2) = −1). Furthermore, it is easy to

verify that u0
1(f1) = 12, u0

1(f2) = 11, u0
2(f1) = u0

2(f2) = 0. Hence,
(

φ(f∞1), u0(f1)
)

satisfies the optimality

equation, but
(

φ(f∞2), u0(f2)
)

does not.

For y ∈ R
N a decision rule g is called y-improving if r(g) + P (g)y = maxf {r(f) + P (f)y}.

Lemma 6.9

Let (φ, y) be a solution of the optimality equation (6.1) and let the decision rule g be y-improving. Then,

g∞ is an optimal policy.

Proof

From the optimality equation and the y-improving property of g it follows that

r(g) + P (g)y = maxf {r(f) + P (f)y} = φ · e+ y.

By multiplying this equality by P ∗(g), we obtain φ(g∞) · e = φ · e, i.e. g∞ is an optimal policy.

From Example 6.5 it follows that the reverse statement (if g∞ is an optimal policy, then g is y-improving)

need not hold. The policy f∞2 is average optimal, but not y-maximizing, because we have y = (12, 0),

r1(f2) +
∑

j p1j(f2)y = 10 and maxf {r1(f) +
∑

j p1j(f)y} = 11.

6.2. THE UNICHAIN CASE 229

6.2.2 Policy iteration

In this section, we also assume that every P (f) is aperiodic. We have seen (Lemma 5.10) that this

assumption is not an essential restriction. We will first derive some properties for a unichain and aperiodic

Markov matrix P . Because of the aperiodicity, we have P ∗ = limn→∞ PN . Let B := P −P ∗. Then, using

P ∗ = PP ∗ = P ∗P , we obtain Bn = P n − P ∗ for n ∈ N. Since I − Bn = (I − B)(I + B + · · ·+ Bn−1)

and Bn → 0, it follows that I − P + P ∗ = I − B is nonsingular and Z := (I − P + P ∗)−1 =
∑∞

n=0 B
n.

Furthermore, we can write for n ∈ N, using Z = D + P ∗, DP ∗ = 0 and DP n = P nD,
∑n−1

i=0 P n =
∑n−1

i=0 Bn + (n− 1)P ∗

= (I − B)−1(I −Bn) + (n − 1)P ∗ = Z(I − Bn) + (n− 1)P ∗

= (D + P ∗)(I − P n + P ∗) + (n− 1)P ∗ = D − P nD+ nP ∗.

Hence, we obtain for the total reward after n periods for any f∞ ∈ C(D),

vn(f∞) =
∑n−1

i=0 P n(f)r(f) = n · φ(f∞) + u0(f) − P n(f)u0(f).

Note that P n(f)u0(f)→ P ∗(f)u0(f) = P ∗(f)D(f)r(f) = 0 as n→∞.

Next, we will show that the computation of P ∗ and D can be simplified if P is an aperiodic unichain

Markov chain. P ∗ has identical rows, denoted by π, which is the unique solution of the linear system
{ xT e = 1;

xT (I − P) = 0
This system has N + 1 equations and N unknowns. Since it specifies x uniquely, it

must contain exactly one redundancy. Since the columns of I − P sum up to zero, i.e. (I − P)e = 0, this

redundancy is in any of the last N rows of the system. We will delete the second row of this system, which

corresponds to state 1, i.e. we delete the equation xT y = 0, where y is the first column of I − P . Let C

be the N × N -matrix obtained by replacing the first column of I − P by e. Then, the system becomes

xTC = e1, where e1 is the first unit vector, Hence, π = (e1)TC−1, i.e. π is the first row of C−1.

The deviation matrix D can be found by inverting the matrix (I − P + P ∗). We will show that the

inversion is superfluous. Consider the columns of the matrix F = DC. The first column of C is e. Hence,

the first column of F is De = 0, i.e. the first column of F is the zero column. The other columns of

C are the columns 2 through N of I − P . Hence, the columns 2 through N of F are the corresponding

columns of D(I − P) = I − P ∗. Therefore, D is the N ×N -matrix obtained from I −P ∗ by replacing the

first column by the zero column. Since D = FC−1, after the computation of C−1 and π := (e1)C−1, the

deviation matrix D can be obtained without a new inversion.

Example 6.6

Let P =

1
2

1
2 0

1 0 0

1 0 0

. Then, C =

1 −1
2 0

1 1 0

1 0 1

with inverse matrix C−1 =

2
3

1
3 0

−2
3

2
3

0

−2
3 −1

3 1

.

Hence, π = (2
3
, 1

3
, 0)T .

I − P ∗ =

1
3 −1

3 0

−2
3

2
3

0

−2
3 −1

3 1

→ D = FC−1 =

0 −1
3 0

0 2
3

0

0 −1
3 1

2
3

1
3 0

−2
3

2
3

0

−2
3 −1

3 1

=

2
9 −2

9 0

−4
9

4
9

0

−4
9 −5

9 1

.

Having obtained P ∗(f) and D(f) by the above computation scheme, we can determine φ(f∞ and u0(f)

by postmultiplication these matrices with r(f). We also shall develop a separate equation from which

φ(f∞ and u0(f) can be computed. Note that φ(f∞) may be considered as a scalar. Consider the following

system of N equation in N + 1 unknowns:

x · e+ {I − P (f)}y = r(f). (6.15)

230 CHAPTER 6. AVERAGE REWARD - SPECIAL CASES

We have seen in the proof of Theorem 6.2 that if (x, y) is a solution of (6.15), then x = φ(f∞) and y

satisfies

y = u0(f) + P ∗(f)y = u0(f) + c · e, (6.16)

with c any scalar. Two solutions of (6.15) are of particular interest. The solution in with c = −u0
1(f), i.e.

y1 = 0, reduces (6.15) to C(f)z = r(f), where z1 = x and zi = yi, 2 ≤ i ≤ N . Hence, z = {C(f)}−1r(f).

For the second particular solution we choose c = 0, i.e. y = u0(f) = D(f)r(f). This is the unique solution

of the system
{ x · e+ {I − P (f)}y = r(f);

π(f)T y = 0.
.

Example 6.6 (continued)

Let r = (0, 3, 4)T .

For the first particular solution: z = {C(f)}−1r(f) = (1, 2, 3)T , i.e. φ = 1 and y1 = 0, y2 = 2, y3 = 3.

For the second particular solution, we solve

x + 1
2y1 − 1

2y2 = 0

x − y1 + y2 = 3

x − y1 + y3 = 4
2
3y1 + 1

3y2 = 0

The unique solution of this system is: x = φ = 1 and y1 = −2
3 , y2 = 4

3 , y3 = 7
3 .

The policy iteration method for unichain MDPs is similar to the policy iteration method in the irreducible

case, but the proof of finiteness is different. In the irreducible case for subsequent policies the average

reward increases strictly. This is not true in the unichain case, where we have increasing in the following

lexicographic sense: either the average reward increases strictly or there is no decrease in the average

reward, but there is a strict increase in the bias term u0. We will discuss the version of Algorithm 6.1 in

which the ’best’ improving actions are taken.

Algorithm 6.4 Determination of an average optimal policy by policy iteration (unichain case)

Input: Instance of a unichain MDP.

Output: An average optimal deterministic policy f∞ and the value φ.

1. Select an arbitrary f∞ ∈ C(D).

2. Determine a solution (x = φ(f∞), y) of the system x · e+ {I − P (f)}y = r(f).

3. for every i ∈ S do B(i, f) := {a ∈ A(i) | ri(a) +
∑

j pij(a)yj > φ(f∞) + yi}.

4. if B(i, f) = ∅ for every i ∈ S then

begin f∞ is an average optimal policy; φ(f∞) is the value φ (STOP) end

else begin select g such that ri(g) +
∑

j pij(g)yj = maxa {ri(a) +
∑

j pij(a)yj}, i ∈ S,

taking g(i) = f(i) if possible; f := g; return to step 2

end

Remark

The determination of the solution (x = φ(f∞), y) in step 2 of Algorithm 6.4 can be found by inverting

C(f) and computing C−1(f)r(f). In successive iterations the matrices requiring inversion may differ by

only one or a few rows. When this occurs, it will be more efficient to update the old inversion than to

reinvert the whole matrix.

6.2. THE UNICHAIN CASE 231

Theorem 6.10

Let g∞ be the policy obtained in step 4 of Algorithm 6.4 and let t := r(g)−{I−P (g)}y−φ(f∞) · e. Then,

(1) φ(g∞) ≥ φ(f∞).

(2) φ(g∞) = φ(f∞) if and only if π(g)T t = 0.

(3) If π(g)T t = 0, then π(g) = π(f) and u0(g) ≥ u0(f) + t > u0(f).

Proof

(1) Since, by the definition of g∞ in step 4 of Algorithm 6.4, t ≥ 0, we can write

0 ≤ π(g)T t = π(g)T {r(g)− {I − P (g)}y− φ(f∞) · e} = φ(g∞)− φ(f∞), i.e. φ(g∞) ≥ φ(f∞).

(2) From the proof of part (1) it follows that φ(g∞) = φ(f∞) if and only if π(g)T t = 0.

(3) If g(i) = f(i), then pij(g) = pij(f) for all j ∈ S, implying πi(g){pij(g) − pij(f)} = 0 for all j ∈ S.

If g(i) 6= f(i), then ti > 0. Because π(g)T t = 0, πi(g)ti = 0 for all i ∈ S. Hence, if g(i) 6= f(i), then

πi(g) = 0, and consequently πi(g){pij(g)−pij (f)} = 0 for all j ∈ S. Therefore, π(g){P (g)−P (f)} = 0.

Hence, π(g)T = π(g)TP (g) = π(g)TP (f) and π(g)T e = 1, so π(g) is the stationary distribution of

P (f), i.e. π(g) = π(f). Furthermore, we obtain

D(g)t = D(g)
{

r(g) − {I − P (g)}y − φ(f∞) · e
}

= u0(g)− {I − P ∗(g)}y − φ(f∞) ·D(g)e

= u0(g) − {I − P ∗(f)}y = u0(g) − u0(f),

the last equality by (6.16). Since, D(g) =
∑∞

n=0 {P n(g)− P ∗(g)} and π(g)t = 0, we can write

D(g)t =
∑∞

n=0 {P n(g) − P ∗(g)}t =
∑∞

n=0 P
n(g)t ≥ t > 0.

Hence, we have u0(g) − u0(f) = D(g)t > t > 0.

Theorem 6.11

Algorithm 6.4 terminates in finitely many iteration with an average optimal policy and the value.

Proof

Theorem 6.10 guarantees that the average reward is increasing in each iteration in which an action change

occurs in state i that is recurrent under the new policy g∞, namely: in that case πi(g) > 0 and ti > 0, so

by part (1) and (2) of Theorem 6.10, we have φ(g∞) > φ(f∞).

If action changes only occur in states that are transient under the new policy g∞, then πi(g) = 0 for

all i with ti > 0, and consequently, π(g)T t = 0. Then, by part (3) of Theorem 6.10, we obtain π(g) = π(f)

and u0(g) ≥ u0(f) + t > u0(f). Hence, we have shown that Algorithm 6.4 terminates in finitely many

iteration.

At termination, B(i, f) = ∅ for every i ∈ S. Therefore, r(h) + P (h)y ≤ φ(f∞) · e + y for every

h∞ ∈ C(D). Hence, we have φ(h∞) · e = P ∗(h)r(h) ≤ φ(f∞) · e for every h∞ ∈ C(D), i.e. f∞ is an

average optimal policy and φ(f∞) is the value φ.

Example 6.5 (continued)

We apply Algorithm 6.4 to this model starting with f(1) = 2, f(2) = 1. In step 2 we will choose y such

that y1 = 0.

Iteration 1

Consider the system

x + y1 − y2 = 10

x = −1

y1 = 0

→ x = φ(f∞) = −1, y1 = 0, y2 = −11.

B(1, f) = {1}, B(2, f} = ∅. g(1) = 1, g(2) = 1; f(1) = 1, f(2) = 1.

232 CHAPTER 6. AVERAGE REWARD - SPECIAL CASES

Iteration 2

Consider the system

x + 0.5y1 − 0.5y2 = 5

x = −1

y1 = 0

→ x = φ(f∞) = −1, y1 = 0, y2 = −12.

B(1, f) = B(2, f} = ∅ : f∞ is an average optimal policy and -1 is the value.

Remark

The above example shows that after determining a policy with optimal average reward (iteration 1), policy

iteration goes on to find one with optimal bias (iteration 2 ends with u0(f)T = (12, 0) which is the optimal

bias term). One might conjecture that Algorithm 6.4 always find a bias-optimal policy. The following

example shows that this supposition is false.

Example 6.7

S = {1, 2}; A(1) = {1, 2}, A(2) = {1}; r1(1) = 4, r1(2) = 0, r2(1) = 8.

p11(1) = 1, p12(1) = 0; p11(2) = 0, p12(2) = 1; p21(1) = 1, p22(1) = 0.

It is obvious that this MDP is unichain and not irreducible.

We apply Algorithm 6.4 to this model starting with f(1) = 2, f(2) = 1. In step 2 we will choose y such

that y1 = 0.

Iteration 1

Consider the system

x + y1 − y2 = 0

x − y1 + y2 = 8

y1 = 0

→ x = φ(f∞) = 4, y1 = 0, y2 = 4.

B(1, f) = B(2, f} = ∅. Hence, the algorithm terminates with f∞ as average optimal policy and with 4 as

the value. It is easily to verify that u0(f)T = (−2, 2).

Let g denote the decision rule which uses action 1 in state 1. Then, φ(g∞) = 4 and u0(g)T = (0, 4), so g∞

and not f∞ is a bias-optimal policy.

A new policy iteration scheme

We will provide a new rule for generating a policy g∞ from f∞ such that in each iteration:

(1) g(i) 6= f(i) only in one state i, say i = j;

(2) φ(g∞)− φ(f∞) is as positive as possible, subject to condition (1).

This approach may be viewed as a kind of linear programming where we make the change of basis not

on the rate change of the objective function, but rather on the entire change, i.e. (rate of change) ×
(step size). Start with policy f∞ and fix a pair (j, a) such that a 6= f(j). Let g∞ be the policy with

g(i) :=
{ f(i) i 6= j;

a i = j.
Notice that ri(g) = ri(f) and pik(g) = pik(f), k ∈ S for every i 6= j. We wish to

choose the pair (j, a) to maximize φ(g∞)− φ(f∞). From Lemma 6.2, we obtain

φ(g∞)−φ(f∞) = π(g)T {r(g)−r(f)+[P (g)−P (f)]y(f)} = πj(g){rj(g)−rj(f)+
∑

k

[pjk(g)−pjk(f)]yk(f)},

(6.17)

where y(f) is any solution of {I − P (f)}y = r(f) − φ(f∞) · e. Let Bj,a(f) := {P (g)− P (f)}Z(f).

Then, by Lemma 6.3, π(f)T = π(g)T
{

I −Bj,a(f)
}

, and consequently, πj(f) = πj(g)
{

1− [Bj,a(f)]jj

}

, i.e.

πj(g) = πj(f)
{

1− [Bj,a(f)]jj

}−1
. Therefore, we have

φ(g∞) − φ(f∞) = πj(f)
{

1− [Bj,a(f)]jj

}−1{
rj(g) − rj(f) +

∑

k

[pjk(g)− pjk(f)]yk(f)
}

. (6.18)

6.2. THE UNICHAIN CASE 233

Note that Z(f)r(f) = D(f)r(f) + P ∗(f)r(f) = u0(f) + φ(f∞) · e = y(f) + c · e for some scalar c. Hence,

we have

φ(g∞)− φ(f∞) = πj(f)
{

1− [Bj,a(f)]jj

}−1{
rj(g) − rj(f) +

∑

k

[pjk(g) − pjk(f)]{Z(f)r(f)}k
}

. (6.19)

Thus, maximizing φ(g∞)−φ(f∞) means choosing the pair (j, a) to maximize the right-hand-side of (6.18)

rather than maximizing the term rj(g) − rj(f) +
∑

k [pjk(g) − pjk(f)]{Z(f)r(f)}k as is usually done

in normal pivoting in the simplex method. If the matrix Z(f) is available, this is a minor increase in

computational effort. Updating Z(f) can be done efficiently by using the following lemma.

Lemma 6.10

Z(g) =
{

I − [P ∗(g)− P ∗(f)]
}

Z(f)
{

I − [P (g)− P (f)]Z(f)
}−1

.

Proof

We will show that Z(g)
{

I− [P (g)−P (f)]Z(f)
}

=
{

I− [P ∗(g)−P ∗(f)]
}

Z(f). Using the properties of the

fundamental, the stationary and the deviation matrix (Z = D+P ∗, DP = PD = D+P ∗− I, P ∗Z = P ∗

and PZ = ZP = D+ 2P ∗ − I), we can present the following deduction:

Z(g)
{

I − [P (g)− P (f)]Z(f)
}

= Z(g) − Z(g)P (g)Z(f) + Z(g)P (f)Z(f) =

{D(g) + P ∗(g)} − {D(g) + 2P ∗(g) − I}{D(f) + P ∗(f)} + {D(g) + P ∗(g)}{D(f) + 2P ∗(f) − I} =

D(g) + P ∗(g) −D(g)D(f) −D(g)P ∗(f) − 2P ∗(g)D(f) − 2P ∗(g)P ∗(f) +D(f) + P ∗(f) +D(g)D(f) +

2D(g)P ∗(f) −D(g) + P ∗(g)D(f) + 2P ∗(g)P ∗(f) − P ∗(g) =

D(g)P ∗(f) − P ∗(g)D(f) +D(f) + P ∗(f) = −P ∗(g)D(f) +D(f) + P ∗(f),

the last equality because D(g)P ∗(f) = D(g)eπ(f)T = 0. On the other hand, we have
{

I − [P ∗(g) − P ∗(f)]
}

Z(f) =
{

I − [P ∗(g) − P ∗(f)]
}

{D(f) + P ∗(f)} =

{D(f) + P ∗(f)} − P ∗(g){D(f) + P ∗(f)} + P ∗(f){D(f) + P ∗(f)} =

D(f) + P ∗(f) − P ∗(g)D(f) − P ∗(g)P ∗(f) + P ∗(f)D(f) + P ∗(f)P ∗(f) =

D(f) + P ∗(f) − P ∗(g)D(f) − P ∗(g)P ∗(f) + P ∗(f) = D(f) + P ∗(f) − P ∗(g)D(f),

the last equality because P ∗(g)P ∗(f) = eπ(g)T eπ(f)T = eπ(f)T = P ∗(f).

Hence, we have completed the proof that Z(g) =
{

I − [P ∗(g)−P ∗(f)]
}

Z(f)
{

I − [P (g)−P (f)]Z(f)
}−1

.

Algorithm 6.5 Determination of an average optimal policy by policy iteration (version 2; unichain case)

Input: Instance of a unichain MDP.

Output: An optimal deterministic policy f∞ and the value φ.

1. Select an arbitrary f∞ ∈ C(D); compute π(f); compute Z(f); compute s(f) := Z(f)r(f).

2. for every pair (j, a) ∈ S × A with a 6= f(j) do

begin for every i ∈ S do g(i) :=
{ f(i) i 6= j

a i = j
;

B := [P (g)− P (f)]Z(f); π(g)T := π(f)T {I −B}−1;

∆(j, a) := πj(f){1 − bjj}−1
{

rj(g) − rj(f) +
∑

k [pjk(g) − pjk(f)]sk(f)
}

end

234 CHAPTER 6. AVERAGE REWARD - SPECIAL CASES

3. if ∆(j, a) ≤ 0 for all (j, a) then

begin f∞ is an average optimal policy; π(f)T r(f) is the value (STOP) end

else begin determine (j∗, a∗) such that ∆(j∗, a∗) = max(j,a) ∆(j, a);

for every i ∈ S do g(i) :=
{ f(i) i 6= j∗

a∗ i = j∗
;

B := [P (g)− P (f)]Z(f); π(g)T := π(f)T {I −B}−1;

Z(g) =
{

I − [P ∗(g)− P ∗(f)]
}

Z(f){I − B}−1; s(g) := Z(g)r(g);

f := g; return to step 2

end

Remarks

1. In step 3, in the case there is not yet termination, the computation ofB and π(g) is in fact superfluously.

We have already computed these values in step 2. Hence, in step 2 we can keep these value for the

most positive ∆(j, a).

2. We can evaluate the computational complexity involved in each iteration of Algorithm 6.5. Assume

that |A(i)| ≤M for every i ∈ S.

(a) In each iteration we have to update P (f), π(f), Z(f) and s(f) once, which have complexity

N2 at most.

(b) For each pair (j, a) we have to compute B and {I −B}−1. Since every row of P (g)−P (f), except

row j, is the zero row, the computation of B and {I −B}−1 are of order N .

(c) For each pair (j, a) we have to compute ∆(j, a) which is also of order N .

Hence, the computational complexity of each iteration is of order N2 ·M . Notice that one iteration of

the linear program (6.3) also needs order N2 ·M elementary operations.

Example 6.8

S = {1, 2}; A(1) = {1, 2}, A(2) = {1}; r1(1) = 1, r1(2) = 4, r2(1) = 0.

p11(1) = 1, p12(1) = 0; p11(2) = 0, p12(2) = 1; p21(1) = 1, p22(1) = 0.

This MDP is unichain and not irreducible. We apply Algorithm 6.5 and start with f(1) = f(2) = 1.

Iteration 1

1. P (f) =
(

1 0
1 0

)

; π(f)T = (1, 0); Z(f) = {I − P (f) + P ∗(f)}−1 = I; s(f) = (1, 0)T .

2. (j, a) = (1, 2); P (g) =
(

0 1
1 0

)

; B =
(−1 1

0 0

)

; {I − B}−1 =
(

0.5 0.5
0 1

)

; π(g)T = (0.5, 0.5); ∆(j, a) = 1.

3. (j∗, a∗) = (1, 2); Z(g) =
{

I − [P ∗(g) − P ∗(f)]
}

Z(f){I −B}−1 =
(

1.5 −0.5
0.5 0.5

)

· I ·
(

0.5 0.5
0 1

)

=
(

0.75 0.25
0.25 0.75

)

;

f(1) = 2, f(2) = 1.

Iteration 2

2. (j, a) = (1, 1); P (g) =
(

1 0
1 0

)

; B =
(

0.5 −0.5
0 0

)

; {I − B}−1 =
(

2 −1
0 1

)

; π(g)T = (1, 0); ∆(j, a) = −1.

3. f∞ with f(1) = 2 and f(2) = 1 is an optimal policy and π(f)T r(f) = 2 is the value.

6.2.3 Linear programming

In the unichain case the same linear program can be used as in the irreducible case, but the result is

slightly different. The value φ is again the unique x-part of program (6.3), but we loose the property that

every feasible solution x of the dual program (6.4) satisfies
∑

a xi(a) > 0, i ∈ S. It turns out that this

property can only be shown for recurrent states. However, since there is only one recurrent set, the actions

in transient states doesn’t influence the average reward for that states. The following theorem shows the

result.

6.2. THE UNICHAIN CASE 235

Theorem 6.12

Let (φ, y∗) and x∗ be optimal solutions of the linear programs (6.3) and (6.4), respectively. Define f∞∗
such that for every i ∈ S x∗i

(

f∗(i)
)

> 0 if
∑

a x
∗
i (a) > 0 and f∗(i) is an arbitrary action if

∑

a x
∗
i (a) = 0.

Then, f∞∗ is an average optimal policy.

Proof

Suppose that
∑

a x
∗
j (a) = 0 for some j. The constraints of (6.4) imply 0 =

∑

a x
∗
j (a) =

∑

i,a pij(a)x
∗
i (a).

Hence, pij(a)x
∗
i (a) = 0 for all (i, a) ∈ S×A. Therefore, in states i with

∑

a x
∗
i (a) > 0 we have pij(f∗) = 0,

i.e. the set Sx∗ := {i | ∑a x
∗
i (a) > 0} is closed in the Markov chain P (f∗). Since this Markov chain

has only one ergodic set, the states S\Sx∗ are transient under P (f∗). From the orthogonality property of

linear programming it follows that:

x∗i (a) ·
{

φ+
∑

j {δij − pij(a)}y∗j − ri(a)
}

= 0 for all (i, a) ∈ S × A.

Hence, φ+ {
(

I −P (f∗)
)

y∗}i − ri(f∗) = 0 for all i ∈ Sx∗ . Multiply φ · e+ {I −P (f∗)y∗} − r(f∗) by P ∗(f∗)

and notice that the columns of P ∗(f∗) are zeros for the states in S\Sx∗ , because these states are transient.

Then, we obtain 0 = φ · e− P ∗(f∗)r(f∗) = φ · e− φ(f∞∗) · e, implying that f∞∗ is an optimal policy.

Algorithm 6.6

Determination of an average optimal policy by linear programming (unichain case)

Input: Instance of a unichain MDP.

Output: An optimal deterministic policy f∞ and the value φ.

1. Determine an optimal solution x∗ of the linear program (6.4).

2. Sx∗ := {i | ∑a x
∗
i (a) > 0}.

3. Select any f∞∗ ∈ C(D) such that x∗i
(

f∗(i)
)

> 0 for every i ∈ Sx∗ .

4. The value φ is the optimum value of program (6.4) and f∞∗ is an optimal policy (STOP).

Example 6.5 (continued)

The linear program (6.4) for this model becomes

max{5x1(1) + 10x1(2)− x2(1)}
subject to

x1(1) + x1(2) = 1
2
x1(1); x2(1) = 1

2
x1(1) + x1(2) + x2(1);

x1(1) + x1(2) + x2(1) = 1; x1(1), x1(2), x2(1) ≥ 0.

The optimal optimal solution is x∗1(1) = x∗1(2) = 0, x∗2(1) = 1; optimum = -1. Therefore, in state 1

any action can be chosen and the two deterministic policies are both optimal. From this examples it also

follows that in the unichain case there is no one-to-one correspondence between policy iteration and linear

programming. Furthermore, that there is no one-to-one correspondence between the feasible solutions of

the dual program and stationary policies: the optimal solution x∗ corresponds to the two deterministic

policies.

Solving the general case by a sequence of unichain linear programs

The linear programs (6.3) and (6.4) can also be used to find an average optimal policy regardless the chain

structure. The decision maker needs not to know in advance whether the MDP is irreducible, unichained or

multichained. After solving the linear programs (6.3) and (6.4), we need some additional procedures in the

multichain case, without knowing in advance that the model is multichained. So, assume that the MDP has

236 CHAPTER 6. AVERAGE REWARD - SPECIAL CASES

an arbitrary chain structure and let x be a basic feasible solution of (6.4). Define Sx := {i | ∑a xi(a) > 0}
and Sx × Ax := {(i, a) | xi(a) > 0}. We say that x identifies a unique ergodic chain if the sets Sx and

Sx ×Ax have the same number of elements, i.e. for any i ∈ Sx, xi(a) > 0 for exactly one action a ∈ A(i),

say a = fx(i), and if under P (fx) the set Sx is closed and all states in Sx communicate. The next lemma

shows that any basic feasible solution x of (6.4) identifies a unique ergodic chain.

Lemma 6.11

Let x be a basic feasible solution of linear program (6.4). Then, x identifies a unique ergodic chain and
∑

i,a ri(a)xi(a) is the average reward of this chain.

Proof

Choose any policy f∞ such that xi

(

f(i)
)

> 0, i ∈ Sx. First, we show that Sx is closed under P (f).

Suppose pkl(f) > 0 for some k ∈ Sx and some l /∈ Sx. From the constraints of (6.4) it follows that

0 =
∑

a xl(a) =
∑

i,a pil(a)xi(a) ≥ pkl(f)xk

(

f(k)
)

> 0, implying a contradiction. We also have,

{

0 =
∑

i,a {δij − pij(a)}xi(a) =
∑

(i,a)∈Sx×Ax
{δij − pij(a)}xi(a), j ∈ S

1 =
∑

i,a xi(a) =
∑

(i,a)∈Sx×Ax
xi(a)

(6.20)

Since Sx is closed under P (f), Sx contains at least one ergodic set S1 ⊆ Sx. Let z be the stationary

distribution of P (f), restricted to the states of S1. Then,

{

0 =
∑

i∈S1
{δij − pij(f)}zi, j ∈ S1

1 =
∑

i∈S1
zi

(6.21)

Let S1 × A1 := {(i, a) | i ∈ S1, a = f(i)}. Subtracting (6.21) from (6.21) yields

{

0 =
∑

(i,a)∈(Sx×Ax)\(S1×A1)
{δij − pij(a)}xi(a) +

∑

((i,a)∈S1×A1
{δij − pij(a)}{xi(a) − zi}, j ∈ S

0 =
∑

(i,a)∈(Sx×Ax)\(S1×A1)
xi(a) +

∑

((i,a)∈S1×A1
{xi(a)− zi}

(6.22)

Since x is a basic solution of (6.4), the columns of (6.4), corresponding to the positive x-variables, i.e.

the N +1-dimensional columns

(

δij − pij(a), j ∈ S
1

)

, (i, a) ∈ Sx ×Ax, are linear independent. Hence,

the corresponding coefficients in (6.22) are zero. So, Sx × Ax = S1 × A1 and xi(a) = zi, (i, a) ∈ S1 × A1.

Consequently, the sets Sx = S1 and Sx × Ax = S1 × A1 have the same number of elements and, under

P (f), Sx = S1 is an ergodic set. Furthermore, we have
∑

i,a ri(a)xi(a) =
∑

i∈S1
ri(f)zi = φ(f∞), the

average reward of the chain.

Theorem 6.13

Let x∗ be an extreme optimal solution of linear program (6.4). Then, x∗ identifies a unique ergodic chain

and
∑

i,a ri(a)x
∗
i (a) is the maximum average reward of all chain of the MDP.

Proof

Consider the chain C ⊆ S with the maximum reward r(C) of all chains. Let f∞ a deterministic policy that

takes actions according to this chain and let x such that x satisfies on C the system
{ xTP (f) = xT

xT e = 1

Setting all other variables zero produces a feasible solution to program (6.4) that has r(C) as value of the

objective function. Hence, r(C) is at most the optimum value of program (6.4).

6.2. THE UNICHAIN CASE 237

Conversely, by Lemma 6.11, every basic feasible solution x to program (6.4) identifies a unique ergodic

chain and
∑

i,a ri(a)xi(a) is the average reward of this chain. Since program (6.4) has an optimal solution

in one of its extreme feasible solutions, the theorem is proven.

Example 5.9 (continued)

The linear program (6.4) for this model becomes

max{x1(1) + 2x1(2) + 3x1(3) + 6x2(1) + 4x2(2) + 5x2(3) + 8x3(1) + 9x3(2) + 7x3(3)+}
subject to the constraints (without the nonnegativity constraints)

x1(2) + x1(3) − x2(1) − x3(1) = 0

− x1(2) + x2(1) + x2(3) − x3(2) = 0

− x1(3) + x2(1) − x2(3) − x3(1) + x3(2) = 0

x1(1) + x1(2) + x1(3) + x2(1) + x2(2) + x2(3) + x3(1) + x3(2) + x3(3) = 1

An extreme optimal solution of this program is x with x1(1) = x1(2) = x1(3) = x2(1) = x2(2) = 0,

x2(3) = 1
2 , x3(1) = 0, x3(2) = 1

2 , x3(3) = 0. Note that Sx = {2, 3} and Sx × Ax = {(2, 3), (3, 2)}, which

identifies an ergodic Markov chain on Sx with p22 = 0, p23 = 1, p32 = 1 and p33 = 0. This chain has

reward r2(3)x2(3) + r3(2)x3(2) = 7.

Program (6.4) is the primary tool in a procedure for computing an average optimal policy. This procedure

consists of successive application up 2n linear programs, where n is the number of ergodic chains in the

average optimal policy identified. The status of the procedure at each step is described by the pair (U, T),

where U can be thought of as the set of states about which nothing is known, and T as a set of states that

can be rendered transient.

The procedure is initialized with U = S and T = ∅. Apply program (6.4). Let x be an optimal basic

solution, so that the states Sx comprise the ergodic set with the maximum average reward, identified by this

solution. Set f(i) := a whenever xi(a) > 0. If Sx = U , then this procedure completely specifies an average

optimal policy f∞. On the other hand, suppose Sx 6= U , so that the average reward maximizing ergodic

chain does not encompass all the states. The search routine given below either succeeds in rendering all

states U\Sx transient or identifies a subproblem that can be treated by program (6.4) for a smaller MDP.

Search routine

1. V := U\Sx.

2. Search for a pair (i, a) ∈ V × A such that
∑

j /∈V pij(a) > 0.

if no such pair exists then go to step 4

else begin f(i) := a; V := V \{i} end

3. if V = ∅ then STOP

else return to step 2

4. T := T ∪ {U\(Sx ∪ V)}; STOP.

If the search procedure terminates with V = ∅, then all states in U\Sx are rendered transient by policy

f∞ and the average reward for these states is that of the ergodic chain with the maximum average reward,

implying φ(f∞) = φ.

Suppose the search routine stops with V 6= ∅. From step 2 of the routine it follows that V is closed

under any policy. In other words, the restriction of the original MDP to V gives a smaller MDP. The

states in T are rendered transient by the policy identified in the search routine and will be treated later.

If V 6= ∅, replace U by V and reapply program (6.4) to find an ergodic chain with maximum average

reward for this subproblem. If this chain fails to exhaust the states, the search routine can be reapplied,

238 CHAPTER 6. AVERAGE REWARD - SPECIAL CASES

and doing so either renders all remaining states transient or identifies a further subproblem to which

program (6.4) can be applied.

The entire procedure, including the augmentation of T is to be applied iteratively until it terminates,

which occurs when an ergodic chain in program (6.4) exhausts the remaining states or when the search

routine renders all remaining states transient. With each application, program (6.4) contributes to policy

f∞ an ergodic chain with maximum average reward for the current subproblem.

The iterative procedure just described exhausts all the states and completely specifies policy f∞. lt is

devised so that φi(f
∞) = φi for all i ∈ S\T . The set T was added to at application of the search routine

in such a way that P (f) renders all states in T transient. Unfortunately, it can occur that φi(f
∞) < φi

for some state(s) in T , in which case f(i) will be modified. Since S\T is closed under P (f), any policy

that results from such a modification will remain optimal for all states in S\T .

Suppose T 6= ∅. Let Ri(a) :=
∑

j /∈T pij(a)φj for all i ∈ T and a ∈ A(i). Consider the linear program

min
{

∑

j∈T

wj

∣

∣

∣

∑

j∈T

{δij − pij(a)wj ≥ Ri(a), (i, a) ∈ T × A
}

. (6.23)

Program (6.23) is the linear program for a substochastic MDP on the states T , which computes an optimal

transient policy if (6.23) has a finite optimal solution (see program (4.32) and Theorem 4.18).

Lemma 6.12

Program (6.23) has a finite optimal solution.

Proof

We first show that the constant vector w defined by wj := maxk/∈T φk, j ∈ T , is a feasible solution of

(6.23). Therefore, we have to show that wi ≥
∑

j∈T pij(a)wj +
∑

j /∈T pij(a)φj for all i ∈ T and a ∈ A(i).

Indeed, we can write for any (i, a) ∈ T ×A,
∑

j∈T pij(a)wj +
∑

j /∈T pij(a)φj ≤ ∑

j∈T pij(a) · (maxk/∈T φk) +
∑

j /∈T pij(a) · (maxk/∈T φk)

= (maxk/∈T φk) · {∑j∈T pij(a) +
∑

j /∈T pij(a)} = maxk/∈T = wi.

Next, assume that (6.23) has a infinite optimal solution. Then, the dual of (6.23) is infeasible. Since all

states in T are transient under P (f) in the original MDP, f∞ is a transient policy in the MDP with states

T . Then, by Theorem 4.14, the dual of (6.23) is feasible. This provides a contraction. Hence, program

(6.23) has a finite optimal solution.

Since the optimal solution w∗ of program (6.23) is the transient value vector of the corresponding sub-

stochastic MDP, w∗ is unique. An optimal transient policy follows from the dual program of (6.23), as

shown in Theorem 4.14. The next example shows that we can still have φi(f
∞) < φi for some i ∈ T . This

situation will arise if and only if an ergodic chain exists completely in T and has a higher average reward

then the present φi(f
∞) for these states.

Example 6.9

S = {1, 2, 3, 4}; A(1) = A(2) = A(3) = {1}, A(4) = {1, 2, 3}; r1(1) = 8, r2(1) = 6, r3(1) = 2, r4(1) = 10,

r4(2) = 5, r4(3) = 7; p11(1) = 1, p12(1) = p13(1) = p14(1) = 0; p21(1) = 0, p22(2) = 1, p23(1) = p24(1) = 0;

p31(1) = p32(1) = 0, p33(1) = 1, p34(1) = 0; p41(1) = 1
2 , p42(1) = 0, p43(1) = 1

2 , p44(1) = 0; p41(2) = 0,

p42(2) = 1, p43(2) = p44(2) = 0; p41(3) = p42(3) = p43(3) = 0, p44(3) = 1.

6.2. THE UNICHAIN CASE 239

Iteration 1

The linear program (6.4) of this example becomes:

max{8x1(1) + 6x2(1) + 2x3(1) + 10x4(1) + 5x4(2) + 7x4(3)}
subject to the constraints (without the nonnegativity constraints)

− 1
2x4(1) = 0

− x4(2) = 0

− 1
2x4(1) = 0

x4(1) + x4(2) = 0

x1(1) + x2(1) + x3(1) + x4(1) + x4(2) + x4(3) = 1

An extreme optimal solution is x with x1(1) = 1, x2(1) = x3(1) = x4(1 = x4(2) = x4(3) = 0. Since

Sx × Ax = {(1, 1)}, we have f(1) = 1 and this solution identifies an ergodic Markov chain on Sx with

average reward φ1 = φ1(f
∞) = r1(1)x1(1) = 8.

Next, we apply the search routine, starting with U = {1, 2, 3, 4} and T = ∅:
V := {2, 3, 4}; (i, a) = (4, 1); f(4) := 1; V := {2, 3}; T := {4}.
Iteration 2

The linear program (6.4) on {2, 3} becomes

max{6x2(1) + 2x3(1) | x2(1) + x3(1) = 1; x2(1), x3(1) ≥ 0}.
An extreme optimal solution of this linear program is x2(1) = 1, x3(1) = 0. Since Sx × Ax = {(2, 1)},
we have f(2) = 1 and this solution identifies an ergodic Markov chain on Sx with the average reward

φ2 = φ2(f
∞) = r2(1)x2(1) = 6. The search routine gives: V = {3}, T = {4}.

Iteration 3

The linear program (6.4) on {3} becomes max{2x3(1) | x3(1) = 1; x3(1) ≥ 0} with only one feasible

solution, namely x3(1) = 1. Since Sx × Ax = {(3, 1)}, we have f(3) = 1 and this solution identifies an

ergodic Markov chain on Sx with the average reward φ3 = φ3(f
∞) = r3(1)x3(1) = 2. The search routine

gives: V = {3}, T = {4}. Now, all states are identified. We have three ergodic sets: {l}, {2} and {3}, and

one transient state {4}. Notice that φ4(f
∞) = 1

2 (φ1 + φ3) = 5 and φ4 = 7.

Iteration 4

In this iteration we solve program (6.23) with R4(1) = 5, R4(2) = 6, R4(3) = 0. This linear program

becomes min{w4 | w4 ≥ 5; w4 ≥ 6; w4 ≥ 0} with optimal solution w∗
4 = 6. This solution provides a new

action in state 4, namely f(4) = 2. Note that still φ4(f
∞) = 6 < φ4 = 7.

To test whether φi(f
∞) < φi for some i ∈ T and, if it does, to find an average optimal chain in T , we

apply the following procedure:

1. Strip off the transient decisions (see below for this strip off routine).

2. Apply program (6.4) restricted to the remaining states and actions in T and with immediate rewards

si(a) := ri(a)− φi(f
∞).

Strip off routine

l. Search for a pair (i, a) ∈ T × A such that
∑

j /∈T pij(a) > 0.

If no such pair exists: stop this routine.

2. Delete action a from A(i).

if A(i) = ∅ then T := T\{i}.
3. if T = ∅ then begin f∞ is an average optimal policy; STOP end

else go to step l.

240 CHAPTER 6. AVERAGE REWARD - SPECIAL CASES

Consider program (6.4) restricted to the remaining states and actions of T after the stripping off routine.

This program determines the ergodic chain in T which maximizes the maximal average reward with respect

to the rewards si(a) := ri(a) − φi(f
∞). If program (6.4) has a nonpositive optimum, then φ(f∞) = φ.

So, suppose that x is a basic optimal solution of (6.4) with a positive objective. Then, the ergodic chain

on Tx := {i | ∑a xi(a) > 0} identifies an ergodic chain with maximal average reward with respect to the

rewards si(a) which is higher then φ(f∞). Revise f∞ by setting f(i) := a for some a with xi(a) > 0.

Necessarily, for the revised policy f∞, we obtain φi(f
∞) = φi, i ∈ Tx. If Tx = T , then we have determined

an average optimal policy. On the other hand, if Tx 6= T , then delete Tx from T , redefine Ri(a) accordingly

and return to program (6.23). This procedure iterates, identifies an ergodic chain in T each time and

terminates finitely with an optima] policy.

Algorithm 6.7

Determination of an average optimal policy by linear programming by a sequence of linear programs

Input: Instance of a general MDP.

Output: An optimal deterministic policy f∞.

1. T := ∅.

2. determine the optimum v and an optimal solution x of the linear program (6.4).

3. Sx := {i | ∑a xi(a) > 0};.

4. for all i ∈ Sx do begin select f(i) such that xi

(

f(i)
)

> 0; φi := v end

5. if Sx = S then go to step 7.

else go to step 6.

6. (a) U := S; V := U\Sx.

(b) for all (i, a) ∈ V × A do

begin if
∑

j /∈V pij(a) > 0 then begin f(i) := a; V := V \{i} end

(c) if V = ∅ then go to step 7

else begin T := T ∪ {U\(Sx ∪ V)}; S := V ; go to step 2.

7. if T = ∅ then go to step 13

else go to step 8

8. (a) for all (i, a) ∈ T × A do Ri(a) :=
∑

j /∈T pij(a)φj

(b) determine an optimal transient policy f∞ for the substochatic MDP on the states of T with

rewards Ri(a), (i, a) ∈ T × A.

9. (a) for all (i, a) ∈ T × A do

begin if
∑

j /∈T pij(a) > 0 then

begin A(i) := A(i)\{a}; if A(i) = ∅ then T := T\{i} end

end

(b) if T = ∅ then go to step 13

else go to step 10

10. for all (i, a) ∈ T × A do si(a) := ri(a)− φi(f
∞)

11. determine the optimum v and an optimal solution x of the linear program (6.4) on state space T ,

action sets A(i), i ∈ T and rewards si(a).

6.2. THE UNICHAIN CASE 241

12. if v ≤ 0 then go to step 13

else begin f(i) := a for some a with xi(a) > 0, i ∈ Tx;

if Tx = T then go to step 13

else begin T := T\Tx; go to step 8 end

13. f∞ is an optimal policy (STOP).

Example 6.9 (continued)

We have already seen that we have computed in the first iterations:

Iteration 1: f(1) = 1, φ1 = 8, T = {4}.
Iteration 2: f(2) = 1, φ2 = 6, T = {4}.
Iteration 3: f(3) = 1, φ3 = 2, T = {4}.
Iteration 4: R4(1) = 5, R4(2) = 6, R4(3) = 0; f(4) = 2.

Then, we continue in step 9 of Algorithm 6.7: A(4) = {2, 3}; A(4) = {3}; s4(3) = 7− 6 = 1;

Iteration 5: v = 1; x4(3) = 1; f(4) = 3; f∞ with f(1) = 1, f(2) = 1, f(3) = 1, f(4) = 3 is an optimal

policy.

Relation between linear programming and policy iteration

For discounted and irreducible MDPs with the average reward criterion there is a one-to-one correspondence

between the basic feasible solutions of the linear program and the deterministic policies. For the unichain

average reward criterion we shall show that every deterministic policy corresponds to a basic feasible

solution. The reverse statement is not true as the next example shows.

Example 6.10

S = {1, 2, 3}; A(1) = A(2) = {1}, A(3) = {1, 2}; r1(1) = 0, r2(1) = −1, r3(1) = −1, r3(2) = 0.

p11(1) = 1, p12(1) = p13(1) = 0; p21(1) = p22(2) = p23(1) = 1
3 ; p31(1) = p32(1) = p33(1) = 1

3 ;

p31(2) = 1, p32(2) = p33(2) = 0.

The linear program (6.4) of this example becomes (without the nonnegativity constraints):

max

−x2(1)− x3(1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

− 1
3x2(1) − 1

3x3(1) − x3(2) = 0
2
3x2(1) − 1

3x3(1) = 0

− 1
3
x2(1) + 2

3
x3(1) + x3(2) = 0

x1(1) + x2(1) + x3(1) + x3(2) = 1

.

The solution is x with x1(1) = 1, x2(1) = x3(1) = x3(2) = 0 is feasible and basic (even optimal). This

solution does not correspond to a deterministic policy, because it is unclear which action should be chosen

in state 3.

A slightly different version of program (6.4) is

max

∑

i,a

ri(a)xi(a)

∣

∣

∣

∣

∣

∣

∣

∣

∑

i,a xi(a) = 1
∑

i,a{δij − pij(a)}xi(a) = 0, j = 2, 3, . . . , N

xi(a) ≥ 0, i ∈ S, a ∈ A(i)

. (6.24)

Since the rows
∑

i,a{δij − pij(a)}xi(a) = 0, j = 1, 2, . . . , N are dependent (the sum of these N constraints

is zero), one of these rows, say row 1, can be deleted. So, (6.24) is an equivalent linear program.

Let f∞ be any deterministic policy and set xi(a) := 0 whenever a 6= f(i), i ∈ S. Let the matrix C(f)

be obtained from {I − P (f)} by replacing the first column by the 1-vector e. The nonzero variables of

242 CHAPTER 6. AVERAGE REWARD - SPECIAL CASES

any feasible solution x of (6.24) with xi(a) := 0 whenever a 6= f(i), i ∈ S, present an N -vector x and the

constraints are transformed to xTC(f) = (1, 0, 0, . . . , 0), i.e. x is the stationary distribution π(f) and C(f)

is invertible, because P (f) is unichained, so must be a basis matrix. Moreover, the value of the objective

function associated with this basis is π(f)T r(f) = φ(f∞).

Every deterministic policy corresponds in this way to a basic feasible solution to program (6.24). One

might then hope that, if the simplex method for program (6.24) is initiated with a basis corresponding

to a deterministic policy, it executes a series of pivot steps with each successive basis corresponding to a

deterministic policy. To see what happens, we first rewrite the constraints. Let Ci(a) be the column in

(6.24) corresponding to xi(a). Then, the constraints of (6.24) can be written as
∑

i,a xi(a)Ci(a) = e1.

With C(f) as the current basis, the variable chosen to enter the basis is in the usual simplex method

the one for which r(f)T {C(f)T }−1Ci(a) − ri(a) is the most negative. Notice that C(f)z = r(f) has a

solution for which z1 = (1, 0, . . . , 0)T {C(f)}−1r(f) = π(f)r(f) = φ(f∞). Consequently, because e is the

first column of C(f), the other columns of C(f) are the corresponding columns of {I−P (f)} and because

z1 = φ(f∞), we have zi = yi, 2 ≤ i ≤ N, where y = (y1 , y2, . . . , yN)T is a solution of the linear system

{I − P (f)}y = r(f) − φ(f∞) · e. Hence, we can write r(f)T {C(f)T }−1Ci(a) − ri(a) = zTCi(a) − ri(a).

Since {Ci(a)}j =
{ 1 j = 1

δij − pij(a) j = 2, 3, . . . , N
we obtain zTCi(a) = φ(f∞) +

∑N
j=2 {δij − pij(a)}yj ,

where y is a solution of {I − P (f)}y = r(f) − φ(f∞) · e. Since this system is unique up to a constant,

we have r(f)T {C(f)T }−1Ci(a) − ri(a) = φ(f∞) +
∑

j {δij − pij(a)}yj − ri(a), where y is any solution of

{I − P (f)}y = r(f) − φ(f∞) · e.
Hence, the reduced cost r(f)T {C(f)T }−1Ci(a) − ri(a) is negative if and only if a ∈ B(i, f). Let

ti(a) := ri(a) − φ(f∞) −∑j {δij − pij(a)}yj . The usual version of the simplex method pivots in the

column of xi(a) for which ti(a) is the most positive. This is the same choice as made in the usual version

of the policy iteration algorithm.

On the other hand, the standard simplex method does not necessarily call for removal xi

(

f(i)
)

from

the basis variables. However, we know that a basic solution results by exchanging xi(a) and xi

(

f(i)
)

.

Furthermore, by Theorem 6.10, cycling is precluded. Therefore we apply the simplex method with the

following modified pivot rule.

Modified pivot rule:

Suppose C(f) is the current basis. Let g(i) be such that ti
(

g(i)
)

= maxa ti(a) > 0, then exchange the

nonbasic variable xi

(

g(i)
)

with the basic variable xi

(

f(i)
)

.

The above observations are summarized in the following theorem.

Theorem 6.14

The following procedures make the same sequence of policies:

(1) The simplex routine applied to linear program (6.24), initiated with a basis C(f), and using the

modified pivot rule.

(2) The policy iteration algorithm, initiated with policy f∞, and in each iteration changing only the

one decision for which ti(a) is most positive.

Example 6.10 (continued)

For this MDP the linear program (6.24) becomes (without the nonnegativity constraints):

max

−x2(1)− x3(1)

∣

∣

∣

∣

∣

∣

∣

x1(1) + x2(1) + x3(1) + x3(2) = 1
2
3x2(1) − 1

3x3(1) = 0

− 1
3x2(1) + 2

3x3(1) + x3(2) = 0

.

6.2. THE UNICHAIN CASE 243

If we start with f∞, then C(f)T =

1 1 1

0 2
3 −1

3

0 −1
3

2
3

with {C(f)T }−1 =

1 −3 −3

0 2 1

0 1 2

.

The first simplex tableaus corresponding to the initial basis are (the pivot are the bold numbers):

x1(1) x2(1) x3(1) x3(2)

z1 1 1 1 1 1

z2 0 0 2
3

−1
3

0

z3 0 0 −1
3

2
3 1

0 0 1 1 0

z1 x2(1) x3(1) x3(2)

x1(1) 1 1 1 1 1

z2 0 0 2

3
−1

3
0

z3 0 0 −1
3

2
3 1

0 0 1 1 0

z1 z2 x3(1) x3(2)

x1(1) 1 1 −3
2

3
2 1

x2(1) 0 0 3
2

−1
2

0

z3 0 0 1
2

1

2
1

0 0 −3
2

3
2 0

z1 z2 z3 x3(2)

x1(1) 1 1 −3 −3 −1

x2(1) 0 0 2 1 1

x3(1) 0 0 1 2 2

0 0 −3 −3 −3

Notice that r(f)T {C(f)T }−1C3(2)− r3(2) = (0,−1,−1)

1 −3 −3

0 2 1

0 1 2

1

0

1

− 0 = −3, which is the

reduced cost of the nonbasic variable x3(2). Next, we exchange x3(1) and x3(1), which gives the following

optimal simplex tableau.

z1 z2 z3 x3(1)

x1(1) 1 1 −5
2 −2 1

2

x2(1) 0 0 3
2

0 −1
2

x3(2) 0 0 1
2 1 1

2

0 0 −3
2

0 3
2

6.2.4 Value iteration

In this section we present another algorithm than the relative value Algorithm 5.10. The algorithm in

this section is based on the value iteration algorithm for discounted MDPs and is stated below (see also

Algorithm 6.3 with k = 1, which is a similar algorithm). When certain extra conditions are met, then the

algorithm terminates in a finite number of iterations. In that case, the algorithm provides a deterministic

ε-optimal policy and a 1
2ε-approximation of the value. This last result is based on Lemma 6.4.

Algorithm 6.8 Value iteration (unichain case)

Input: Instance of a unichain MDP and some scalar ε > 0.

Output: An ε-optimal deterministic policy f∞ and a 1
2ε-approximation of the value φ.

1. Select x ∈ R
N arbitrary

2. Determine f such that Tf x = T x.

3. l := mini (Tx− x); u := maxi (Tx− x).

4. if u− l ≤ ε then

begin f∞ is an ε-optimal policy and 1
2 (u+ l) is a 1

2ε-approximation of the value φ (STOP) end

else begin x := Tf x; return to step 2 end

244 CHAPTER 6. AVERAGE REWARD - SPECIAL CASES

We will provide conditions under which the stopping criterion of Algorithm 6.8 holds in a finite number

of iterations. Given the starting point v1 ∈ R
N , let vn+l := Tvn for n = 1, 2, Let f∞n be the policy

for which vn+1 = r(fn) + P (fn)vn = Tvn = Tfn
vn ≥ Tfv

n for all deterministic policies f∞ and all n ∈ N.

Theorem 6.15

span (vn+2 − vn+1) ≤ γ · span (vn+1 − vn), where γ := maxi∈S, a∈A(i), j∈S, b∈A(j) {1 −
∑

k p(i, a, j, b, k)}
with p(i, a, j, b, k) := min{pik(a), pjk(b)}.

Proof

We have

vn+2 − vn+1 ≤ Tfn+1v
n+1 − Tfn+1v

n = P (fn+1)(v
n+1 − vn) ≤ maxi {P (fn+1)(v

n+1 − vn}i · e
and

vn+2 − vn+1 ≥ Tfn
vn+1 − Tfn

vn = P (fn)(vn+1 − vn) ≥ minj {P (fn)(vn+1 − vn}j · e.
Hence, we can write

span (vn+2 − vn+1) ≤ maxi {P (fn+1)(v
n+1 − vn)}i −minj {P (fn)(vn+1 − vn)}j

= maxi,j

{

{P (fn+1)(v
n+1 − vn)}i − {P (fn)(vn+1 − vn)}j

}

= maxi,j {
∑

k pik(fn+1)(v
n+1 − vn)k −

∑

k pjk(fn)(vn+1 − vn)k}
≤ maxi,j{maxa∈A(i)

∑

k pik(a)(vn+1 − vn)k −minb∈A(i)

∑

k pjk(b)(vn+1 − vn)k}
= maxi,j,a,b{

∑

k pik(a)(vn+1 − vn)k −
∑

k pjk(b)(vn+1 − vn)k}
= maxi,j,a,b

∑

k {pik(a) − pjk(b)}(vn+1 − vn)k

= maxi,j,a,b

∑

k {[pik(a)− p(i, a, j, b, k)]+ [p(i, a, j, b, k)− pjk(b)]}(vn+1 − vn)k

≤ maxi,j,a,b

{
∑

k {[pik(a)− p(i, a, j, b, k)] ·maxk (vn+1 − vn)k

−∑k [pjk(b)− p(i, a, j, b, k)] ·mink (vn+1 − vn)k

}

= maxi,j,a,b

{

[1−∑k p(i, a, j, b, k)] ·maxk (vn+1 − vn)k

−[1−∑k p(i, a, j, b, k)] ·mink (vn+1 − vn)k

}

= maxi,j,a,b{1−
∑

k p(i, a, j, b, k)} · span (vn+1 − vn)

= γ · span (vn+1 − vn).

Note that 0 ≤ γ ≤ 1. Furthermore, if γ < 1, then Theorem 6.15 ensures that in a finite number of iterations

the stopping criterion of Algorithm 6.8 will be satisfied. The following example shows that, however γ = 1

and the model is unichain but not irreducible, the value iteration algorithm 6.8 may still convergence.

Example 6.11

S = {1, 2, 3}; A(1) = {1, 2}, A(2) = A(3) = {1}; r1(1) = 2, r1(2) = 1, r2(1) = 2, r3(1) = 3.

p11(1) = p12(1) = 0, p13(1) = 1; p11(2) = 0, p12(2) = 1, p13(2) = 0; p21(1) = 1, p22(1) = p23(1) = 0;

p31(1) = p32(1) = p33(1) = 1
3
.

It is easy to verify that this model unichain but not irreducible. Furthermore, we have:

p11(1) = p11(2) = 0 → min{p11(1), p11(2)} = 0; p12(1) = 0, p12(2) = 1 → min{p12(1), p12(2)} = 0;

p13(1) = 1, p13(2) = 0 → min{p13(1), p13(2)} = 0. Hence, p(1, 1, 1, 2, k) = 0 for all k, and consequently

γ = 1. The next tabular presents the results of with x = v1 = (0, 0, 0) and ε = 0.01.

6.2. THE UNICHAIN CASE 245

n vn
1 vn

2 vn
3 vn

1 − vn−1
1 vn

2 − vn−1
2 vn

3 − vn−1
3 span (vn − vn−1) f∞

1 0.000 0.000 0.000 (1,1,1)

2 2.000 2.000 3.000 2.000 2.000 3.000 1.000 (1,1,1)

3 5.000 4.000 5.333 3.000 2.000 2.333 1.000 (1,1,1)

4 7.333 7.000 7.778 2.333 3.000 2.445 0.667 (1,1,1)

5 9.778 9.333 10.370 2.445 2.333 2.592 0.259 (1,1,1)

6 12.370 11.778 12.827 2.592 2.445 2.457 0.147 (1,1,1)

7 14.827 14.370 15.325 2.457 2.592 2.498 0.135 (1,1,1)

8 17.325 16.827 17.841 2.498 2.457 2.516 0.059 (1,1,1)

9 19.841 19.325 20.331 2.516 2.492 2.490 0.026 (1,1,1)

10 22.331 21.841 22.832 2.490 2.516 2.501 0.026 (1,1,1)

11 24.832 24.331 25.335 2.501 2.490 2.503 0.013 (1,1,1)

12 27.335 26.832 27.833 2.503 2.501 2.498 0.005

Observe that Algorithm 6.8 terminates for n = 12 and identifies an ε-optimal policy f∞ with

f(1) = f(2) = f(3) = 1. A 1
2ε-approximation of the value φ is 1

2(2.503 + 2.498) = 2.501.

The above example shows that the value iteration algorithm may convergence with respect to the span

seminorm even for γ = 1. Our approach for showing that this algorithm terminates after a finite number

of iterations relies on the concept of an M -stage span contraction.

We say that an operator B : R
N → R

N is an M -stage span contraction if there exists a 0 ≤ β < 1

and a nonnegative integer M for which span (BMx−BMy) ≤ β · span (x− y) for all x, y ∈ R
N . A vector

v∗ ∈ R
N is a span fixed point of B if span (Bv∗ − v∗) = 0, i.e. B∗ − v∗ = c · e for some scalar c. If the

operator T is an M -stage span contraction with contraction factor β, we have

span (vM+2 − vM+1) = span {TM (Tv1) − TMv1} ≤ β · span (Tv1 − v1) = β · span (v2 − v1).

Using the techniques of the theory of contraction mappings, the following theorem can be shown similar

to the proof of Theorem 3.1 (we leave the details of the proof to the reader).

Theorem 6.16

Let T be an M -stage span contraction with contraction factor β. Then,

(1) There exists a span fixed point v∗ of T ;

(2) For any v1 ∈ R
N , the sequence vn+1 := Tvn (n = 1, 2, . . .) satisfies limn→∞ span (vn − v∗) = 0.

For any f∞ ∈ C(D) and any n ∈ N, the (i, j)th element of the matrix P n(f) is denoted by pn
ij(f). For

any pair f∞1 , f∞2 ∈ C(D) and any M ∈ N, the constant γ(f∞1 , f∞2 ,M) is defined by

γ(f∞1 , f∞2 ,M) := 1−mini,j∈S

∑

k

p(i, f∞1 , j, f∞2 ,M), (6.25)

where p(i, f∞1 , j, f∞2 ,M) := min {pM
ik (f1), p

M
jk(f2)}. The following result is a generalization of Theorem

6.15 and can be shown straightforward.

Theorem 6.17

Suppose there exists an integer M ≥ 1 such that γ(f∞1 , f∞2 ,M) < 1 for every pair f∞1 , f∞2 ∈ C(D), Then,

(1) T is an M -stage span contraction with factor γ∗(M) := maxf∞
1 ,f∞

2 ∈C(D) γ(f
∞
1 , f∞2 ,M);

(2) For any v1 ∈ R
N and any ε > 0, for the sequence {vn}∞n=1 with vn+1 := Tvn, n = 1, 2, . . . , there

exists an integer n0 such that span (vnM+2 − vnM+1) < ε for all n ≥ n0.

246 CHAPTER 6. AVERAGE REWARD - SPECIAL CASES

Remark

The condition γ(f∞1 , f∞2 ,M) < 1 1 means that starting in any pair of distinct states i and j, the policies

f∞1 and f∞2 both reach after exactly M transitions at least one identical state k with positive probability.

Hence, γ∗(M) < 1 implies that all policies must be unichain and aperiodic. Clearly, it is not easy to verify

the condition γ∗(M) < 1 directly. The following theorem provides conditions which are easier to check

and imply γ∗(M) < 1.

Theorem 6.18

Suppose either

(a) 0 ≤ γ < 1, where γ is is defined in Theorem 6.15;

(b) there exists a state l and an integer M ≥ 1 such that for any f∞), we have pM
il (f) > 0 for all i ∈ S;

(c) all policies are unichain and pii(a) > 0 for all (i, a) ∈ S ×A.

Then, the condition of Theorem 6.17 holds, so the conclusion of Theorem 6.17 follows.

Proof

Assume that condition (a) holds. Take M = 1 and select any f∞1 , f∞2 ∈ C(D). Then, we have

1 > maxi∈S, a∈A(i), j∈S, b∈A(j) {1−
∑

k p(i, a, j, b, k)}
≥ maxi,j∈S {1−

∑

k p(i, f1(i), j, f2(j), k)}
= 1−mini,j∈S

∑

k p(i, f
∞
1 , j, f∞2 ,M) = γ(f1 , f2,M).

Hence, the condition of Theorem 6.17 holds.

Assume that condition (b) holds. Then, p(i, f1, j, f2, l,M) = min (pM
il (f1), p

M
il (f2) > 0 for every i, j ∈ S

and every f∞1 , f∞2 ∈ C(D). Also in this case the condition of Theorem 6.17 holds, because

γ(f1 , f2,M) = 1−mini,j∈S

∑

k p(i, f1, j, f2, k,M) ≤ 1−mini,j∈S p(i, f1, j, f2, l,M) < 1.

Assume that condition (c) holds. Select two different states, say i1 and i2, and two different deterministic

policies, say f∞1 and f∞2 . Let X1(n) := {j ∈ S | pn
i1j(f1) > 0} and X2(n) := {j ∈ S | pn

i2j(f1) > 0}
for n ∈ N. We show by contradiction that X1(N) ∩ X2(N) 6= ∅. Suppose X1(N) ∩ X2(N) = ∅. Since

pii(a) > 0 for all (i, a) ∈ S × A, we have Xi(n) ⊆ Xi(n + 1) for i = 1, 2 and for all n ∈ N, so that

Xi(n) ∩X2(n) = ∅ for all 1 ≤ n ≤ N . Consequently, for some 1 ≤ m < N , we have X1(m) = X1(m+ 1)

and X2(m) = X2(m + 1). This means that X1(m) is closed under f∞1 and X2(m) is closed under f∞2 .

However, this contradicts the unichain assumption. Hence, we have shown X1(N)∩X2(N) 6= ∅, i.e. there

exists a state l for which min (pN
i1l(f1), p

N
i2l(f2) > 0. Hence, p(i1, f1, i2, f2, l, N) > 0. Since i1, i2, f

∞
1 , f∞2

are arbitrarily chosen, γ(f1 , f2,M) > 0 for M = N and for all pairs f∞1 , f∞2 ∈ C(D). Therefore, the

condition of Theorem 6.17 holds.

Remarks

1. Under any of the conditions (a), (b) and (c) of Theorem 6.18, the value iteration algorithm 6.8

terminates.

2. In condition (c) only the unichain assumption is essential. By the data transformation (5.48), any

MDP can be transformed into an equivalent MDP with pii(a) > 0 for all (i, a) ∈ S × A.

Example 6.11 (continued)

Inspection of this example reveals that, when starting the algorithm with v1 = (0, 0, 0), action 1 always

achieves the maximum in state 1, so that value iteration corresponds to iterating the policy f∞1 with

f1(1) = 1. We have already seen that γ = 1, so condition (a) is not satisfied. It is obvious that also

condition (c) is not satisfied. Suppose that condition (b) holds. Let f∞2 ∈ C(D) be the policy with

6.2. THE UNICHAIN CASE 247

f2(1) = 2. It is easy to verify that there does not exists a state l and an integer M ≥ 1 such that

pM
il (f2) > 0 for all i ∈ S. Hence, this example does not satisfy any of the conditions of Theorem 6.18, but

nevertheless, algorithm 6.8 terminates.

6.2.5 Modified policy iteration

We discuss the modified policy iteration for unichain MDPs under the same strong aperiodicity Assumption

6.2 as in the irreducible case. We also use the same algorithm (Algorithm 6.3), but for notation convenience

we take in each iteration the same k. However, the proof of its correctness is more complicated. For the

unichain case Lemma 6.6 no longer holds and the constant δ, defined in (6.14), may be zero, so Lemma 6.8

can no longer be used. Notice that Lemma 6.4, Lemma 6.5 and relation (6.13) hold also in the unichain

case.

First, we will derive a similar result as in Lemma 6.6. This result enables us to show the boundedness

of span(xn) := maxxn
i −minxn

i . Next, it is shown that the boundedness of span(xn) implies that ln

converges to φ. Finally, we show that there exists a subsequence of {un} which converges to φ.

Define

η := mini,j∈S minh1,h2,...,hN−1

∑

k

min
{

{P (h1)P (h2) · · ·P (hN−1)}ik, {P (h1)P (h2) · · ·P (hN−1)}jk

}

.

(6.26)

Then, the unichain condition and the strong aperiodicity assumption yield the following result, which

states that any two states i and j have a common successor after N − 1 transitions.

Lemma 6.13

η > 0.

Proof

Let h1, h2, . . . , hN−1 be an arbitrary sequence of deterministic decision rules and select i, j ∈ S arbitrarily.

Define S(i, n) for n = 0, 1, . . . , N − 1 as in the proof of Lemma 6.6. Clearly S(i, n) ⊆ S(i, n + 1) and if

S(i, n) = S(i, n+1), then S(i, n) is closed under P (hn+1). We have to shown S(i, N −1)∩S(j, N −1) 6= ∅.
Suppose S(i, N−1)∩S(j, N−1) = ∅. Then S(i, N−1) and S(j, N−1) are both proper subsets of S, so there

exists 0 ≤ m, n ≤ N−2 such that S(i, m) = S(i, m+1) and S(j, n) = S(j, n+1). This implies that S(i, m)

is closed under P (hm+1) and that S(j, n) is closed under P (hn+1). Since S(i, N − 1) ∩ S(j, N − 1) = ∅,
S(i, m) ∩ S(j, n) is also empty. Let f∞ be the policy with f(s) := hm+1 for s ∈ S(i, m) and f(s) := hn+1

for s ∈ S(j, n) (outside S(i, m) ∪ S(j, n) choose f(s) arbitrary). Then, P (f) has two disjunct, nonempty

closed subsets, namely S(i, m) and S(j, n), which contradict the unichain condition.

Lemma 6.14

For all x ∈ R
N and all deterministic decision rules h1, h2, . . . , hN−1, we have span(Qx) ≤ (1−η) ·span(x),

with Q := P (h1)P (h2) · · ·P (hN−1).

Proof

Let i and j such that span(Qx) = (Qx)i − (Qx)j. Then,

span(Qx) =
∑

k {qik − qjk}xk

=
∑

k

{

qik −min(qik, qjk)
}

xk −
∑

k

{

qjk −min(qik, qjk)
}

xk

≤ ∑

k

{

qik −min(qik, qjk)
}

·maxk xk −
∑

k

{

qjk −min(qik, qjk)
}

·mink xk

= span(x) −∑k min(qik, qjk) · {maxk xk −mink xk} ≤ (1− η) · span(x).

248 CHAPTER 6. AVERAGE REWARD - SPECIAL CASES

Define K by K = maxi,a ri(a)−mini,a ri(a). Then, span
(

r(f)
)

≤ K for all f∞ ∈ C(D).

Lemma 6.15

span(Th1Th2 · · ·ThN−1x) ≤ (N − 1) ·K + (1 − η) · span(x) for all x ∈ R
N and all deterministic decision

rules h1, h2, . . . , hN−1.

Proof

Since span(y+ z) ≤ span(y) + span(z) for all y, z and span{P (f)y} ≤ span(y) for all decision rules f and

all y, we obtain

span(Th1Th2 · · ·ThN−1x) = span
{

r(h1) + P (h1)r(h2) + · · ·+
P (h1)P (h2) · · ·P (hN−2)r(hN−1) + P (h1)P (h2) · · ·P (hN−1)x

}

≤ span{r(h1)} + span{r(h2)}+ · · ·+
span{r(hN−1)}+ span{P (h1)P (h2) · · ·P (hN−1)x}

≤ (N − 1) ·K + span{P (h1)P (h2) · · ·P (hN−1)x}
≤ (N − 1) ·K + (1− η) · span(x),

the last inequality by Lemma 6.14.

In order to prove that span(xn) is bounded, we introduce the following notation for a fixed k ∈ N:

wnk+p := T p
fn
xn, for n = 0, 1, . . . and p = 0, 1, . . . , k− 1.

Then, wnk = T 0
fn
xn = xn, and consequently, wnk+p = T p

fn
wnk, n = 0, 1, . . . ; p = 0, 1, . . . , k− 1.

Theorem 6.19

span (xm) ≤ 1
η · (N − 1) ·K + span(x0) for m = 0, 1,

Proof

It follows from Lemma 6.15, with k = N − 1, that for all n = 0, 1, . . . and all p = 0, 1, . . . , N − 2, we have

span{wn(N−1)+p} ≤ (N − 1) ·K + (1− η) · span{w(n−1)(N−1)+p}
≤ (N − 1) ·K + (1− η) · (N − 1) ·K + (1− η)2 · span{w(n−2)(N−1)+p}
≤ · · · ≤ · · ·
≤ (N − 1) ·K + (1− η) · (N − 1) ·K + · · ·+ (1− η)n−1(N − 1)K + (1− η)nspan{wp}.

Furthermore, it follows from the proof of Lemma 6.15 that

span{wp} = T p
f0
x0 ≤ p ·K + span(x0) ≤ (N − 1) ·K + span(x0) for p = 0, 1, . . . , N − 2.

Hence,

span{wn(N−1)+q} ≤∑n
j=0 (1− η)j · (N − 1) ·K + (1− η)nspan(x0) ≤ 1

η · (N − 1) ·K + span(x0),

implying that for any m = 0, 1, . . . , we have span(wm) ≤ 1
η
· (N − 1) ·K + span(x0). Since wmk = xm for

all m ≥ 0, the theorem is proven.

Before we can prove the convergence of the modified policy iteration, we first have to derive some other

results.

6.2. THE UNICHAIN CASE 249

xn+1 − xn = T k
fn
xn − xn

= r(fn) + P (fn)r(fn) + · · ·+ P k−1(fn)r(fn) + P k(fn)xn − xn

= {I + P (fn) + · · ·+ P k−1(fn)}{r(fn) + P (fn)xn − xn}
= {I + P (fn) + · · ·+ P k−1(fn)}{Tfn

xn − xn}
= {I + P (fn) + · · ·+ P k−1(fn)}{Txn − xn}
= {I + P (fn) + · · ·+ P k−1(fn)}gn.

So, we obtain for n = 0, 1, . . . and m = 1, 2, . . .

xn+m − xn =

n+m−1
∑

l=n

{I + P (fl) + · · ·+ P k−1(fl)}gl. (6.27)

Consider the iterates xn, xn+1, . . . , xn+m−1. Since ul ≥ φ for all l, there has to be a state j0 ∈ S with

gl
jo
≥ φ for at least m

N of the m indices l = n, n+1, . . . , n+m−1. Using (6.27), where xn+m−xn is expressed

as a sum of km terms, and using the property (see Lemma 6.4 and Lemma 6.5) that gl ≥ ll · e ≥ ln · e for

l = n, n+ 1, . . . , n+m− 1, we obtain

xn+m − xn ≥
{m

N
· φ+

{

km− m

N

}

· ln
}

· e =
{

km · ln +
m

N
· (φ− ln)

}

· e. (6.28)

From (6.13) it follows that gn+m ≥ P k(fn+m−1)P
k(fn+m−2) · · ·P k(fn)gn, i.e. gn+m is computed from

gn by premultiplication of km transition matrices. Hence, by the strong aperiodicity condition and with

α := mini,a pii(a) ∈ (0, 1], we obtain

gn+m
i =

∑

j

{

P k(fn+m−1)P
k(fn+m−2) · · ·P k(fn)}ijgn

j

=
{

P k(fn+m−1)P
k(fn+m−2) · · ·P k(fn)}iign

i +
∑

j 6=i

{

P k(fn+m−1)P
k(fn+m−2) · · ·P k(fn)}ijgn

j

≥ αkmgn
i + (1 − αkm)ln, i ∈ S.

For p = 0, 1, . . . , k − 1, we obtain similarly

gn+m
i ≥ αkm−p · {P p(fn)gn}i + (1− αkm−p) ·minj {P p(fn)gn}j

≥ αkm−p · {P p(fn)gn}i + (1− αkm−p) · ln
≥ αkm · {P p(fn)gn}i + (1− αkm) · ln, i ∈ S,

the last inequality because α−p ·
{

{P p(fn)gn}i − ln
}

≥ {P p(fn)gn}i − ln, i ∈ S.

Let l∗ := limn→∞ ln and let i0 ∈ S satisfy gn+m
i0

= ln+m. Then, for p = 0, 1, . . . , k− 1,

{P p(fn)gn}i0 ≤ α−km{gn+m
i0

− (1− αkm)ln} = ln + α−km{gn+m
i0

− ln}
= ln + α−km{ln+m − ln} ≤ ln + α−km{l∗ − ln}.

Hence,
{

{I +P (fn) + · · ·+P k−1(fn)}gn
}

i0
≤ k · ln + k ·α−km{l∗− ln} for all n. So, because the sequence

ln is nondecreasing, we have for l = n, n+ 1, . . . , n+m− 1
{

{I + P (fl) + · · ·+ P k−1(fl)}gl
}

i0
≤ k · ll + k · α−km{l∗ − ll}
= k · α−kml∗ + k · ll(1− α−km)

≤ k · α−kml∗ + k · ln(1− α−km)

= k · ln + k · α−km(l∗ − ln),

the last inequality because α < 1 implies 1 − α−km < 0 and because the sequence ln is nondecreasing.

Therefore, we can write, using equation (6.27),

(xn+m − xn)i0 =
{

n+m−1
∑

l=n

{I + P (fl) + · · ·+ P k−1(fl)}gl
}

i0
≤ km · ln + km · α−km(l∗ − ln). (6.29)

250 CHAPTER 6. AVERAGE REWARD - SPECIAL CASES

It follows from (6.28) and (6.29) that

span (xn+m−xn) ≥
{

km · ln+
m

N
(φ−ln)

}

−
{

km · ln+km ·α−km(l∗−ln)
}

=
m

N
(φ−ln)−km ·α−km(l∗−ln).

(6.30)

Theorem 6.20

ln ↑ φ.

Proof

From Lemma 6.5 and Lemma 6.4 it follows that ln ↑ and ln ≤ φ for all n. So, l∗ := limn→∞ ln ≤ φ.

Suppose that l∗ < φ. Since, by Theorem 6.19, span (xn) is bounded, there exists a positive constant K1

such that span(xn) ≤ K1 for all n. Select m∗ such that m∗

N
·(φ−ln) ≥ 2K1+K2 for all n, where K2 is some

positive constant. Next, select n∗ such that km∗ ·α−km∗(l∗ − ln∗
) < K2. Then, it follows from (6.30) that

span (xn∗+m∗ − xn
∗) > (2K1 +K2)−K2 = 2K1. Since span (x) ≥ span (x− y) − span (y) for every x and

y (see Exercise 6.1), we obtain K1 ≥ span (xn∗+m∗) ≥ span (xn∗+m∗ −xn
∗)− span (xn

∗) > 2K1−K1 = K1,

implying a contradiction.

We now know that ln converges to φ and, by Lemma 6.4, that f∞n is ε-optimal for n sufficiently large. In

order to be able to recognize that n is sufficiently large one needs the following result.

Theorem 6.21

φ is the smallest limit point of the sequence {un}.

Proof

We know from Lemma 6.4 that un ≥ φ for all n. From the proof of Theorem 6.19 it follows that the

sequence {span (wn)} is bounded. Since,

un − ln = span (gn) = span (Txn − xn) = span (wnk+1 −wnk) ≤ span (wnk+1) + span (wnk),

the sequence {un − ln} is bounded. Because ln ↑ φ, also the sequence {un} is bounded. Let u∗ be the

smallest limit point of {un} and suppose that u∗ > φ. Then one may construct, similar as in the proof of

Theorem 6.20 where we supposed that l∗ < φ (we also need a similar expression as (6.30)), a contradiction.

Hence, φ is the smallest limit point of the sequence {un}.

Finally, we show that span (gn) converges to zero geometrically fast. Since {span (xn)} is bounded, also

{span (xn − xn
N · e)} is bounded. Furthermore, φ · e is a limit point of {gn}. Because there are only a

finite number of policies, there exists a subsequence of {xn} and {gn} with gnm → φ · e, f∞nm
= f and

xnm − xnm

N · e→ x for some f∞ ∈ C(D) and some x ∈ R
N .

Then, for all m, maxg∞∈C(D) Tg x
nm − xnm = Tfnm

xnm − xnm = Tf x
nm − xnm = gnm . Letting m

tends to infinity and using the property Tg x
nm − xnm = Tg {xnm − xnm

N · e} − {xnm − xnm

N · e}, we obtain

maxg∞∈C(D) Tg x− x = Tf x− x = φ · e. Consequently, T k
f x = x+ k · φ.

Lemma 6.16

If span (xn − x) ≤ ε and Tfn
x = x+ φ · e, then span (xn+1 − x) ≤ ε and Tfn+1 x ≥ x+ φ · e− ε · e.

Proof

Since xn+1 = T k
fn
xn = T k

fn
x + P k(fn)(xn − x) = x + k · φ · e+ P k(fn)(xn − x), we obtain the property

span (xn+1 − x) = span {P k(fn)(xn − x)} ≤ span (xn − x) ≤ ε. Furthermore, we have

6.3. THE COMMUNICATING CASE 251

Tfn+1 x− x = Tfn+1 x
n+1 + P (fn+1)(x− xn+1)− x ≥ Tfn

xn+1 + P (fn+1)(x− xn+1)− x
= Tfn

x− x+ P (fn)(xn+1 − x) − P (fn+1)(x
n+1 − x)

≥ φ · e+mini (xn+1 − x)i · e−maxi (xn+1 − x)i · e
= φ · e− span (xn+1 − x) · e ≥ φ · e− ε · e.

Remark

Since C(D) has a finite number of policies g∞, there is also only a finite number of vectors Tg x − x and

at least one of them, namely Tf x− x, equals φ · e. Hence, the finiteness of C(D) implies that there exists

an ε > 0 such that Tg x − x ≥ φ · e − ε · e if and only if Tg x − x = φ · e. If ε > 0 is taken in this way,

Lemma 6.16 gives the following result.

Corollary 6.2

If span (xn − x) ≤ ε and Tfn
x = x+ φ · e, then span (xn+1 − x) ≤ ε and Tfn+1 x = x+ φ · e, where ε > 0

is taken as in the above remark.

We have seen that xnm−xnm

N ·e−x → 0 if m→∞. So, also span(xnm−x) = span(xnm−xnm

N ·e−x)→ 0

if m → ∞. Furthermore, since f∞nm
= f for all m, Tfnm

x = x + φ · e for all m. Hence, there exists a

number n∗ and an ε∗ > 0 such that span (xn∗ − x) ≤ ε and Tfn∗
x − x = φ · e. Then, by inductively

applying Corollary 6.2, span(xn∗+m − x) ≤ ε and Tfn∗+m
x− x = φ · e for all m = 0, 1,

Furthermore,

xn∗+m = T k
fn∗+m−1T

k
fn∗+m−2 · · ·T k

fn∗
xn∗

= T k
fn∗+m−1

T k
fn∗+m−2

· · ·T k
fn∗

x+ P k(fn∗+m−1)P
k(fn∗+m−2) · · ·P k(fn∗

)(xn∗ − x)
= x+mk · φ · e+ P k(fn∗+m−1)P

k(fn∗+m−2) · · ·P k(fn∗
)(xn∗ − x).

Hence, span (xn∗+m − x) = span {P k(fn∗+m−1)P
k(fn∗+m−2) · · ·P k(fn∗

)(xn∗ − x)}, and by Lemma 6.14

span (xn∗+m−x) decreases exponentially fast to zero asm→∞. Then, also gn∗+m converges exponentially

fast to φ · e, since

gn∗+m = Tfn∗+m
xn∗+m − xn∗+m = Tfn∗+m

xn∗+m − xn∗+m − Tfn∗+m
x+ x+ φ · e

= {P (fn∗+m) − I}(xn∗+m − x) + φ · e.
Therefore, the convergence of the modified policy iteration method is exponentially fast.

6.3 The communicating case

In this section we make the following assumption.

Assumption 6.4

For every i, j ∈ S there exists a policy f∞ ∈ C(D), which may depend on i and j, such that in the Markov

chain P (f) state j is accessible from state i.

Clearly, this assumption is equivalent to the property that every completely mixed stationary policy π∞,

i.e. πia > 0 for every (i, a) ∈ S × A, is irreducible. We have seen in section 5.2.3 that checking the

communicating property can be done in polynomial time (polynomial in M :=
∑

i∈S |A(i)|). In this case,

policies with two or more recurrent sets are possible, but there is an optimal policy which has only one

recurrent set. Hence, the value vector φ has identical components and there exists a unichain optimal

policy.

252 CHAPTER 6. AVERAGE REWARD - SPECIAL CASES

6.3.1 Optimality equation

In the communicating case the value vector φ is a constant vector. Hence, by Theorem 5.11, φ is the

unique x-part in the optimality equation (6.1). The next example shows that in the communicating case

the property that the y-vector is unique up to a constant does not hold.

Example 6.12

S = {1, 2}; A(1) = A(2) = {1, 2}; r1(1) = 1, r1(2) = 0; r2(1) = 1, r2(2) = 0; p11(1) = 1, p12(1) = 0;

p11(2) = 0, p12(2) = 1; p21(1) = 0, p22(1) = 1; p21(2) = 1, p22(2) = 0.

This is a multichain, but communicating model. The optimality equation (6.1) becomes:

x+ y1 = max{1 + y1, 0 + y2}; x+ y2 = max{1 + y2, 0 + y1}.
Two different solutions are: x = 1, y1 = 0, y2 = 1 and x = 1, y1 = 1, y2 = 0. The difference between the

y-vectors is the non-constant vector (−1, 1).

6.3.2 Policy iteration

Since there exists a unichain optimal policy one might conjecture that we can solve such a problem using

Algorithm 6.4. The following example shows that this is not true, even when we start with a unichain

policy.

Example 6.13

S = {1, 2, 3}; A(1) = {1, 2}, A(2) = {1, 2, 3}, A(3) = {1, 2}.
r1(1) = 0, r1(2) = 2; r2(1) = 1, r2(2) = 1, r2(3) = 3; r3(1) = 2; r3(2) = 4.

p12(1) = p11(2) = p23(1) = p21(2) = p22(3) = p32(1) = p33(2) = 1 (other transitions are 0).

This is a multichain and communicating model.

Algorithm 6.4 with starting policy f(1) = f(2) = 2, f(3) = 1 and taking y1 = 0 in (6.1) gives:

Iteration 1:

Consider the system

x + y1 − y1 = 2

x + y2 − y1 = 1

x + y3 − y2 = 2

y1 = 0

→ x = φ(f∞) = 2, y1 = 0, y2 = y3 = −1.

B(1, f) = ∅, B(2, f) = {3}, B(3, f) = {2}.
g(1) = 2, g(2) = 3, g(3) = 2. f(1) = 2, f(2) = 3, f(3) = 2.

Iteration 2:

Consider the system

x + y1 − y1 = 2

x + y2 − y2 = 3

x + y3 − y3 = 4

y1 = 0

→ inconsistent system (multichain policy).

Below we state the following modification of the multichain policy iteration algorithm (Algorithm 5.6),

which exploits the communication structure by finding a ’unichain improvement’ which indicates whether

or not the current policy is known to be unichain.

Algorithm 6.9 Determination of an average optimal policy by policy iteration (communicating case)

Input: Instance of an MDP.

Output: An optimal deterministic policy f∞ and the value φ.

6.3. THE COMMUNICATING CASE 253

1. Select any f∞ ∈ C(D); go to step 2 (b).

2. (a) if constant = 0 then go to step 2 (b) else go to step 2 (c);

(b) determine φ(f∞) and y = u0(f) as unique (x, y)-part in a solution of the system

{I − P (f)}x = 0

x + {I − P (f)}y = r(f)

y + {I − P (f)}z = 0

go to step 3.

(c) determine φ(f∞) and y = u0(f) as unique (x, y)-part in a solution of the system
{

x · e + {I − P (f)}y = r(f)

y + {I − P (f)}z = 0

go to step 3.

3. (a) if φ(f∞) is constant then go to step 3 (g) else go to step 3 (b);

(b) S0 := {i ∈ S | φi(f
∞) = maxk φk(f∞)}; g(i) := f(i), i ∈ S; T := S\S0; W := S0;

(c) if T = ∅ then go to step 3 (e).

(d) select j ∈ T and aj ∈ A(j) such that
∑

k∈W pjk(aj) > 0; T := T\{j}; W := W ∪ {j};
g(j) := aj ; return to step 3 (c).

(e) constant := 1; f := g; return to step 2.

(f) for all i ∈ S do B(i, f) := {a ∈ A(i) | ri(a) +
∑

j pij(a)u
0
j(f) > φ(f∞) + u0

i (f)};
(g) if B(i, f) = ∅ for every i ∈ S then f∞ is an average optimal policy (STOP)

else begin select g such that ri(g) +
∑

j pij(g)u
0
j (f) = maxa{ri(a) +

∑

j pij(a)u
0
j (f)}, i ∈ S;

f := g; constant := 0; return to step 2

end

Example 6.13 (continued)

We apply Algorithm 6.8 to the model of Example 6.13, starting with f(1) = f(2) = 2, f(3) = 1.

Iteration 1:

step 2 (b): φ(f∞) = (2, 2, 2); u0(f) = (0,−1,−1).

step 3 (c): B(1, f) = ∅, B(2, f) = {3}, B(3, f) = {2}; g(1) = 2, g(2) = 3, g(3) = 2;

f(1) = 2, f(2) = 3, f(3) = 2; constant := 0.

Iteration 2:

step 2 (b): φ(f∞) = (2, 3, 4); u0(f) = (0, 0, 0).

step 3 (b): S0 = {3}; g(1) = 2, g(2) = 3, g(3) = 2; T = {1, 2}, W = {3}.
j = 2, aj = 1; T = {1}, W = {2, 3}, g(2) = 1.

j = 1, aj = 1; T = ∅, W = {1, 2, 3}, g(1) = 1.

step 3 (e): constant = 1; f(1) = f(2) = 1, f(3) = 2.

Iteration 3:

step 2 (c): φ(f∞) = (4, 4, 4); u0(f) = (−7,−3, 0).

step 3 (c): B(1, f) = B(2, f) = B(3, f) = ∅; f∞ is an optimal policy.

Theorem 6.22

Algorithm 6.8 terminates in a finite number of iterations with an optimal policy.

254 CHAPTER 6. AVERAGE REWARD - SPECIAL CASES

Proof

Case 1: φ(f∞) is not constant.

We will show that in such iteration a policy g∞ is found with φ(g∞) > φ(f∞), which implies that this

case can occur only in a finite number of iterations.

Since f∞ is not a constant vector, step 3 (b) is executed. During step 3 (b) we have S = T ∪W and

T ∩W = ∅. At the start of this step T 6= ∅, since otherwise φ(f∞) is a constant vector. The communicating

assumption guarantees that there exists at least one pair of states k ∈W and j ∈ T with aj ∈ A(j) where

pjk(aj) > 0. Hence, after |T | subiterations of step 3 (b) the set T is empty and for the policy g∞ the

average reward φ(g∞) is constant. By the definition of S0, we have φi(g
∞) > φi(f

∞), i /∈ S0.

Case 2: φ(f∞) is constant.

In this case step 3 (g) is executed. This step is the same as one iteration in the multichain case (Algorithm

5.6), because for a constant φ(f∞) the action set B(i, f) of (5.18) becomes B(i, f) = {a ∈ A(i) | ri(a) +
∑

j pij(a)u
0
j (f) > φ(f∞)+ u0

i (f)}. From Theorem 5.14 it follows that if B(i, f) = ∅, i ∈ S, then f∞ is an

average optimal policy, and if B(i, f) 6= ∅ for at least one i ∈ S, then g∞ is ’better’ than f∞.

Hence, we have shown that all policies are different, so the algorithm terminates, and at termination the

last policy is optimal.

6.3.3 Linear programming

Since the value vector φ is constant in communicating models, we would expect some simplification in the

linear programming approach. The property that φ is the smallest superharmonic vector implies in this

case that φ is the unique v-part of an optimal solution (x, y) of the linear program

min

x

∣

∣

∣

∣

∣

∣

x+
∑

j

{δij − pij(a)}yj ≥ ri(a), i ∈ S, a ∈ A(i)

. (6.31)

The dual of (6.31) is

max

∑

i,a

ri(a)xi(a)

∣

∣

∣

∣

∣

∣

∣

∣

∑

i,a{δij − pij(a)}xi(a) = 0, j ∈ S
∑

i,a xi(a) = 1

xi(a) ≥ 0, i ∈ S, a ∈ A(i)

. (6.32)

The next example shows that - in contrast with the irreducible and the unichain case - in the communicating

case the optimal solution of the dual program doesn’t provide an optimal policy, in general.

Example 6.13 (continued)

The dual linear program (6.32) of this model is (without the nonnegativity of the variables)

maximize 2x1(2) + x2(1) + x2(2) + 3x2(3) + 2x3(1) + 4x3(2)

subject to

x1(1) − x2(2) = 0

− x1(1) x2(1) + x2(2) − x3(1) = 0

− x2(1) + x3(1) = 0

x1(1) + x1(2) + x2(1) + x2(2) + x2(3) + x3(1) + x3(2) = 1

The optimal solution is: x1(1) = x1(2) = x2(1) = x2(2) = x2(3) = x3(1) = 0; x3(2) = 1. The objective

function value equals 4. Proceeding as if this were a unichain model, we choose arbitrary actions in the

states 1 and 2. Clearly, this approach could generate a nonoptimal policy, e.g. f(1) = 2, f(2) = 3.

6.3. THE COMMUNICATING CASE 255

Theorem 6.23

Let x∗ be an extreme optimal solution of (6.32) and let S∗ := {i | ∑a x
∗
i (a) > 0}. Select any policy f∞∗

such that x∗i
(

f∗(i)
)

> 0, i ∈ S∗. Then, φj(f
∞
∗) = φ, j ∈ S∗.

Proof

The proof follows directly from Lemma 6.11.

Theorem 6.24

An MDP is communicating if and only if for every b ∈ R
N such that

∑

i bi = 0 there exists a y ∈ R
|S×A|

such that yi(a) ≥ 0 for (i, a) ∈ S ×A and
∑

i,a {δij − pij(a)}yi(a) = bj, j ∈ S.

Proof

First, assume that we have a communicating MDP. Let π∞ be a completely mixed stationary policy.

Then, P (π) is an irreducible Markov chain. Let x be the (strictly positive) stationary distribution of P (π)

and let Z(π) := {I − P (π) + P ∗(π)} be the fundamental matrix of P (π). Choose any b ∈ R
N such that

∑

i bi = 0. Define d ∈ R
N by dT := bT Z(π) + c · xT with c ≥ 0 sufficiently large to assure d ≥ 0. Take

yi(a) := di · πi(a), (i, a) ∈ S × A. Then, yi(a) ≥ 0, (i, a) ∈ S × A. Notice that

∑

i,a {δij − pij(a)}yi(a) = bj, j ∈ S ⇔ ∑

i {δij − pij(π)}di = bj, j ∈ S ⇔ dT {I − P (π)} = bT

⇔ {bTZ(π) + c · xT }{I − P (π)} = bT ⇔ bTZ(π){I − P (π)} = bT

⇔ bT {I − P ∗(π)} = bT ⇔ bTP ∗(π) = 0.

Since P ∗(π) has identical rows, we obtain
∑

i bi p
∗
ij(π) = p∗jj

∑

i bi = 0 for all j ∈ S, i.e. bTP ∗(π) = 0.

Hence, we have y ∈ R
|S×A| such that yi(a) ≥ 0 for (i, a) ∈ S×A and

∑

i,a {δij − pij(a)}yi(a) = bj, j ∈ S.

Next, assume that for every b ∈ R
N with

∑

i bi = 0 there exists a y ∈ R
|S×A| such that yi(a) ≥ 0 for

(i, a) ∈ S × A and
∑

i,a {δij − pij(a)}yi(a) = bj , j ∈ S. Suppose that the MDP is not communicating.

Then, there exists a pair of states (k, l) such that {P t(f)}kl = 0 for all f∞ ∈ C(D) and all t ≥ 1. Define

Sl := {i ∈ S | {P t(f)}il > 0 for some f∞ ∈ C(D) and some t ≥ 1}. Suppose that Sl = ∅. Then,

for any b with bl < 0 and
∑

i bi = 0 with corresponding y such that yi(a) ≥ 0 for (i, a) ∈ S × A and
∑

i,a {δij − pij(a)}yi(a) = bj , j ∈ S, we have

0 > bl =
∑

i,a {δil − pil(a)}yi(a) =
∑

i,a δilyi(a) =
∑

a yl(a) ≥ 0,

which gives a contradiction. Hence, Sl 6= ∅. Select any b such that bj < 0, j ∈ Sl , bj > 0, j /∈ Sl and
∑

i bi = 0 with corresponding y, i.e. yi(a) ≥ 0 for (i, a) ∈ S ×A and
∑

i,a {δij − pij(a)}yi(a) = bj, j ∈ S.

Define y ∈ R
N by yi :=

∑

a yi(a), i ∈ S and a stationary policy π∞ by πia :=

{

yi(a)
yi

if yi > 0;

arbitrary if yi = 0.

Then, yi(a) = yi · πia, (i, a) ∈ S × A and yj −
∑

i pij(π)yi = bj , j ∈ S. Note that pij(π) = 0 for j ∈ Sl

and i /∈ Sl . Hence, we obtain yj −
∑

i∈Sl
pij(π)yi = bj, j ∈ Sl. Summing up this equation over the states

of Sl gives:
∑

j∈Sl
yj =

∑

j∈Sl
bj +

∑

i∈Sl
{∑j∈Sl

pij(π)}yi ≤
∑

j∈Sl
bj +

∑

i∈Sl
yi.

Hence,
∑

j∈Sl
bj ≥ 0, which gives the desired contradiction.

In a unichain model, we can choose arbitrary actions in transient states because under any action the system

eventually reaches the single recurrent class and achieves the maximal average reward. In a communicating

model, such an approach can result in nonoptimal policies because it could keep the system outside of S∗

indefinitely. Either one of the following approaches solves this problem.

256 CHAPTER 6. AVERAGE REWARD - SPECIAL CASES

1. Search procedure

Obtain an optimal solution x∗ of program (6.32). For i ∈ S∗ := {i | ∑a x
∗
i (a) > 0}, take for f∗(i) the

action which satisfies x∗i
(

f∗(i)
)

> 0. For the remaining states use the following search procedure.

while S∗ 6= S do

begin select i /∈ S∗, j ∈ S∗, f∗(i) ∈ A(i) satisfying pij

(

f∗(i)
)

> 0; S∗ := S∗ ∪ {i} end

By the communicating property this search procedure will find in each state of S\S∗ an action which drives

the system to S∗ with positive probability.

2. Determination of the y variables

Obtain an optimal solution x∗ of program (6.32). Select any β ∈ R
N with βj > 0, j ∈ S and

∑

j βj = 1.

Let bj := βj −
∑

a x
∗
j (a), j ∈ S. Then,

∑

j bj =
∑

j βj −
∑

j,a x
∗
j(a) = 1 − 1 = 0. Because the

model is communicating, by Theorem 6.24 there exists a y∗ such that y∗i (a) ≥ 0 for (i, a) ∈ S × A and
∑

i,a {δij −pij(a)}y∗i (a) = bj, j ∈ S. Notice that (x∗, y∗) is an optimal solution of the dual linear program

(5.29). If i ∈ S∗, take for f∗(i) the action which satisfies x∗i
(

f∗(i)
)

> 0; if i /∈ S∗, take for f∗(i) an action

which satisfies y∗i
(

f∗(i)
)

> 0. In Theorem 5.18 is shown that f∗ is an optimal policy.

Algorithm 6.10

Determination of an average optimal policy by linear programming (communicating case)

Input: Instance of an MDP.

Output: An optimal deterministic policy f∞ and the value φ.

1. Determine an extreme optimal solution x∗ of the linear program

max

∑

i,a

ri(a)xi(a)

∣

∣

∣

∣

∣

∣

∣

∑

i,a{δij − pij(a)}xi(a) = 0, j ∈ S
∑

i,a xi(a) = 1

xi(a) ≥ 0, i ∈ S, a ∈ A(i)

.

2. Select f∗(i) such that x∗i
(

f∗(i)
)

> 0, i ∈ S∗ := {i | ∑a x
∗
i (a) > 0}.

3. either go to step 4 (search procedure) or go to step 6 (determination y variables).

4. while S∗ 6= S do

begin select i /∈ S∗, j ∈ S∗, f∗(i) ∈ A(i) satisfying pij

(

f∗(i)
)

> 0; S∗ := S∗ ∪ {i} end

5. go to step 7.

6. (a) Select any β ∈ R
N with βj > 0, j ∈ S and

∑

j βj = 1;

(b) bj := βj −
∑

a x
∗
j (a), j ∈ S;

(c) Determine y∗ such that y∗i (a) ≥ 0, (i, a) ∈ S ×A and
∑

i,a {δij − pij(a)}y∗i (a) = bj, j ∈ S;

(d) Select f∗(i) such that y∗i
(

f∗(i)
)

> 0, i ∈ S\S∗;

(e) go to step 7.

7. f∞∗ is an average optimal policy and φ =
∑

i,a ri(a)x
∗
i (a). (STOP).

Example 6.13 (continued)

We apply Algorithm 6.10 to the model of Example 6.13 with βj = 1
3 , j = 1, 2, 3.

We execute both step 4 (search procedure) as step 6 (determination y variables).

6.3. THE COMMUNICATING CASE 257

Step 1:

We have already seen that the linear program (6.32) has as optimal solution x∗ satisfying:

x∗1(1) = x∗1(2) = x∗2(1) = x∗2(2) = x∗2(3) = x∗3(1) = 0; x∗3(2) = 1 with objective function value 4.

Step 2:

S∗ = {3}; f∗(3) = 2.

Step 4 (search procedure):

i = 2; j = 3; f∗(2) = 1; S∗ = {2, 3}.
i = 1; j = 2; f∗(1) = 1; S∗ = {1, 2, 3}.
Step 6 (determination y variables):

b1 = 1
3
, b2 = 1

3
, b3 = −2

3
. The system becomes (without the nonnegativity of the variables):

y1(1) − y2(2) = 1
3

− y1(1) + y2(1) + y2(2) − y3(1) = 1
3

− y2(1) + y3(1) = −2
3

with feasible solution y∗1(1) = 1
3 , y

∗
2(1) = 2

3 , y
∗
2(2) = y∗3(1) = 0. Hence, f∗(1) = f∗(2) = 1.

Step 6:

The optimal policy is f∗(1) = f∗(2) = 1 and f∗(3) = 2; the value φ = 4.

Remarks

1. It turns out that Algorithm 6.10 with the search procedure can also be used in the so-called optimal

unichain case, i.e. for all optimal stationary policies f∞ the associated Markov chain P (f) is unichain

(cf. Exercise 6.8).

2. This approach can also be used in the so-called weak unichain case , i.e. if for all optimal stationary

policies f∞ and all ergodic sets E(f) of P (f) with φi(f
∞) = maxj φj(f

∞) for all i ∈ E(f), there

exists a policy g∞ such that the states of S\E(f) are transient in the Markov chain induced by P (g)

(cf. Exercise 6.9).

3. Below we present an example for which Algorithm 6.10 with the search procedure fails. This example

shows that the optimal unichain case needs the requirement for all policies, and the weak unichain

case needs the requirement for all policies and all ergodic sets E(f).

Example 6.14

S = {1, 2, 3}; A(1) = {1, 2}, A(2) = {1}, A(3) = {1}; r1(1) = 1, r1(2) = 0, r2(1) = 0, r3(1) = 1, r3(2) = 0;

p11(1) = 1, p12(1) = p13(1) = 0; p11(2) = 0, p12(2) = 1, p13(2) = 0; p21(1) = 1, p22(1) = p23(1) = 0;

p31(1) = p32(1) = 0, p33(1) = 1; p31(2) = 1, p32(1) = p33(1) = 0.

There are two optimal policies: f∞1 with f1(1) = f1(2) = f1(3) = 1 and f∞2 with f2(1) = f2(2) = 1 and

f2(3) = 2. The policy P (f1) has two ergodic sets, so this MDP is not optimal unichain. Furthermore, for

E(f1) := {3} we have φi(f
∞
1) = maxj φj(f

∞
1) = 1 for all i ∈ E(f1), but there does not exists a policy

g∞ such that the states of S\E(f1) = {1, 2} are transient in the Markov chain induced by P (g). Hence,

this MDP is not weakly unichain. However, for the optimal policy f∞2 we have P (f2) is unichain with one

ergodic set E(f2) := {1} and the states of S\E(f2) = {2, 3} are transient under P (f2).

We will apply Algorithm 6.10 with the search procedure. The linear program for this model is

max

x1(1) + x3(1)

∣

∣

∣

∣

∣

∣

∣

x1(2) − x2(1) − x3(2) = 0

− x1(2) + x2(1) = 0

x1(1) + x1(2) + x2(1) + x3(1) + x3(2) = 1

.

An extreme optimal solution is x∗ with x∗1(1) = x∗1(2) = x∗2(1) = x∗3(2) = 0 and x∗3(1) = 1. Since S∗ = {3}
and S\S∗ is closed, Algorithm 6.10 with the search procedure fails: no optimal decision can be found in

state 1.

258 CHAPTER 6. AVERAGE REWARD - SPECIAL CASES

For models with the (weakly) unichain property not for all, but for some optimal policy, an optimal policy

can be found by repeatedly applying Algorithm 6.10 with the search procedure until in all states an action

has been determined. For the model in this example, after selecting f∗(3) = 1 and finding that the states

of S\S∗ are closed, we solve the MDP on the states of S\S∗ = {1, 2}. The linear program becomes

max

x1(1)

∣

∣

∣

∣

∣

∣

∣

x1(2) − x2(1) = 0

− x1(2) + x2(1) = 0

x1(1) + x1(2) + x2(1) = 1

.

The unique extreme optimal solution of this problem is x∗ with x∗1(1) = 1, x∗1(2) = x∗2(1) = 0. This

provides f∗(1) = 1. Finally, the search procedure gives f∗(2) = 1.

6.3.4 Value iteration

In section 5.9 we presented an algorithm for value iteration under the assumption that the value vector

is constant and the Markov chains P (f), f∞ ∈ C(D), are aperiodic. The last part of this assumption is

not a serious restriction: by a data transformation the original model can be transformed into a model in

which every Markov chain P (f), f∞ ∈ C(D), is aperiodic and has the same average reward as the original

Markov chain. In case of unichain models no better algorithm than Algorithm 5.10 is known.

6.3.5 Modified value iteration

Algorithm 6.3 is again used as the modified value iteration method for communicating MDPs. In Section

6.2.5 the convergence proof for the unichain case has been given in two stages. First, the unichain assump-

tion and the strong aperiodicity assumption were used to prove that span(xn) is bounded (Theorem 6.19).

In the second stage we used the boundedness of span(xn) and the property un ≥ φ for all n to prove that

ln ↑ φ and that φ is a limit point of the sequence {un} (Theorems 6.20 and 6.21). From these proofs it is

clear that the modified policy iteration method will convergence whenever span(xn) is bounded and the

value vector φ is independent of the initial state (if the strong aperiodicity assumption holds), which is the

case for communicating MDPs. Therefore, we have to show that the sequence {span(xn)} is also bounded

in the communicating case. Define M, Ln, Un and θ by:

M := maxi,a |ri(a)|; Ln := mini x
n
i ; Un := maxi x

n
i ; θ := mini,j,a {pij(a) | pij(a) > 0}.

Lemma 6.17

For all n = 0, 1, . . . , we have Ln+1 ≥ Ln − k ·M and Un+1 ≤ Un + k ·M .

Proof

xn+1 = T k
fn
xn = r(fn) + P (fn)r(fn) + · · ·+ P k−1(fn)r(fn) + P k(fn)xn

≥ −M · e−M · e− · · · −M · e+ P k(fn)xn ≥ −k ·M · e+ Ln · e.
Hence, Ln+1 ≥ Ln − k ·M . Similarly it can be shown that Un+1 ≤ Un + k ·M .

Lemma 6.18

If span(xn+m−1) ≥ span(xn), then for all l with n ≤ l ≤ n +m− 2, Ll+1 − Ll ≤ (2m− 3) · k ·M .

Proof

From Lemma 6.17 we obtain

6.3. THE COMMUNICATING CASE 259

span(xn+m−1) = Un+m−1 − Ln+m−1

=
∑n+m−2

j=n {(Uj+1 − Uj) − (Lj+1 − Lj)}+ Un − Ln

=
∑n+m−2

j=n (Uj+1 − Uj)−
∑n+m−2

j=n, j 6=l(Lj+1 − Lj) − (Ll+1 − Ll) + span(xn)

≤ (m− 1) · k ·M + (m− 2) · k ·M − (Ll+1 − Ll) + span(xn+m−1).

Hence, Ll+1 − Ll ≤ (2m− 3) · k ·M .

Lemma 6.19

If span(xn+m−1) ≥ span(xn) and xl+1
i ≤ c+ Ll+1 for some i ∈ S, some n ≤ l ≤ n +m− 2 and some

c ∈ R, then xl
j ≤ Ll + λ1−k · θ−1 · {c+ 2k ·M · (m− 1)} for all j ∈ S for which an action a ∈ A(i) with

pij(a) > 0 exists, where λ ∈ (0, 1) is the constant in the strong aperiodicity assumption (5.48).

Proof

Since (Uxl)i = maxa {ri(a) +
∑

j pij(a)x
l
j} ≥ −M +maxa {

∑

j pij(a)x
l
j}, for all i ∈ S and because

xl+1 = T k
fl
xl = T k−1

fl
(Tfl

xl) = T k−1
fl

(Uxl), we have

xl+1 ≥ −(k − 1) ·M · e+ P k−1(fl)(Ux
l)

≥ −(k − 1) ·M · e+ P k−1(fl){−M · e+maxf P (f)xl}
= −k ·M · e+ P k−1(fl) ·maxf P (f)xl}.

Notice that

P k−1(fl) ·maxf P (f)xl = P k−1(fl) · {maxf P (f)xl + Ll · e− Ll · e
)

}
= Ll · e+ P k−1(fl) · {maxf P (f)xl − Ll · e

}

≥ Ll · e+ λk−1 · {maxf P (f)xl − Lle
}

= (1− λk−1) · Ll · e+ λk−1 ·maxf P (f)xl.

Hence, c+ Ll+1 ≥ xl+1
i ≥ −k ·M + (1− λk−1) · Ll + λk−1 ·maxa

∑

j pij(a)x
l
j .

Then, by Lemma 6.18,

c + Ll + (2m− 3) · k ·M ≥ c+ Ll+1 ≥ −k ·M + (1− λk−1) ·Ll + λk−1 ·maxa

∑

j pij(a)x
l
j,

i.e. maxa

∑

j pij(a){xl
j − Ll} ≤ λ1−k · {c+ 2(m− 1) · k ·M}.

Take any j ∈ S for which an action a ∈ A(i) with pij(a) > 0 exists. Then, we have pij(a) ≥ θ and

θ·{xl
j−Ll} ≤ pij(a)·{xl

j−Ll} ≤ λ1−k ·{c+2(m−1)·k·M}, implying xl
j ≤ Ll+λ

1−k ·θ−1 ·{c+2(m−1)·k·M}.

Define c0 := 0 and cn := λ1−k · θ−1 · {cn−1 + 2k ·M · (N − 1)}, n = 1, 2, . . . , N − 1.

Lemma 6.20

If span(xn+N−1) ≥ span(xn), then span(xn) ≤ cN−1.

Proof

Let i ∈ S such that xn+N−1
i = Ln+N−1 and define the sets S(t), t = 0, 1, . . . , N − 1 by

S(0) := {i}; S(t + 1) := {j ∈ S | ∃ k ∈ S(t) and a ∈ A(k) such that pkj(a) > 0}, t = 0, 1, . . . , N − 2.

From pjj(a) ≥ λ > 0, (j, a) ∈ S × A, it follows that S(t) ⊆ S(t + 1). Furthermore, it follows from the

communicatingness that S(N − 1) = S. Then, Lemma 6.19 with c := c0 = 0, m := N and l := n+N − 2

implies that xn+N−2
j − Ln+N−2 ≤ c1 for all j ∈ S(1). Next, again by Lemma 6.19 with c = c1, m = N

260 CHAPTER 6. AVERAGE REWARD - SPECIAL CASES

and l = n + N − 3, we obtain xn+N−3
j − Ln+N−3 ≤ c2 for all j ∈ S(2). Continuing in this way, we get

xn
j − Ln ≤ cN−1 for all j ∈ S(N − 1) = S. Hence, span(xn) = maxxn

j −minxn
j = maxxn

j − Ln ≤ cN−1.

Finally, we prove in the next theorem that the sequence {span(xn)} is bounded.

Theorem 6.25

span(xn) ≤ max{span(x0) + 2k(N − 2)M, cN−1 + 2k(N − 1)M}, n = 0, 1,

Proof

By Lemma 6.17, we have

span(xn) ≤ span(xn−1)+ 2kM ≤ · · · ≤ span(x0)+ 2knM ≤ span(x0) +2k(N − 2)M, n = 0, 1, . . . , N − 2.

Consequently,

span(xn) ≤ max{span(x0) + 2k(N − 2)M, cN−1 + 2k(N − 1)M} for n = 0, 1, . . . , N − 2. (6.33)

Furthermore, also by Lemma 6.17, we obtain

span(xn+N−1) = Un+N−1 − Ln+N−1

≤ (Un+N−2 + kM)− (Ln+N−2 − kM) = Un+N−2 − Ln+N−2 + 2k

≤ (Un+N−3 + kM)− (Ln+N−3 − kM) + 2kM = Un+N−3 − Ln+N−3 + 4kM

≤ · · · ≤ Un − Ln + 2k(N − 1)M = span(xn) + 2k(N − 1)M.

If span(xn+N−1) ≥ span(xn), then by Lemma 6.20 span(xn) ≤ cN−1, and consequently

span(xn+N−1) ≤ cN−1 + 2k(N − 1) ·M , implying

span(xn+N−1) ≤ max{span(xn), cN−1 + 2k(N − 1)M}, n = 0, 1, (6.34)

For any n ≥ N − 1, we write n = q(N − 1) + p for some q ≥ 1 and some 0 ≤ p ≤ N − 2.

Then, by (6.34) and (6.33), we obtain

span(xn) ≤ max{span(xp), cN−1 + 2k(N − 1)M}
≤ max{span(x0) + 2k(N − 2)M, cN−1 + 2k(N − 1)M}.

The proofs for the modified policy iteration method in the unichain and the communicating case depend

heavily on the strong aperiodicity assumption. One might wonder whether only aperiodicity, as in the stan-

dard value iteration method, would not suffice. The following example demonstrates one of the problems

one can encounter under the weaker assumption that all Markov chains P (f), f∞ ∈ C(D), are aperiodic

and unichain.

Example 6.15

S = {1, 2, 3, 4, 5, 6, 7}; A(1) = {1}; A(2) = {1}; A(3) = {1, 2}; A(4) = {1, 2}; A(5) = {1}; A(6) = {1, 2};
A(7) = {1}. There are 8 different policies (only in the states 3, 4 and 6 there are two choices).

The transition probabilities are (we give only the strictly positive probabilities):

p12(1) = p13(1) = 1
2 ; p23(1) = 1; p33(1) = 1; p34(2) = 1; p41(1) = 1; p45(2) = p46(2) = 1

2 ; p56(1) = 1;

p67(1) = 1; p63(2) = 1; p73(1) = 1. It can easily be verified that all policies are unichain and aperiodic.

The rewards are: r1(1) = 2; r2(1) = 4; r3(1) = 4; r3(2) = 6; r4(1) = 4; r4(2) = 6; r5(1) = 6; r6(1) = 2;

r6(2) = 0; r7(1) = 0.

Let f∞1 be the policy that takes in state 3 action 1, in state 4 action 2 and in state 6 action 1;

6.4. BIBLIOGRAPHIC NOTES 261

let f∞2 be the policy that takes in state 3 action 2, in state 4 action 1 and in state 6 action 2;

let f∞3 be the policy that takes in state 3 action 2, in state 4 action 2 and in state 6 action 2.

Then, it can be verified that φ(f∞1) = φ(f∞2) = 4 and φ(f∞3) = 30
7

(this is the optimal policy).

Choose x0 = (1, 4, 2, 0, 0, 0, 0) and take k = 2.

Iteration 1:

Tx0 = Tf1x
0 = (5, 6, 6, 6, 6, 2, 2); l = 2; u = 6; x1 = T 2

f1
x0 = (8, 10, 10, 10, 8, 4, 6).

Iteration 2:

Tx1 = Tf2x
1 = (12, 14, 16, 12, 10, 10, 10); l = 2; u = 6; x2 = T 2

f2
x1 = (17, 20, 18, 16, 16, 16, 16).

Since x2 = x0 + 16e cycling will occur between the two nonoptimal policies f∞1 and f∞2 .

6.4 Bibliographic notes

In the irreducible and unichain case the solution of the optimality equation (6.1) can also be exhibited as

the fixed-point of an N -step contraction (cf. Federgruen, Schweitzer and Tijms ([81]).

The policy iteration algorithm 6.1 was introduced by Howard ([134]), where he demonstrated finite

convergence under the irreducibility assumption. Various treatments of policy iteration in special cases

can also be found in Schweitzer ([255]), Denardo ([61]) and Lassere ([178]). Haviv and Puterman ([114])

have discussed the communicating policy algorithm 6.9.

The pioneering work in solving undiscounted MDPs by linear programming was made by De Ghellinkck

([51]) and Manne ([193]), who independently formulated the linear programs (6.3) and (6.4) for the ir-

reducible case. The relation between the discounted and undiscounted linear programs is described in

Nazareth and Kulkarni ([203]. For the unichain case we refer to Denardo and Fox ([64], Denardo ([58]),

Derman ([69]) and Kallenberg ([148]). The iterative procedure, with a sequence of unichain linear pro-

grams, to determine an average optimal policy regardless the chain structure, was developed by Denardo

([58]). In the irreducible and unichain case also a suboptimality test can be implemented (cf. Hastings

([113]) and Lasserre ([177]). Bello and Raino (citeBello and Riano 06) have built the package JMDP, an

object-oriented framework to model and solve discounted and unichained average MDPs in Java. In this

package LP-solvers Xpress-MP (see [49]) and QSopt (see [6]) are used. Kallenberg ([148]) and Filar and

Schultz ([97]) have developed the linear programming approach for communicating models.

The section on value iteration is taken from Puterman ([227]). Related work is done by Hu and Wu

([136]). Van der Wal ([296] and [297]) analyzed the modified policy iteration method for the irreducible,

unichain and communicating case.

6.5 Exercises

Exercise 6.1

Show that span (x) ≥ span (x− y) − span (y) for every x and y.

Exercise 6.2

Let P be a unichain Markov chain with stationary distribution π and let x ≥ Px or x ≤ Px.
Prove that xi = πTx for every recurrent state i.

262 CHAPTER 6. AVERAGE REWARD - SPECIAL CASES

Exercise 6.3

Consider the following model: S = {1, 2, 3}, A(1) = A(2) = A(3) = {1, 2}.
r1(1) = 1, r1(2) = 0, r2(1) = 2, r2(2) = 1, r3(1) = 1, r3(2) = 2. p11(1) = 1

2 , p12(1) = 1
4 , p13(1) = 1

4 ;

p11(2) = 1
4 , p12(2) = 1

4 , p13(2) = 1
2 ; p21(1) = 1

2 , p22(1) = 1
2 , p23(1) = 0; p21(2) = 0, p22(2) = 1

2 , p23(2) = 1
2 ;

p31(1) = 1
2
, p32(1) = 0, p33(1) = 1

2
; p31(2) = 0, p32(2) = 1

2
, p33(2) = 1

2
.

a. Show that this model is unichain, communicating, but not irreducible.

b. Formulate the optimality equation (6.1).

c. Determine an optimal policy by the Policy Iteration Algorithm 6.4, starting with policy f∞

for which f(1) = f(2) = f(3) = 1.

Exercise 6.4

Consider the model of Exercise 6.3. Formulate the primal and dual linear program to solve this unichain

model. Apply Algorithm 6.6 to determine the value and an optimal policy.

Exercise 6.5

Consider the model of Exercise 6.3. Execute three iterations of the modified policy iteration algorithm 6.3

with k = 2 and x0 = (1, 1, 1).

Exercise 6.6

For the standard method of value iteration (see section 5.9) the series {xn−n · φ} is bounded (see Lemma

5.8), even if all policies are periodic. One might wonder whether in the modified policy iteration the series

{xn − nk · φ} is bounded.

Let S = {1, 2}; A(1) = {1, 2}, A(2) = {1}; r1(1) = 4, r1(2) = 3, r2(1) = 0;

p11(1) = 0, p12(1) = 1; p11(2) = 1, p12(2) = 0; p21(1) = 1, p22(2) = 0.

Consider the modified policy iteration algorithm with k = 2 and x0 = (0, 0).

Show that xn = (4n, 4n) and that {xn − nk · φ} is unbounded.

Exercise 6.7

Assume there is a state, say state 0, and a scalar α ∈ (0, 1) such that pi0(a) ≥ 1− α for all (i, a) ∈ S ×A.

So, the model is unichain. Consider a new decision process with identical state and action spaces and

identical rewards but with transition probabilities given by

pij(a) :=

{

1
α
pij(a) j 6= 0;

1
α
{pi0(a) − (1 − α)} j = 0.

Show that the optimality equation of the α-discounted new process is equivalent to the optimality equation

(6.1).

Exercise 6.8

Consider an MDP with the optimal unichain assumption, i.e. for each optimal stationary policy f∞ the

associated Markov chain P (f) is unichain. For this model the following algorithm is proposed.

1. Determine an optimal solution x∗ of the dual linear program

max

∑

i,a

ri(a)xi(a)

∣

∣

∣

∣

∣

∣

∣

∣

∑

i,a{δij − pij(a)}xi(a) = 0, j ∈ S
∑

i,a xi(a) = 1

xi(a) ≥ 0, i ∈ S, a ∈ A(i)

.

2. Choose f∗(i) such that x∗i
(

f∗(i)
)

> 0, i ∈ S∗ := {i | ∑a x
∗
i (a) > 0}.

6.5. EXERCISES 263

3. while S∗ 6= S do

begin select i /∈ S∗, j ∈ S∗, f∗(i) ∈ A(i) such that pij

(

f∗(i)
)

> 0; S∗ := S∗ ∪ {i} end

4. f∞∗ is an average optimal policy and φ =
∑

i,a ri(a)x
∗
i (a) (STOP).

Prove the correctness of this algorithm.

Exercise 6.9

Consider an MDP with the weak unichain assumption, i.e. if all for optimal stationary policies f∞ and

all ergodic sets E(f) of P (f) with φi(f
∞) = maxj φj(f

∞) for all i ∈ E(f), there exists a policy g∞ such

that the states of S\E(f) are transient in the Markov chain induced by P (g). Show that for this model

the following algorithm is correct.

1. Determine an optimal solution x∗ of the dual linear program

max

∑

i,a

ri(a)xi(a)

∣

∣

∣

∣

∣

∣

∣

∣

∑

i,a{δij − pij(a)}xi(a) = 0, j ∈ S
∑

i,a xi(a) = 1

xi(a) ≥ 0, i ∈ S, a ∈ A(i)

.

2. Choose f∗(i) such that x∗i
(

f∗(i)
)

> 0, i ∈ S∗ := {i | ∑a x
∗
i (a) > 0}.

3. while S∗ 6= S do

begin select i /∈ S∗, j ∈ S∗, f∗(i) ∈ A(i) such that pij

(

f∗(i)
)

> 0; S∗ := S∗ ∪ {i} end

4. f∞∗ is an average optimal policy and φ =
∑

i,a ri(a)x
∗
i (a) (STOP).

264 CHAPTER 6. AVERAGE REWARD - SPECIAL CASES

Chapter 7

More sensitive optimality criteria

7.1 Introduction

7.2 Equivalence between n-discount and n-average optimality

7.3 Stationary optimal policies and optimality equations

7.4 Lexicographic ordering of Laurent series

7.5 Policy iteration for n-discount optimality

7.6 Linear programming and n-discount optimality (irreducible case)

7.6.1 Avarage optimality

7.6.2 Bias optimality

7.6.3 n-discount optimality

7.7 Blackwell optimality and linear programming

7.8 Bias optimality and policy iteration (unichain case)

7.9 Bias optimality and linear programming

7.9.1 The general case

7.9.2 The unichain case

7.10 Turnpike results and bias optimality (unichain case)

7.11 Overtaking, average overtaking and cumulative overtaking optimality

7.12 A weighted combination of discounted and average rewards

7.13 A sum of discount factors

7.14 Bibliographic notes

7.15 Exercises

7.1 Introduction

In the two previous chapters we have considered the long-run average reward criterion. This criterion

ignores transient rewards. The following examples shows why this is (sometimes) undesirable.

Example 7.1

S = {1, 2}; A(1) = {1, 2}, A(2) = {1}; r1(1) = 1000, r1(2) = 0, r2(1) = 0;

p11(1) = 0, p12(1) = 1; p11(2) = 0, p12(1) = 1; p21(1) = 0, p22(1) = 1.

This model has two deterministic policies and both policies are average optimal with average reward 0.

However, the policy which chooses in state 1 the first action has a total reward of 1000 and would be

preferred. The average reward criterion ignores this distinction.

265

266 CHAPTER 7. MORE SENSITIVE OPTIMALITY CRITERIA

We address this deficiency of the average reward criterion by more sensitive optimality criteria, the so-

called n-discount optimality and the n-average optimality. We may restrict ourselves in this chapter to

policies f∞ ∈ C(D) by the following arguments:

1. We have shown the existence of a deterministic Blackwell optimal policy.

2. We will show in this chapter (see Lemma 7.2) that a Blackwell optimal policy is n-discount optimal for

any n ≥ −1.

3. It can also be shown that n-discount optimality is equivalent to n-average optimality for all n ≥ −1.

In section 1.2.2, the concept of n-discount optimality for n = −1, 0, 1, . . . is defined as

lim
α↑1

(1 − α)−n{vα(f∞∗)− vα} = 0. (7.1)

By the definition of n-discount optimality the following lemma is obvious.

Lemma 7.1

If a policy is n-discount optimal, then it is m-discount optimal for m = −1, 0, . . . , n.

Lemma 7.2

Suppose that f∞0 is a Blackwell optimal policy. Then, f∞0 is n-discount optimal for any n ≥ −1.

Proof

Take any n ≥ −1. Since f∞0 is a Blackwell optimal policy, we have vα(f∞0) = vα for some 0 < α0 < 1

and for all α ∈ [α0, 1). Hence, (1 − α)−n{vα(f∞0) − vα} = 0 for all α ∈ [α0, 1). Therefore, we have

limα↑1 (1− α)−n{vα(f∞0)− vα} = 0, i.e. f∞0 is n-discount optimal.

Also in section 1.2.2, the concept of n-average optimality for n = −1, 0, 1, . . . is defined: a policy R∗, is

n-average optimal if

lim inf
T→∞

1

T
{vn,T (R∗) − vn,T (R)} ≥ 0 for every policy R, (7.2)

where the vector vn,T (R) is defined by

vn,T (R) :=

{

vT (R) for n = −1
∑T

t=1 v
n−1,t(R) for n = 0, 1, . . .

(7.3)

So, (−1)-average optimality is the same as average optimality.

Lemma 7.3

If a policy is n-average optimal, then it is m-average optimal for m = −1, 0, . . . , n.

Proof

The proof is left to the reader (see Exercise 7.1).

7.2 Equivalence between n-discount and n-average optimality

Sladky ([273]) has shown that a policy R∗ is n-average optimal policy if and only if R∗ is n-discount

optimal. We will show in this section this result only for n = −1 and n = 0 in which we restrict ourselves

to deterministic policies. In the case of arbitrary policies the notation will be more complicated; for n ≥ 1

the analysis is much more sophisticated.

7.2. EQUIVALENCE BETWEEN N -DISCOUNT AND N -AVERAGE OPTIMALITY 267

For n = −1, the criteria (−1)-discount optimality and (−1)-average optimality become

limα↑1 (1− α){vα(f∞∗) − vα} = 0 and φ(f∞∗) ≥ φ(f∞) for every f∞ ∈ C(D),

respectively. The following theorem shows that average optimality is equivalent to (−1)-discount optimal-

ity.

Theorem 7.1

Average optimality is equivalent to (−1)-discount optimality.

Proof

In Theorem 5.8, part (2), is shown that φ(f∞) = limα↑1 (1 − α)vα(f∞) for all f∞ ∈ C(D). For a

Blackwell optimal policy f∞0 , we obtain φ = limα↑1 (1 − α)vα. Let f∞∗ be (−1)-discount optimal, then

0 = limα↑1 (1− α){vα(f∞∗) − vα} = φ(f∞∗) − φ, i.e. φ(f∞∗) is average optimal.

Conversely, let f∞∗ be an average optimal policy, and let f∞0 be Blackwell optimal. Then, we can write

0 ≥ limα↑1 (1− α){vα(f∞∗)− vα} = limα↑1 (1− α){vα(f∞∗)− vα(f∞0)} = φ(f∞∗)− φ(f∞0) ≥ 0,

i.e. limα↑1 (1− α){vα(f∞∗)− vα} = 0: f∞∗ is (−1)-discount optimal.

For n = 0, f∞∗ is 0-discount optimal and 0-average optimal if

limα↑1 {vα(f∞∗) − vα} = 0 and lim infT→∞
1
T

∑T
t=1{vt(f∗)− vt(f)} ≥ 0 for all f∞ ∈ C(D),

respectively. The following theorem shows that 0-average optimality is equivalent to 0-discount optimality.

This criterion is also called bias optimality.

Theorem 7.2

0-average optimality is equivalent to 0-discount optimality.

Proof

Suppose that f∞∗ is 0-average optimal, and let f∞0 be a Blackwell optimal policy. Then, both f∞∗ and f∞0
are average optimal policies. In Theorem 5.8 part (3) we have shown

vt(f∞) =
∑t

s=1 P
s−1(f)r(f) = t · φ(f∞) + u0(f) − P t(f)D(f)r(f), f∞ ∈ C(D).

Hence,

0 ≤ lim infT→∞
1
T

∑T
t=1{vt(f∗) − vt(f)}

= lim infT→∞
1
T

∑T
t=1

{

{t · φ(f∞∗) + u0(f∗) − P t(f∗)D(f∗)r(f∗)}−
{t · φ(f∞0) + u0(f0) − P t(f0)D(f0)r(f0)}

}

= lim infT→∞
{

1
2
(T + 1) · {φ(f∞∗)− φ(f∞0)}+ {u0(f∗)− u0(f0)}−

1
T

∑T
t=1

{

P t(f∗)D(f∗)r(f∗)− P t(f0)D(f0)r(f0)
}

}

= {u0(f∗)− u0(f0)}+ lim infT→∞
1
T

∑T
t=1

{

P t(f0)D(f0)r(f0)− P t(f∗)D(f∗)r(f∗)
}

.

Since limT→∞
1
T

∑T
t=1 P

t(f)D(f) = P ∗(f)D(f) = 0 for every f∞ ∈ C(D), we obtain 0 ≤ u0(f∗)−u0(f0).

Then, by the Laurent expansion, we can write

0 ≥ limα↑1 {vα(f∞∗)− vα} = limα↑1){vα(f∞∗) − vα(f∞0)}
= limα↑1 (1− α)−1{φ(f∞∗)− φ(f∞0)}+ {u0(f∗)− u0(f0)} = u0(f∗) − u0(f0) ≥ 0.

Hence, limα↑1 {vα(f∞∗)− vα} = 0, i.e. f∞∗ is 0-discount optimal.

Conversely, suppose that limα↑1 {vα(f∞∗) − vα} = 0. Take any f∞ ∈ C(D). Then, by the Laurent

expansion, φ(f∞∗) ≥ φ(f∞) and if φi(f
∞
∗) = φi(f

∞) for some i ∈ S, then u0
i (f∗) ≥ u0

i (f). Hence, we can

write

268 CHAPTER 7. MORE SENSITIVE OPTIMALITY CRITERIA

lim infT→∞
1
T

∑T
t=1{vt(f∞∗) − vt(f∞)} =

lim infT→∞
{

1
2 (T + 1){φ(f∞∗) − φ(f∞)}+ {u0(f∗) − u0(f0)}−

1
T

∑T
t=1

{

P t(f∗)D(f∗)r(f∗) − P t(f0)D(f0)r(f0)
}

}

=

lim infT→∞
{

1
2 (T + 1){φ(f∞∗) − φ(f∞)}+ {u0(f∗) − u0(f0)}

}

≥ 0,

i.e. f∞∗ is 0-average optimal.

Example 7.2

S = {1, 2, 3}; A(1) = {1, 2}, A(2) = {1}, A(3) = {1}; r1(1) = 1, r1(2) = 2, r2(1) = 1, r3(1) = 0;

p11(1) = 0, p12(1) = 1, p13(1) = 0; p11(2) = p12(2) = 0, p13(2) = 1; p21(1) = p22(1) = 0, p23(1) = 1;

p31(1) = p32(1) = 0, p33(1) = 1.

This model has two deterministic policies. If we look at the discounted reward, for f∞1 with f1(1) = 1,

we have vα
1 (f∞1) = 1 + α, vα

2 (f∞1) = 1 and vα
3 (f∞1) = 0; for f∞2 with f2(1) = 2, we obtain vα

1 (f∞2) = 2,

vα
2 (f∞1) = 1 and vα

3 (f∞1) = 0. Hence, vα = (2, 1, 0) and f∞2 is α-discounted optimal for all discount factors

α ∈ [0, 1). For f∞1 , we have limα↑1 (1− α)−n{vα(f∞1) − vα} = limα↑1 (1− α)−n(α− 1, 0, 0).

For n = −1 and n = 0 this is equal to (0, 0, 0), for n = 1 the limit is (−1, 0, 0) and for n ≥ 1, this limit is

the vector (−∞, 0, 0). Therefore, f∞2 is n-discount optimal for all n = −1, 0, 1, . . . , and f∞1 is n-discount

optimal only for n = 0 and n = 1.

7.3 Stationary optimal policies and optimality equations

In this section we use the Laurent series expansion to interpret the n-discount optimality within the class

of stationary policies. Furthermore, we provide a system of optimality equations which characterize a

stationary n-discount optimal policy. First, we present a lemma which shows that n-discount optimality

as defined in (7.1) is equivalent to

lim inf
α↑1

(1− α)−n{vα(f∞∗) − vα(f∞} ≥ 0 for all f∞ ∈ C(D). (7.4)

Lemma 7.4

The definitions (7.1) and (7.4) for n-discount optimality are equivalent.

Proof

Assume that f∞∗ is n-discount optimal in the sense of (7.1). Take an arbitrary policy f∞ ∈ C(D). Since

vα(f∞∗) ≤ vα, we have (1− α)−n{vα(f∞∗) − vα(f∞} ≥ (1− α)−n{vα(f∞∗)− vα}, α ∈ (0, 1). Hence,

lim infα↑1 (1− α)−n{vα(f∞∗) − vα(f∞} ≥ lim infα↑1 (1− α)−n{vα(f∞∗)− vα} = 0.

Conversely, suppose that f∞∗ satisfies (7.4). Let f∞0 be a Blackwell optimal policy. Then, we can write

0 ≤ lim infα↑1 (1− α)−n{vα(f∞∗) − vα(f∞0 } = lim infα↑1 (1− α)−n{vα(f∞∗)− vα} ≤ 0.

Therefore, limα↑1 (1− α)−n{vα(f∞∗) − vα} = 0.

Instead of the discount factor α we can also use the interest rate ρ, where the relation between the two

are given by α := 1
1+ρ or ρ := 1−α

α . Since limα↑1 (1− α)−n vα(f∞) = limα↑1 (1−α
α)−n vα(f∞) and α ↑ 1 if

and only if ρ ↓ 0, the concept of n-discount optimality is equivalent to

lim inf
ρ↓0

ρ−n{vρ(f∞∗)− vρ(f∞)} ≥ 0 for all f∞ ∈ C(D).

7.3. STATIONARY OPTIMAL POLICIES AND OPTIMALITY EQUATIONS 269

In Theorem 5.10 we have shown that αvα(f∞) =
∑∞

k=−1 ρ
kuk(f) for 0 < ρ ≤ ‖D(f)‖−1 . Hence, as

function of the interest rate ρ, the total expected discounted reward is written as

vρ(f∞) = (1 + ρ) ·
∞
∑

k=−1

ρkuk(f). (7.5)

Let F∞ := {f∞0 | f∞0 is Blackwell optimal} and Fn := {f∞∗ | f∞∗ is n-discount-optimal} for n ≥ −1. We

have seen that Fn+1 ⊆ Fn for n = −1, 0, 1, . . . and that f∞∗ ∈ F−1 if and only if u−1(f∗) ≥ u−1(f) for all

f∞ ∈ C(D). In the next theorem is shown that Fn = {f∞∗ ∈ Fn−1 | un(f∗) ≥ un(f), f∞ ∈ Fn−1} for all

n ≥ 0 and that F∞ = ∩∞n=−1 Fn.

Theorem 7.3

Fn = {f∞∗ ∈ Fn−1 | un(f∗) ≥ un(f) for all f∞ ∈ Fn−1} for all n ≥ 0 and F∞ = ∩∞n=−1 Fn.

Proof

We use induction on n. Let f∞∗ ∈ F0, i.e. lim infρ↓0 {vρ(f∞∗) − vρ(f∞)} ≥ 0 for all f∞ ∈ C(D). Take an

arbitrary policy f∞ ∈ F−1. Then, f∞∗ and f∞ are both average optimal policies, i.e. u−1(f∗) = u−1(f).

From (7.5) it follows that

vρ(f∞∗)− vρ(f∞) = (1 + ρ) ·
{

{u0(f∗) − u0(f)} +

∞
∑

k=1

ρk{uk(f∗)− uk(f)}
}

. (7.6)

Hence, 0 ≤ lim infρ↓0 {vρ(f∞∗) − vρ(f∞)} = u0(f∗)− u0(f). Consequently, u0(f∗) ≥ u0(f).

Conversely, suppose that f∞∗ ∈ F−1 and that u0(f∗) ≥ u0(f) for all f∞ ∈ F−1. Notice that

lim infρ↓0 {vρ(f∞∗)− vρ(f∞)} = lim infρ↓0
{

1
ρ
{u−1(f∗)− u−1(f)} + {u0(f∗)− u0(f)}

}

.

Since u−1(f∗) ≥ u−1(f), f∞ ∈ C(D) and u0(f∗) ≥ u0(f) for all f∞ ∈ F−1, we have

lim infρ↓0 {vρ(f∞∗) − vρ(f∞)} ≥ 0 for all f∞ ∈ C(D),

i.e. f∞∗ is 0-discount optimal. The proof of the induction step follows by similar arguments and is left to

the reader.

Suppose that f∞∗ is Blackwell optimal. Then, by Lemma 7.2, f∞∗ is n-discount optimal for n = −1, 0, 1,

So, f∞∗ ∈ ∩∞n=−1 Fn. Finally, let f∞∗ ∈ ∩∞n=−1 Fn. Select an arbitrary f∞ ∈ C(D). If f∞ ∈ ∩∞n=−1 Fn,

then un(f∗) = un(f) for n = −1, 0, 1, . . . , and consequently vρ(f∞∗) = vρ(f∞) for all ρ > 0. In case

f∞ /∈ ∩∞n=−1 Fn, then f∞ /∈ Fn for some n and let n the minimal integer for which this holds. Then,

vρ(f∞∗)− vρ(f∞) = (1 + ρ)ρn ·
{

[un(f∗) − un(f)] +
∑∞

k=n+1 ρ
k · [uk(f∗)− uk(f)]

}

with un(f∗) > un(f).

Hence, we can find a ρ(f) such that vρ(f∞∗) ≥ vρ(f∞) for 0 < ρ ≤ ρ(f). Since C(D) is finite, there exists

a ρ∗ such that vρ(f∞∗) ≥ vρ(f∞) for 0 < ρ ≤ ρ∗ for all f∞ ∈ C(D), i.e. f∞∗ is Blackwell optimal.

Remarks

1. f∞∗ ∈ Fn if and only if
(

u−1(f), u0(f), . . . , un(f)
)

is lexicographically the largest vector over the set

vectors
(

u−1(g), u0(g), . . . , un(g)
)

where g∞ ∈ C(D).

2. Suppose that, for some n ≥ −1, Fn contains a single policy f∞∗ . Then, f∞∗ is a Blackwell optimal

policy.

Next, we will derive the optimality equations by using the optimality properties of a Blackwell optimal

policy. Suppose that f∞0 is a Blackwell optimal policy. Then, by definition, f∞0 is discounted optimal for

each ρ ∈ (0, ρ∗) for some ρ∗. Hence, f∞0 satisfies

maxf∞∈C(D)

{

r(f) +
{ 1

1 + ρ
· P (f) − I

}

vα(f∞0)
}

= 0.

270 CHAPTER 7. MORE SENSITIVE OPTIMALITY CRITERIA

Noting that 1
1+ρ · P (f)− I = 1

1+ρ · {[P (f)− I]− ρ · I} and that vα(f∞0) has the Laurent series expansion

for ρ near to 0, we obtain the equation

maxf∞∈C(D)

{

r(f) +
[

P (f) − I − ρ · I
]

∞
∑

k=−1

ρkuk(f0)
}

= 0.

Rearranging terms yields

maxf∞∈C(D)

{

[P (f) − I]u−1(f0)
ρ + {r(f)− u−1(f0) + [P (f) − I]u0(f0)} +

∑∞
k=1 ρ

k{−uk−1(f0) + [P (f)− I]uk(f0)}
}

= 0.

For the above equality to hold for all ρ near 0 it requires that:

1. [P (f)− I]u−1(f0) ≤ 0 for all policies f∞ ∈ C(D).

2. For those f for which {[P (f)− I]u−1(f0)}i = 0 for some i ∈ S, we have the requirement

ri(f) − u−1
i (f0) + {P (f)u0(f0)}i − u0

i (f0) ≤ 0.

3. For those f for which {[P (f)− I]u−1(f0)}i = 0 and {r(f)−u−1(f0)+ [P (f)− I]u0(f0)}i = 0 for some

i ∈ S, we have −u0
i (f0) + [P (f)u1(f0)− I]i ≤ 0.

In this way one can formulate the requirements.

This observation shows that the following system of inductively defined equations characterizes the coeffi-

cients of the Laurent series expansion of a Blackwell optimal policy:

maxa∈A(i)

{

∑

j

pij(a)x
−1
j − x−1

i

}

= 0. (7.7)

maxa∈A(−1)(i,x−1)

{

ri(a) +
∑

j

pij(a)x
0
j − x0

i − x−1
i

}

= 0 (7.8)

maxa∈A(k−1)(i,x−1,x0,...,xk−1)

{

∑

j

pij(a)x
k
j − xk

i − xk−1
i

}

= 0, k = 1, 2, . . . (7.9)

where

A(−1)(i, x−1) := argmaxa∈A(i)

{∑

j pij(a)x
−1
j − x−1

i

}

;

A(0)
(

i, x−1, x0
)

:= argmaxa∈A(−1)(i,x−1)

{

ri(a) +
∑

j pij(a)x
0
j − x0

i − x−1
i

}

;

A(k−1)
(

i, x−1, x0, . . . , xk−1
)

:= argmaxa∈A(k−2)(i,x−1,x0,...,xk−2)

{∑

j pij(a)x
k−1
j − xk−1

i − xk−2
i

}

, k ≥ 2.

We refer to this system as the sensitive discount optimality equations and to the individual equations as

the (−1)th equation, 0th equation, 1th equation, etc. The sets of maximizing decision rules depend on the

sequence of the xk and consequently the system of equations is highly non-linear. Observe that the (−1)th

and the 0th equation are the multichain average reward optimality equations. From the results of Chaper

5 it follows that if x−1 and x0 satisfy these two equations and f(i) ∈ A(−1)(i, x−1) for all i ∈ S, then

x−1 = φ and f∞ is an average optimal policy. We generalize this observation to n-discount optimality

below.

Theorem 7.4

If the vector (x−1, x0, . . . , xn) satisfies the following linear system

{I − P (f)}x−1 = 0

x−1 + {I − P (f)}x0 = r(f)

xk−1 + {I − P (f)}xk = 0, 1 ≤ k ≤ n
then xk = uk(f) for k = −1, 0, 1, . . . , n − 1 and if, in addition, either −xn + {I − P (f)}xn+1 = 0 or

P ∗(f)xn = 0, then xn = un(f).

7.4. LEXICOGRAPHIC ORDERING OF LAURENT SERIES 271

Proof

Notice that −xn + {I − P (f)}xn+1 = 0 implies P ∗(f)xn = 0. So, it is sufficient to consider the case

with P ∗(f)xn = 0. It is straightforward to see that
(

u−1(f), u0(f), . . . , un(f)
)

is a solution. Consider an

arbitrary solution
(

x−1, x0, . . . , xn
)

. Then, {I −P (f)}x−1 = 0 implies x−1 = P ∗(f)x−1, and consequently

(from the second equation of the system), we get x−1 = P ∗(f)r(f) = u−1(f). From the third equation, for

k = 1, it follows that P ∗(f)x0 = 0, and from the second equation, {I−P (f)+P ∗(f)}x0 = {I−P ∗(f)}r(f).
Therefore, we have

x0 = {I − P (f) + P ∗(f)}−1{I − P ∗(f)}r(f) = {D(f) + P ∗(f)}{I − P ∗(f)}r(f) = D(f)r(f) = u0(f).

By induction on k, we will show that xk = uk(f), k ≥ 1 (for k ≤ 0 this is shown above). Assume that

x−1 = u−1(f), x0 = u0(f), . . . , xk = uk(f). Since xk + {I −P (f)}xk+1 = 0 and P ∗(f)xk+1 = 0, we obtain

xk+1 = −{I − P (f) + P ∗(f)}−1uk(f) = −{D(f) + P ∗(f)}(−1)k{D(f)}k+1r(f)

= (−1)k+1{D(f)}k+2r(f) = uk+1(f).

7.4 Lexicographic ordering of Laurent series

Let, for 0 < ρ ≤ ‖D(f)‖−1 , the matrix Hρ(f) be defined by

Hρ(f) := (1 + ρ) ·
{

P ∗(f) +

∞
∑

k=0

(−1)kρk+1Dk+1(f)
}

. (7.10)

Theorem 7.5

(1) Hρ(f) = ρ ·
{

I − 1
1+ρP (f)

}−1
.

(2) Hρ(f)r(f) = ρ · vρ(f∞).

(3) ρ · {vρ(f∞)− x} = Hρ(f)
{

r(f) + 1
1+ρP (f)x − x

}

for every x ∈ R
N .

Proof
(1)

{

I − 1
1+ρP (f)

}

Hρ(f) =
{

(1 + ρ)I − P (f)
}

1
1+ρH

ρ(f)

= {(1 + ρ)I − P (f)}
{

P ∗(f) +
∑∞

k=0 (−1)kρk+1Dk+1(f)
}

= ρ ·
{

P ∗(f) +
∑∞

k=0 (−1)kρk+1Dk+1(f)
}

+

{I − P (f)}
{

P ∗(f) +
∑∞

k=0 (−1)kρk+1Dk+1(f)
}

= ρ ·
{

P ∗(f) +
∑∞

k=0 (−1)kρk+1Dk+1(f)
}

+

{I − P (f)}D(f)
∑∞

k=0 (−1)kρk+1Dk(f)

= ρ · ·P ∗(f) +
∑∞

k=0 (−1)kρk+2Dk+1(f)
}

+

{I − P ∗(f)}∑∞
k=0 (−1)kρk+1Dk(f)

= ρ · P ∗(f) +
∑∞

k=1 (−1)k−1ρk+1Dk(f)
}

+

ρ · {I − P ∗(f)} +
∑∞

k=1 (−1)kρk+1Dk(f)

= ρ · I.
(2) ρ · vρ(f∞) = ρ · {I − 1

1+ρP (f)
}−1

r(f) = Hρ(f)r(f).

(3) Hρ(f)
{

r(f) + 1
1+ρ

P (f)x − x
}

= ρ · vρ(f∞) −Hρ(f)
{

I − 1
1+ρ

P (f)
}

x

= ρ · vρ(f∞) − ρ · x = ρ · {vρ(f∞)− x}.

272 CHAPTER 7. MORE SENSITIVE OPTIMALITY CRITERIA

Define the sets LS1 and LS2 of Laurent series by

LS1 :=
{

u(ρ) | u(ρ) :=
∑∞

k=−1 ρ
kuk; uk ∈ R

N , k ≥ −1; lim supk→∞ ‖uk‖1/k <∞
}

.

LS2 :=
{

x(ρ) | x(ρ) := (1 + ρ) ·∑∞
k=−1 ρ

kxk; xk ∈ R
N , k ≥ −1; lim supk→∞ ‖xk‖1/k <∞

}

.

Lemma 7.5

LS1 = LS2.

Proof

Take any u(ρ) ∈ LS1. Then, since (1 + ρ)−1 = 1− ρ+ ρ2 − ρ3 + · · · (for |ρ| < 1), we have

u(ρ) = (1 + ρ) · {∑∞
j=0 (−ρ)j}∑∞

k=−1 ρ
kuk = (1 + ρ) ·∑∞

k=−1

∑∞
j=0 (−1)jρk+juk.

Let i = k + j, then i = −1, 0, 1, . . . and k ≤ i. Therefore, we may write

u(ρ) = (1 + ρ) ·∑∞
i=−1 ρ

i{∑i
k=−1 (−1)i−kuk} = (1 + ρ) ·∑∞

i=−1 ρ
ixi,

where xi :=
∑i

k=−1 (−1)i−kuk. Because ‖xi‖ ≤∑i
k=−1 ‖uk‖ ≤ (i+ 2) ·max−1≤k≤i ‖uk‖, we obtain

‖xi‖1/i ≤ (i+ 2)1/i ·
{

max−1≤k≤i ‖uk‖
}1/i

, and consequently

lim supi→∞ ‖xi‖1/i ≤ {lim supi→∞ (i+ 2)1/i} · {lim supi→∞ ‖ui‖1/i} = lim supi→∞ ‖ui‖1/i <∞,

i.e. u(ρ) ∈ LS2.

Conversely, let x(ρ) ∈ LS2 . Then,

x(ρ) = (1 + ρ) ·∑∞
k=−1 ρ

kxk = ρ−1x−1 +
∑∞

k=0 ρ
k · {xk + xk−1} =

∑∞
k=−1 ρ

kuk,

where u−1 := x−1 and uk := xk + xk−1, k ≥ 0. Since lim supk→∞ ‖uk‖1/k ≤ 2 · lim supk→∞ ‖kk‖1/k <∞,
we have x(ρ) ∈ LS1.

Because the sets LS1 and LS2 are identical, we denote this set as LS. Notice that LS is a linear vector

space. We define a lexicographic ordering on LS: u(ρ) is nonnegative (nonpositive) if the first nonzero

vector of (u−1, u0, u1, . . .) is nonnegative (nonpositive), i.e.
{

u(ρ) ≥l 0 if lim infρ↓0 ρ−ku(ρ) ≥ 0 for k = −1, 0, 1,

u(ρ) >l 0 if u(ρ) ≥l 0 and u(ρ) 6= 0.

For f∞ ∈ C(D), let Lρ
f : LS → LS be defined by Lρ

f x(ρ) := r(f) + (1 + ρ)−1 · P (f)x(ρ). The Laurent

expansion of Lρ
f x(ρ)− x(ρ) becomes:

Lρ
f x(ρ) − x(ρ) = r(f) + (1 + ρ)−1 · P (f)

{

(1 + ρ)
∑∞

k=−1 ρ
kxk
}

− (1 + ρ) ·∑∞
k=−1 ρ

kxk

= r(f) +
∑∞

k=−1 ρ
kP (f)xk −∑∞

k=−1 ρ
kxk −∑∞

k=−1 ρ
k+1xk

= r(f) +
∑∞

k=−1 ρ
kP (f)xk −∑∞

k=−1 ρ
kxk −∑∞

k=0 ρ
kxk−1

= ρ−1 · {P (f)x−1 − x−1}+ {r(f) + P (f)x0 − x0 − x−1}
+
∑∞

k=1 ρ
k · {P (f)xk − xk − xk−1}.

The equation above implies that Lρ
f x(ρ) ∈ LS. The next theorem shows that vρ(f∞) is a fixed-point of

Lρ
f .

Lemma 7.6

Lρ
f v

ρ(f∞)− vρ(f∞) = 0.

7.4. LEXICOGRAPHIC ORDERING OF LAURENT SERIES 273

Proof

For x = vρ(f∞) = (1 + ρ) ·∑∞
k=−1 ρ

kuk(f), we have xk = uk(f), k = −1, 0, 1, Hence,

Lρ
f x(ρ) − x(ρ) = ρ−1 · {P (f)u−1(f) − u−1(f)} + {r(f) + P (f)u0(f) − u0(f) − u−1(f)}

+
∑∞

k=1 ρ
k · {P (f)uk(f) − uk(f) − xk−1(f)}.

To establish the fixed-point, note that

P (f)u−1(f) − u−1(f) = {P (f)P ∗(f) − P ∗(f)}r(f) = 0.

r(f) + P (f)u0(f) − u0(f) − u−1(f) = {I + P (f)D(f) −D(f) − P ∗(f)}r(f) = 0.

P (f)uk(f) − uk(f) − uk−1(f) = (−1)k−1{D(f)}k{−P (f)D(f) +D(f) − I}r(f)
= (−1)k−1{D(f)}k{−P ∗(f)}r(f) = 0, k ≥ 1.

Consider the mapping B : LS → LS, where for x(ρ) := (1 + ρ) ·∑∞
k=−1 ρ

kxk, Bx(ρ) is defined by

Bx(ρ) :=
∑∞

k=−1 ρ
kB(k)

(

x−1, x0, . . . , xk
)

with
{

B(−1)
(

x−1
)}

i
:= maxa∈A(i)

{∑

j pij(a)x
−1
j − x−1

i

}

and

A(−1)
(

i, x−1
)

:= argmaxa∈A(i)

{
∑

j pij(a)x
−1
j − x−1

i

}

, i ∈ S;
{

B(0)
(

x−1, x0
)}

i
:= maxa∈A(−1)(i,x−1)

{

ri(a) +
∑

j pij(a)x
0
j − x0

i − x−1
i

}

and

A(0)
(

i, x−1, x0
)

:= argmaxa∈A(−1)(i,x−1)

{

ri(a) +
∑

j pij(a)x
0
j − x0

i − x−1
i

}

, i ∈ S;

and for k ≥ 1
{

B(k)
(

x−1, x0, . . . , xk
)}

i
:= maxa∈A(k−1)(i,x−1,x0,...,xk−1)

{
∑

j pij(a)x
k
j − xk

i − xk−1
i

}

and

A(k)
(

i, x−1, x0, . . . , xk
)

:= argmaxa∈A(k−1)(i,x−1,x0,...,xk−1)

{∑

j pij(a)x
k
j − xk

i − xk−1
i

}

, i ∈ S.

Since we have derived that

ρ−1{P (f)x−1 − x−1}+ {r(f) + P (f)x0 − x0 − x−1}+
∑∞

k=1 ρ
k{P (f)xk − xk − xk−1} =

Lρ
f x(ρ) − x(ρ) = r(f) + (1 + ρ)−1P (f)x(ρ) − x(ρ) ∈ LS for all f∞ ∈ C(D),

Bx(ρ) is an element of LS which is the result of lexicographically maximizing the elements

r(f) + (1 + ρ)−1P (f)x(ρ) − x(ρ) over the set C(D), i.e.

Bx(ρ) = lexmaxf∞∈C(D){r(f) + (1 + ρ)−1P (f)x(ρ) − x(ρ)} = lexmaxf∞∈C(D){Lρ
f x(ρ)− x(ρ)}. (7.11)

Because, by Lemma 7.6, Lρ
g v

ρ(g∞) − vρ(g∞) = 0 for all g∞ ∈ C(D), we obtain for all g∞ ∈ C(D),

Bvρ(g∞) = lexmaxf∞∈C(D){Lρ
f v

ρ(g∞)− vρ(g∞)} ≥l L
ρ
g v

ρ(g∞)− vρ(g∞) = 0, (7.12)

i.e. Bvρ(g∞) is lexicographically nonnegative for all g∞ ∈ C(D).

Lemma 7.7

Hρ(f){r(f) + (1 + ρ)−1P (f)vρ(g∞) − vρ(g∞)} = ρ · {vρ(f∞) − vρ(g∞)}.

Proof

By Theorem 7.5 part (3), we obtainHρ(f){r(f)+(1+ρ)−1P (f)vρ(g∞)−vρ(g∞)} = ρ·{vρ(f∞)−vρ(g∞)}.

Next, we will show that Hρ(f) is a positive operator for every f∞ ∈ C(D), i.e.

Hρ(f){u(ρ)} ≥l 0 if u(ρ) ≥l 0 and Hρ(f){u(ρ)} >l 0 if u(ρ) >l 0.

274 CHAPTER 7. MORE SENSITIVE OPTIMALITY CRITERIA

Theorem 7.6

Hρ(f) is a positive operator for all f∞ ∈ C(D).

Proof

Hρ(f)u(ρ) = ρ ·
{

I − (1 + ρ)−1P (f)
}−1

u(ρ) = ρ ·∑∞
t=0{(1 + ρ)−1P (f)}tu(ρ)

= ρ · u(ρ) + ρ ·∑∞
t=1{(1 + ρ)−1P (f)}tu(ρ).

Hence, it is sufficient to show that P t(f)u(ρ) ≥l 0 for all t ≥ 1 and all u(ρ) ≥l 0. Take any t ≥ 1, any

i ∈ S and let T (i) := {j ∈ S | pt
ij(f) > 0}. Suppose that k is such that {P t(f)um}i = 0, −1 ≤ m ≤ k− 1,

and {P t(f)uk}i 6= 0. Because 0 = {P t(f)um}i =
∑

j∈T (i) p
t
ij(f)u

m
j , we have um

j = 0 for all j ∈ T (i)

and all m = −1, 0, . . . , k − 1. Since u(ρ) ≥l 0, we have uk
j ≥ 0 for all j ∈ T (i) and consequently,

{P t(f)uk}i =
∑

j∈T (i) p
t
ij(f)u

k
j ≥ 0. Because {P t(f)uk}i 6= 0, we get {P t(f)uk}i > 0, i.e. P t(f)u(ρ) ≥l 0.

Theorem 7.7

(1) The equation Bx = 0, x ∈ LS, has a unique solution x = vρ(f∞0), where f∞0 is a Blackwell optimal

policy.

(2) If f∞ ∈ C(D) satisfies Bx = r(f) + (1 + ρ)−1P (f)x − x = 0, then f∞ is Blackwell optimal.

Proof

Let f∞0 be a Blackwell optimal policy, i.e. vρ(f∞0) ≥l v
ρ(f∞) for all f∞ ∈ C(D). We first show that

Bvρ(f∞0) = 0 and r(f) + (1 + ρ)−1P (f)vρ(f∞0) − vρ(f∞0) ≤l 0, f∞ ∈ C(D). In (7.12) it is shown that

Bvρ(f∞) ≥l 0 for all f∞ ∈ C(D). Hence, Bvρ(f∞0) ≥l 0. Suppose that Bvρ(f∞0) >l 0. Then, from (7.11),

it follows that there is a policy f∞ satisfying r(f)+(1+ρ)−1P (f)vρ(f∞0)−vρ(f∞0) >l 0. Then, by Theorem

7.6 and Lemma 7.7, we obtainHρ(f){r(f)+(1+ρ)−1P (f)vρ(f∞0)−vρ(f∞0)} = ρ·{vρ(f∞)−vρ(f∞0)} >l 0,

contradicting the Blackwell optimality of f∞0 . Hence, we have shown that

Bvρ(f∞0) = 0 and r(f) + (1 + ρ)−1P (f)vρ(f∞0) − vρ(f∞0) ≤l 0, f∞ ∈ C(D). (7.13)

Next, suppose that Bx = 0 for some x ∈ LS. Then, r(f0) + (1 + ρ)−1P (f0)x− x ≤l 0. Since Hρ(f0) is a

positive operator, we obtain by Theorem 7.5 part (3),

0 ≥l H
ρ(f0){r(f0) + (1 + ρ)−1P (f0)x− x} = ρ · {vρ(f∞0) − x}, i.e. vρ(f∞0) ≤l x. (7.14)

Therefore, vρ(f∞0) is the lexicographically smallest solution of the functional equation Bx = 0. Finally,

suppose that Bx = r(f) + (1 + ρ)−1P (f)x− x = 0 for some f∞ ∈ C(D). Then, we obtain

0 = Hρ(f){r(f) + (1 + ρ)−1P (f)x − x} = ρ · {vρ(f∞) − x}, i.e. vρ(f∞) = x. (7.15)

Combining (7.14) and (7.15) gives vρ(f∞) ≥l v
ρ(f∞0). Since f∞0 is Blackwell optimal, we also have

vρ(f∞0) ≥l v
ρ(f∞), i.e. vρ(f∞) = vρ(f∞0), implying that f∞ is also a Blackwell optimal policy and the

functional equation Bx = 0 has a unique solution x = vρ(f∞0).

7.5 Policy iteration for n-discount optimality

In this section we derive for any n ∈ N a policy iteration algorithm which computes a policy that lexico-

graphically maximes the vector
(

u−1(f), u0(f), . . . , un(f)
)

over all f∞ ∈ C(D), i.e. an n-discount optimal

policy. Furthermore, we will show that any n-discount optimal policy for n ≥ N −1 is a Blackwell optimal

policy.

7.5. POLICY ITERATION FOR N -DISCOUNT OPTIMALITY 275

Algorithm 7.1 Determination of an n-discount optimal policy by policy iteration

Input: Instance of an MDP and an integer n ≥ −1.

Output: An n-discount optimal deterministic policy f∞.

1. Select an arbitrary f∞ ∈ C(D).

2. Determine
(

u−1(f), u0(f), . . . , un+1(f)
)

, e.g. as unique solution of the system

{I − P (f)}x−1 = 0

x−1 + {I − P (f)}x0 = r(f)

xk−1 + {I − P (f)}xk = 0, 1 ≤ k ≤ n+ 1; P ∗(f)xn+1 = 0

3. (a) for all i ∈ S do

begin max(i) := maxa∈A(i) {
∑

j pij(a)u
−1
j (f) − u−1

i (f)};
A−1(i) := argmaxa∈A(i) {

∑

j pij(a)u
−1
j (f) − u−1

i (f)}
end

(b) if max(i) = 0 for all i ∈ S then go to step 3c

else begin for all i ∈ S do select g(i) ∈ A−1(i); go to step 5 end

(c) for all i ∈ S do

begin max(i) := maxa∈A−1(i) {ri(a) +
∑

j pij(a)u
0
j(f) − u0

i (f) − u−1
i (f)};

A0(i) := argmaxa∈A−1(i) {ri(a) +
∑

j pij(a)u
0
j(f) − u0

i (f) − u−1
i (f)}

end

(d) if max(i) = 0 for all i ∈ S then go to step 3e

else begin for all i ∈ S do select g(i) ∈ A0(i); go to step 5 end

(e) for k = 0 until n do

begin

for all i ∈ S do

begin max(i) := maxa∈Ak(i) {
∑

j pij(a)u
k+1
j (f) − uk+1

i (f) − uk
i (f)};

Ak+1(i) = argmaxa∈Ak(i) {
∑

j pij(a)u
k+1
j (f) − uk+1

i (f) − uk
i (f)}

end

if max(i) 6= 0 for all i ∈ S then

begin for all i ∈ S do select g(i) ∈ Ak+1(i); go to step 5 end

end

4. f∞ is n-discount optimal (STOP).

5. for all i ∈ S do f(i) := g(i); return to step 2.

Remarks:

1. In step 2 of the algorithm, we may instead of the last requirement P ∗(f)xn+1 = 0 also solve the

additional equation xn+1 + {I − P (f)}xn+2 = 0, which implies P ∗(f)xn+1 = 0.

2. If |Ak(i)| = 1 for one or more states, then for that states i step 3 of the algorithm can be skipped,

because Ak+1(i) consists of the same single action as Ak(i).

276 CHAPTER 7. MORE SENSITIVE OPTIMALITY CRITERIA

Example 7.2 (continued)

We compute a 1-discount optimal policy, starting with the policy f(1) = f(2) = f(3) = 1.

Iteration 1:

Step 2:

We determine
(

u−1(f), u0(f), u1(f), u2(f)
)

with the stationary and the deviation matrix:

P (f) =

0 1 0

0 0 1

0 0 1

→ P ∗(f) =

0 0 1

0 0 1

0 0 1

→ D(f) =

1 1 −2

0 1 −1

0 0 0

.

u−1(f) = (0, 0, 0); u0(f) = (2, 1, 0); u1(f) = (−3,−1, 0); u2(f) = (4, 1, 0).

Step 3: (only for i = 1, because |A(2)| = |A(3)| = 1.)

a. a = 1:
∑

j pij(a)u
−1
j (f) − u−1

1 (f) = 0; a = 2:
∑

j pij(a)u
−1
j (f) − u−1

1 (f) = 0.

max(1) = 0; A−1(1) = {1, 2}.
c. a = 1: r1(a)+

∑

j pij(a)u
0
j(f)−u0

1(f)−u−1
1 (f) = 0; a = 2 : r1(a)+

∑

j pij(a)u
0
j(f)−u0

1(f)−u−1
1 (f) = 0.

max(1) = 0; A0(1) = {1, 2}.
e. k = 0: a = 1:

∑

j pij(a)u
1
j(f) − u1

1(f) − u0
1(f) = 0; a = 2:

∑

j pij(a)u
1
j (f) − u1

1(f) − u0
1(f) = 1.

max(1) = 1; A(1)(1) = {2}; g(1) = 2.

Step 5:

f(1) = 2, f(2) = 1, f(3) = 1.

Iteration 2:

Step 2:

P (f) =

0 0 1

0 0 1

0 0 1

→ P ∗(f) =

0 0 1

0 0 1

0 0 1

→ D(f) =

1 0 −1

0 1 −1

0 0 0

.

u−1(f) = (0, 0, 0); u0(f) = (2, 1, 0); u1(f) = (−2,−1, 0); u2(f) = (2, 1, 0).

Step 3:

a. a = 1:
∑

j pij(a)u
−1
j (f) − u−1

1 (f) = 0; a = 2:
∑

j pij(a)u
−1
j (f) − u−1

1 (f) = 0.

max(1) = 0; A−1(1) = {1, 2}.
c. a = 1: r1(a)+

∑

j pij(a)u
0
j (f)−u0

1(f)−u−1
1 (f) = 0; a = 2 : r1(a)+

∑

j pij(a)u
0
j (f)−u0

1(f)−u−1
1 (f) = 0.

max(1) = 0; A0(1) = {1, 2}.
e. k = 0: a = 1:

∑

j pij(a)u
1
j(f) − u1

1(f) − u0
1(f) = −1; a = 2:

∑

j pij(a)u
1
j(f) − u1

1(f) − u0
1(f) = 0.

max(1) = 0; A1(1) = {2}.
Since A1(1) consists of one element the policy f∞ with f(1) = 2, f(2) = f(3) = 1 is 1-optimal.

In order to show the correctness of Algorithm 7.1 we need some theorems which we present below. We

introduce the following notation for two policies f∞, g∞ ∈ C(D):

ψ−1(f, g) = P (g)u−1(f) − u−1(f); ψ0(f, g) = r(g) + P (g)u0(f) − u0(f) − u−1(f);

ψk(f, g) = P (g)uk(f) − uk(f) − uk−1(f) for k = 1, 2,

Theorem 7.8

For every f∞, g∞ ∈ C(D) and every m ∈ N, we have

αvα(g∞) =
∑m−1

k=−1 ρ
k
{

uk(f) +
∑∞

t=1 α
tP t−1(g)ψk(f, g)

}

− ρm
∑∞

t=1 α
tP t−1(g)um−1(f).

7.5. POLICY ITERATION FOR N -DISCOUNT OPTIMALITY 277

Proof

αvα(g∞) =
∑∞

t=1 α
tP t−1(g)r(g)

=
∑∞

t=1 α
tP t−1(g){r(g) + P (g)u0(f) − u0(f) − u−1(f)} +

∑∞
t=1 α

tP t−1(g)u−1(f) −∑∞
t=1 α

tP t−1(g){P (g)u0(f) − u0(f)}
=

∑∞
t=1 α

tP t−1(g)ψ0(f, g) +
∑∞

t=1 α
tP t−1(g)u−1(f) −

∑∞
t=1 α

tP t−1(g){P (g)u0(f) − u0(f)}.
∑∞

t=1 α
tP t−1(g)u−1(f) = αu−1(f) +

∑∞
t=2 α

tP t−1(g)u−1(f)

= αu−1(f) +
∑∞

t=2 α
t
{

u−1(f) +
∑t−1

s=1 {P s(g)u−1(f) − P s−1(g)u−1(f)}
}

= α(1− α)−1u−1(f) +
∑∞

t=2 α
t
∑t−1

s=1 P
s−1(g)ψ−1(f, g)

= α(1− α)−1u−1(f) +
∑∞

s=1

(∑∞
t=s+1 α

t
)

P s−1(g)ψ−1(f, g)

= ρ−1u−1(f) +
∑∞

s=1 α
s+1(1− α)−1P s−1(g)ψ−1(f, g)

= ρ−1{u−1(f) +
∑∞

s=1 α
sP s−1(g)ψ−1(f, g)}.

For k ≥ 0, we obtain

ρ ·∑∞
t=1 α

tP t−1(g)uk(f) =
(

1
α
− 1
)∑∞

t=1 α
sP t−1(g)uk(f)

=
∑∞

t=1 α
t−1P t−1(g)uk(f) −∑∞

t=1 α
tP t−1(g)uk(f)

= uk(f) +
∑∞

t=2 α
t−1P t−1(g)uk(f) −∑∞

t=1 α
tP t−1(g)uk(f)

= uk(f) +
∑∞

t=1 α
tP t−1(g){P (g)uk(f) − uk(f)},

i.e.
∑∞

t=1 α
tP t−1(g){P (g)uk(f) − uk(f)} = ρ ·∑∞

t=1 α
tP t−1(g)uk(f) − uk(f).

Since uk(f) = P (g)uk+1(f) − uk+1(f) − ψk+1(f, g), we can write
∑∞

t=1 α
tP t−1(g){P (g)uk(f) − uk(f)} =

ρ ·∑∞
t=1 α

tP t−1(g){P (g)uk+1(f) − uk+1(f) − ψk+1(f, g)} − uk(f) =

ρ ·∑∞
t=1 α

tP t−1(g){P (g)uk+1(f) − uk+1(f)} − ρ ·∑∞
t=1 α

tP t−1(g)ψk+1(f, g)} − uk(f).

Hence, using this formula for k = 0 and then for k = 1, we obtain
∑∞

t=1 α
tP t−1(g){P (g)u0(f) − u0(f)} =

ρ ·∑∞
t=1 α

tP t−1(g){P (g)u1(f) − u1(f)} − ρ ·∑∞
t=1 α

tP t−1(g)ψ1(f, g) − u0(f) =

ρ ·
{

ρ ·∑∞
t=1 α

tP t−1(g){P (g)u2(f) − u2(f)} − ρ ·∑∞
t=1 α

tP t−1(g)ψ2(f, g) − u1(f)
}

−ρ ·∑∞
t=1 α

tP t−1(g)ψ1(f, g)− u0(f) =

ρ2 ·∑∞
t=1 α

tP t−1(g){P (g)u2(f) − u2(f) − ψ2(f, g)} − ρ · u1(f) − ρ ·∑∞
t=1 α

tP t−1(g)ψ1(f, g) − u0(f).

Similarly, by induction on m, it can be shown that
∑∞

t=1 α
tP t−1(g){P (g)u0(f) − u0(f)} =

ρm ·∑∞
t=1 α

tP t−1(g){P (g)um(f) − um(f) − ψm(f, g)}
−∑m−1

k=1 ρk
{

uk(f) +
∑∞

t=1 α
tP t−1(g)ψk(f, g)

}

− u0(f) =

ρm ·∑∞
t=1 α

tP t−1(g)um−1(f) −∑m−1
k=1 ρk

{

uk(f) +
∑∞

t=1 α
tP t−1(g)ψk(f, g)

}

− u0(f).

Finally, we obtain

αvα(g∞) =
∑∞

t=1 α
tP t−1(g)ψ0(f, g) +

∑∞
t=1 α

tP t−1(g)u−1(f) −∑∞
t=1 α

tP t−1(g){P (g)u0(f) − u0(f)}
=
∑∞

t=1 α
tP t−1(g)ψ0(f, g) + ρ−1{u−1(f) +

∑∞
t=1 α

tP t−1(g)ψ−1(f, g)}
−ρm ·∑∞

t=1 α
tP t−1(g)um−1(f) +

∑m−1
k=1 ρk

{

uk(f) +
∑∞

t=1 α
tP t−1(g)ψk(f, g)

}

+ u0(f)

=
∑m−1

k=−1 ρ
k
{

uk(f) +
∑∞

t=1 α
tP t−1(g)ψk(f, g)

}

− ρm ·∑∞
t=1 α

tP t−1(g)um−1(f).

278 CHAPTER 7. MORE SENSITIVE OPTIMALITY CRITERIA

Theorem 7.9

If f∞ and g∞ are subsequent policies in Algorithm 7.1, then vρ(g∞) > vρ(f∞) for ρ sufficiently small.

Proof

Since ψk(f, f) = 0 for k = −1, 0, 1 . . . , we obtain from Theorem 7.8 with m = n+ 2,

vρ(g∞) − vρ(f∞) =

(1 + ρ) ·
{
∑n+1

k=−1 ρ
k ·∑∞

t=1 α
tP t−1(g)ψk(f, g)+ ρn+2 ·∑∞

t=1 α
t{P t−1(f)−P t−1(g)}un+1(f)

}

.

Since

‖ρn+2 ·∑∞
t=1 α

t
{

P t−1(f) − P t−1(g)
}

un+1(f)‖ ≤ ρn+2(1− α)−1‖P t−1(f) − P t−1(g)‖ · ‖un+1(f)‖
≤ 2ρn+2(1 + ρ) · ‖un+1(f)‖,

ρn+2 ·∑∞
t=1 α

t
{

P t−1(f) − P t−1(g)
}

un+1(f) is arbitrary close to 0 for ρ sufficiently small.

Since f∞ and g∞ are subsequent policies in Algorithm 7.1, we have ψk(f, g) = 0 for k = −1, 0, . . . , m−1 and

ψm(f, g) > 0, where −1 ≤ m ≤ n+1. If we define ψk(f, g) := 0 for k ≥ n+2, then
∑∞

k=−1 ρ
kψk(f, g) ∈ LS

and
∑∞

k=−1 ρ
kψk(f, g) >l 0. Since, by Theorem 7.5, part (1), Hρ(g) = ρ·

{

I− 1
1+ρ

P (g)
}−1

and, by Theorem

7.6, Hρ(g) is a positive operator,
{

I − 1
1+ρ

P (g)
}−1

is also a positive operator, implying that

{

I − 1
1+ρP (g)

}−1{∑∞
k=−1 ρ

kψk(f, g)
}

>l 0.

We can also write
{

I − 1
1+ρP (g)

}−1∑∞
k=−1 ρ

kψk(f, g) =
∑∞

t=1 α
t−1P t−1(g)

∑∞
k=−1 ρ

kψk(f, g) =
∑∞

t=1 α
t−1P t−1(g)

∑n+1
k=−1 ρ

kψk(f, g) = 1
α ·
∑n+1

k=−1 ρ
k
∑∞

t=1 α
tP t−1(g)ψk(f, g) =

(1 + ρ) ·
{∑n+1

k=−1 ρ
k ·∑∞

t=1 α
tP t−1(g)ψk(f, g)

}

.

Since we have shown that vρ(g∞)− vρ(f∞) consists of two terms, where the first term is lexicographically

positive and the second term is arbitrary close to 0 for ρ sufficiently small, we have vρ(g∞) > vρ(f∞) for

ρ sufficiently small.

Theorem 7.10

Algorithm 7.1 is correct, i.e. it terminates with an n-discount optimal policy.

Proof

From Theorem 7.9 it follows that each subsequent policy f∞ ∈ C(D) is different from all previous. Since

C(D) is a finite set, the algorithm terminates, say with policy f∞. In Theorem 7.9 is shown that for any

policy g∞,

vρ(g∞)−vρ(f∞) = (1+ρ)·
{
∑n+1

k=−1 ρ
k·∑∞

t=1 α
tP t−1(g)ψk(f, g)+ρn+2 ·∑∞

t=1 α
t{P t−1(f)−P t−1(g)un+1(f)

}

.

Since the algorithm terminates, we have
∑n+2

k=−1 ρ
kψk(f, g) ≤l 0. Analogously as in the proof of Theorem

7.9 this implies that

(1 + ρ) ·
{
∑n+1

k=−1 ρ
k ·∑∞

t=1 α
tP t−1(g)ψk(f, g)

}

≤l 0.

Since the second term of the above expression for vρ(g∞) − vρ(f∞) is again arbitrary close to 0 for ρ

sufficiently small, we have shown that limρ↓0 ρ−n{vρ(g∞)− vρ(f∞)} ≥ 0 for every g∞ ∈ C(D), i.e. f∞ is

an n-discount optimal policy.

We close this section with the proof that for n ≥ N − 1 an n-discount optimal policy is also Blackwell

optimal. Therefore we need the following lemma.

7.6. LINEAR PROGRAMMING ANDN -DISCOUNT OPTIMALITY (IRREDUCIBLE CASE)279

Lemma 7.8

If ψk(f, g) = 0 for k = 1, 2, . . . , N , then ψk(f, g) = 0 for k ≥ N + 1.

Proof

Let L := {x | {P (f)− P (g)}x = 0}. For k ≥ 1, we have

ψk(f, g) = P (g)uk(f) − uk(f) − uk−1(f) = P (g)uk(f) − (−1)k{D(f) − I}Dk(f)r(f)

= P (g)uk(f) − (−1)k{P (f)D(f) − P ∗(f)}Dk(f)r(f)

= P (g)uk(f) − (−1)kP (f)Dk+1(f)r(f) = P (g)uk(f) − P (f)uk(f),

i.e. uk(f) ∈ L for k = 1, 2,

Since L is a linear vector space in R
N , the N + 1 vectors uk(f), 1 ≤ k ≤ N + 1, are linear dependent.

Because uk(f) = Bk−1x0 for k ≥ 1, where x0 := u1(f) = D(f)r(f) and B := −D(f), the N + 1 vectors

x0, Bx0, B
2x0, . . . , B

Nx0 are linear dependent, i.e. for some 1 ≤ k ≤ N , we have Bkx0 =
∑k−1

j=0 λjB
jx0 for

some scalars λ0, λ1, . . . , λk−1. Hence, Bkx0 ∈ L. Since Bk+1x0 =
∑k−1

j=0 λjB
j+1x0, the vector Bk+1x0 is a

linear combination of the elements Bx0, B
2x0, . . . , B

kx0, which all belong to L, so Bk+1x0 ∈ L. Similarly,

by induction, it can be shown that uk(f) = Bk−1x0 ∈ L, k ≥ 1, implying that ψk(f, g) = 0 for k ≥ 1.

Theorem 7.11

If Algorithm 7.1 is used to determine an (N − 1)-discount optimal policy f∞, then f∞ is a Blackwell

optimal policy.

Proof

If the algorithm terminates with policy f∞, we have
∑N

k=−1 ρ
kψk(f, g) ≤l 0 for every policy g∞, i.e. either

∑N
k=−1 ρ

kψk(f, g) <l 0 or
∑N

k=−1 ρ
kψk(f, g) = 0. In the first case, we obtain analogously to Theorem 7.9

that vρ(g∞) < vρ(f∞) for ρ sufficiently small. In the second case, we have ψk(f, g) = 0, 1 ≤ k ≤ N. From

Lemma 7.8 it follows that ψk(f, g) = 0 also for k ≥ N + 1. Hence, ψk(f, g) = 0 for k = 1, 2, If we let

m→∞ in Theorem 7.8, then we obtain

αvα(g∞) =
∑∞

k=−1 ρ
k
{

uk(f) +
∑∞

t=1 α
tP t−1(g)ψk(f, g)

}

=
∑∞

k=−1 ρ
kuk(f) = αvα(f∞)

for every α ∈ [0, 1). Hence, f∞ is a Blackwell optimal policy.

7.6 Linear programming and n-discount optimality (irreducible

case)

Without any assumption about the chain structure, only for the criteria average and bias optimality there

exist a satisfactory treatment by linear programming. In this section we show , under the assumption of

irreducibility, a nice treatment for n-discount optimality, based on nested linear programs. Throughout

this section we have the following assumption.

Assumption 7.1

For any policy f∞ ∈ C(D), the Markov chain P (f) is irreducible.

280 CHAPTER 7. MORE SENSITIVE OPTIMALITY CRITERIA

7.6.1 Average optimality

The special linear programming approach for average rewards in the irreducible case was treated in section

6.1.3. There, we have shown that the value vector φ and an optimal policy can be found by the linear

programs

min
{

v
∣

∣

∣ v +
∑

j

{δij − pij(a)}uj ≥ ri(a), (i, a) ∈ S × A
}

(7.16)

and

max

∑

(i,a)

ri(a)xi(a)

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a) {δij − pij(a)}xi(a) = 0, j ∈ S
∑

(i,a) xi(a) = 1

xi(a) ≥ 0, (i, a) ∈ S ×A

, (7.17)

respectively. Furthermore, we have shown (Theorem 6.5) that there is a bijection between the feasible

solutions of the dual program (7.17) and the set C(S) of stationary policies such that extreme solutions

correspond to the set C(D) of deterministic policies. This bijection is given by

xπ
i (a) := xi(π) · πia, (i, a) ∈ S ×A and πx

ia := xi(a)
P

a xi(a)
, (i, a) ∈ S ×A,

where x(π) is the stationary distribution of the transition matrix P (π). The following result characterizes

the set of all average optimal policies.

Theorem 7.12

Let (φ, u∗) be an optimal solution of program (7.16). Then, f∞ is an average optimal policy if and only if

f∞ ∈ A−1, where A−1 := {f∞ | φ · e+ {I − P (f)}u∗ = r(f)}.

Proof

If f∞ ∈ A−1, then φ · e+ {I −P (f)}u∗ = r(f). Multiplying this equation with the stationary distribution

x(f)T gives φ = x(f)T r(f) = φ(f∞), i.e. f∞ is an optimal policy.

Conversely, let f∞ be an average optimal policy. Then, φ = φ(f∞) = x(f)T r(f) =
∑

(i,a) ri(a)x
f
i

(

f(i)
)

,

i.e. xf is an optimal solution of the dual program (7.17). Since xi

(

f(i)
)

> 0 for all i ∈ S, we have by the

complementary slackness property of linear programming φ+
∑

j{δij − pij

(

f(i)
)

}u∗j = ri

(

f(i)
)

, i ∈ S, i.e.

f∞ ∈ A−1.

7.6.2 Bias optimality

We first show that for any average optimal policy f∞ the second term u0(f) of the Laurent expansion of

vα(f∞) can be obtained from the results of the previous section.

Theorem 7.13

Let f∞ be an average optimal policy. Then, the bias term u0(f) = u∗ − P ∗(f)u∗, where u∗ is the u-part

in an optimal solution of the linear program (7.16).

Proof

Let f∞ be an average optimal policy. Then, by Theorem 7.12, φ ·e+{I−P (f)}u∗ = r(f). Multiplying this

equation with D(f) gives u0(f) = D(f)r(f) = D(f){φ ·e+[I −P (f)]u∗} = {I−P ∗(f)}u∗ = u∗−P ∗(f)u∗.

The policy f∞ is bias optimal or 0-discount optimal if u0(f) = max{u0(g) | g∞ ∈ A−1}. Since −P ∗(g)u∗

is the average reward of g∞ with respect to immediate rewards r
(0)
i (a) := −u∗i for all (i, a) ∈ S × A−1,

7.6. LINEAR PROGRAMMING ANDN -DISCOUNT OPTIMALITY (IRREDUCIBLE CASE)281

the maximization of u0(g) = u∗ − P ∗(g)u∗ is equivalent to the maximization of the average reward cor-

responding to immediate rewards r
(0)
i (a), (i, a) ∈ S × A−1. Hence, for bias optimality, we can consider a

new MDP model with truncated actions sets A−1(i) := {a ∈ A(i) | φ+
∑

j{δij−pij(a)}u∗j = ri(a)}, i ∈ S,

and with immediate rewards r
(0)
i (a) := −u∗i , (i, a) ∈ S ×A−1. We now present the primal and dual linear

program for this truncated MDP:

min
{

v(0)
∣

∣

∣ v(0) +
∑

j

{δij − pij(a)}u(0)
j ≥ −u∗i , i ∈ S, a ∈ A−1(i)

}

(7.18)

and

max

−
∑

i

u∗i
∑

a∈A−1(i)

x
(0)
i (a)

∣

∣

∣

∣

∣

∣

∣

∣

∑

i

∑

a∈A−1(i) {δij − pij(a)}x(0)
i (a) = 0, j ∈ S

∑

i

∑

a∈A−1(i) x
(0)
i (a) = 1

x
(0)
i (a) ≥ 0, i ∈ S, a ∈ A−1(i)

(7.19)

respectively. The next theorem is a consequence of above statements.

Theorem 7.14

Let (v(0), u(0)) and x(0) be optimal solutions of the linear programs (7.18) and (7.19) respectively. Further-

more, let A0 := {f∞ ∈ A−1 | v(0) +
∑

j{δij − pij

(

f(i)
)

}u(0) = −u∗i , i ∈ S}. Then, f∞ is a bias optimal

policy if and only if f∞ ∈ A0.

Example 7.3

S = {1, 2, 3}; A(1) = {1, 2}, A(2) = {1}, A(3) = {1}; r1(1) = 3, r1(2) = 4, r2(1) = 2, r3(1) = 1.

p11(1) = 0, p12(1) = 1, p13(1) = 0; p11(2) = p12(2) = 0, p13(2) = 1; p21(1) = 1
2
, p22(1) = 0, p23(1) = 1

2
;

p31(1) = 0, p32(1) = 1, p33(1) = 0.

It is easy to verify that this is an irreducible MDP. The primal and dual linear programs for average

optimality are:

min
{

v
∣

∣

∣ v + u1 − u2 ≥ 3; v + u1 − u3 ≥ 4; v + u2 −
1

2
u1 −

1

2
u3 ≥ 2; v + u3 − u2 ≥ 1

}

(7.20)

and

max

3x1(1) + 4x1(2) + 2x2(1) + x3(1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1(1) + x1(2) − 1
2x2(1) = 0; x1(1) ≥ 0

−x1(1) + + x2(1) − x3(1) = 0; x1(2) ≥ 0

− x1(2) − 1
2x2(1) + x3(1) = 0; x2(1) ≥ 0

x1(1) + x1(2) + x2(1) + x3(1) = 1; x3(1) ≥ 0

.

(7.21)

Optimal solutions of these programs are: for the primal v∗ = φ = 2, u∗1 = 2, u∗2 = 1, u∗3 = 0 and for the

dual x∗1(1) = 1
4 , x

∗
1(2) = 0, x∗2(1) = 1

2 , x
∗
3(1) = 1

4 .

It is simple to verify that A−1(1) = A(1) = {1, 2}, A−1(2) = A(2) = {1} and A−1(3) = A(3) = {1}.
Hence, the primal and dual programs for bias optimality are:

min

{

v(0)

∣

∣

∣

∣

∣

v(0) + u
(0)
1 − u

(0)
2 ≥ −2; v(0) − 1

2u
(0)
1 + u

(0)
2 − 1

2u
(0)
3 ≥ −1

v(0) + u
(0)
1 − u

(0)
3 ≥ −2; v(0) − u

(0)
2 +u

(0)
3 ≥ 0

}

(7.22)

and

max

−2x
(0)
1 (1)− 2x

(0)
1 (2)− x(0)

2 (1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x
(0)
1 (1) + x

(0)
1 (2) − 1

2x
(0)
2 (1) = 0; x

(0)
1 (1) ≥ 0

−x(0)
1 (1) + + x

(0)
2 (1) − x

(0)
3 (1) = 0; x

(0)
1 (2) ≥ 0

− x
(0)
1 (2) − 1

2x
(0)
2 (1) + x

(0)
3 (1) = 0; x

(0)
2 (1) ≥ 0

x
(0)
1 (1) + x

(0)
1 (2) + x

(0)
2 (1) + x

(0)
3 (1) = 1; x

(0)
3 (1) ≥ 0

.

(7.23)

282 CHAPTER 7. MORE SENSITIVE OPTIMALITY CRITERIA

Optimal solutions of these programs are: for the primal v(0) = −4
5 , u

(0)
1 = −6

5 , u
(0)
2 = −4

5 , u
(0)
3 = 0 and

for the dual x
(0)
1 (1) = 0, x

(0)
1 (2) = 1

5 , x
(0)
2 (1) = 2

5 , x
(0)
3 (1) = 2

5 .

Hence, A0(1) = {2}, A0(2) = {1} and A0(3) = {1}, i.e. f∞ with f(1) = 2, f(2) = f(3) = 1 is the only

bias optimal policy.

7.6.3 n-discount optimality

In this subsection we propose an algorithm for the determination of an n-discount optimal policy based

on a system of nested linear programs. This is a generalization of the approach discussed in the preceding

subsection. Let us first introduce the pair of dual linear programs for the computation of an n-discount

optimal policy. The primal program is

min
{

v(n)
∣

∣

∣ v(n) +
∑

j

{δij − pij(a)}u(n)
j ≥ −u(n−1)

i , i ∈ S, a ∈ An−1(i)
}

, (7.24)

where (v(n−1), u(n−1)) is an optimal solution of the primal linear program for an (n− 1)-discount optimal

policy and An−1(i) := {a ∈ An−2 | v(n−1) +
∑

j{δij − pij(a)}u(n−1)
j = −u(n−2)}.

The dual linear program of (7.24) is

max

−
∑

i

u
(n−1)
i

∑

a∈An−1(i)

x
(n)
i (a)

∣

∣

∣

∣

∣

∣

∣

∣

∑

i

∑

a∈An−1(i) {δij − pij(a)}x(n)
i (a) = 0, j ∈ S

∑

i

∑

a∈An−1(i) x
(n)
i (a) = 1

x
(n)
i (a) ≥ 0, i ∈ S, a ∈ An−1(i)

.

(7.25)

By induction on n we will show the following theorem.

Theorem 7.15

Let
(

v(n), u(n)
)

and x(n) be optimal solutions of the linear programs (7.24) and (7.25) respectively.

Furthermore, let A(n) :=
{

f∞ ∈ A(n−1) | v(n) +
∑

j{δij − pij

(

f(i)
)

}u(n)
j = −u(n−1)

i , i ∈ S
}

.

(1) If f∞ be an (n− 1)-discount optimal policy, then, un(f) = u(n−1) − P ∗(f)u(n−1).

(2) f∞ is an n-discount optimal policy if and only if f∞ ∈ A(n).

Proof

For n = 0 we refer to the Theorems 7.13 and 7.14. We proof the induction step for n ≥ 1.

(1) Let f∞ be an (n− 1)-discount optimal policy.

un(f) = −D(f)un−1(f) = −D(f){u(n−2) − P ∗(f)u(n−2)}, the last equality by induction.

Since D(f)P ∗(f) = 0, we obtain un(f) = −D(f)u(n−2). Because f∞ ∈ A(n−1), we can write

un(f) = D(f)
{

v(n−1) · e+ {I − P (f)}u(n−1)
}

. Since D(f)e = 0 and D(f){I − P (f)} = I − P ∗(f), it

follows that un(f) = u(n−1) − P ∗(f)u(n−1).

(2) Let f∞ be an n-discount optimal policy. Then, according to the induction assumption, f∞ is average

optimal for the MDP model with truncated action sets A(n−1)(i), i ∈ S and rewards −u(n−1)
i . We

know that there exists a one-to-one correspondence between the deterministic optimal policies and the

extreme solutions of the dual program (7.25). Hence, there exists an extreme optimal solution x(n)

such that x
(n)
i (f(i)) > 0, for all i ∈ S. Then, from the complementary slackness property of linear

programming we conclude that v(n) +
∑

j{δij − pij

(

f(i)
)

}u(n)
j = −u(n−1)

i , i ∈ S, i.e. f∞ ∈ A(n).

Conversely, let f∞ ∈ A(n). Then, v(n) · e+ {I − P (f)}u(n) = −u(n−1). By multiplication with P ∗(f),

we obtain v(n) · e = −P ∗(f)u(n−1). For any f∞ ∈ A(n−1), we derive from the primal program (7.24)

that v(n) · e+ {I − P (g)}u(n) ≥ −u(n−1) for every g∞ ∈ A(n−1). Consequently, by multiplication with

7.7. BLACKWELL OPTIMALITY AND LINEAR PROGRAMMING 283

P ∗(g), we have v(n) · e ≥ −P ∗(g)u(n−1). Hence,

un(f) = u(n−1)−P ∗(f)u(n−1) = u(n−1)+v(n) ·e ≥ u(n−1)−P ∗(g)u(n−1) = un(g) for every g∞ ∈ A(n−1),

i.e. f∞ is an n-discount optimal policy.

7.7 Blackwell optimality and linear programming

In this section we will show how linear programming in the space of rational functions can be developed

to compute optimal policies over the entire range of the discount factor. Furthermore, a procedure is

presented for the computation of a Blackwell optimal policy.

Let R be the ordered field of the real numbers with the usual ordering. By P (R) we denote the set of

all polynomials in x ∈ R with real coefficients, i.e. the set of elements

p(x) = a0 + a1x+ · · ·+ anx
n where ai ∈ R, 1 ≤ i ≤ n for some positive integer n, (7.26)

where we assume that an 6= 0. The field F (R) of rational functions with real coefficients consists of the

elements

f(x) =
p(x)

q(x)
, (7.27)

where p and q are elements of P (R) having no common linear factors and q is not identically zero. So,

each rational function is expressible in the form

f(x) =
a0 + a1x+ · · ·+ anx

n

b0 + b1x+ · · ·+ bmxm
. (7.28)

The domain of a rational function consists of all but the finitely many real numbers where the denominator

is 0. At these points, the numerator is nonzero, because there are no common linear factors. So when we

compare two rational functions f and g, we can be sure that the common domain domf ∩ domg consists

of all but finitely many real numbers.

To complete the description of the field, we need specity the addition (+) and multiplication (·)
operations on the set F (R), and we need to single out two members 0 and 1 as the 0 and 1 elements. The

latter is easy: the elements 0 and 1 are the constant functions having the values 0 and 1, respectively. The

operations + and · in F (R) are defined in the usual way:

(p

q
+
r

s

)

(x) =
p(x)s(x) + r(x)q(x)

q(x)s(x)
and

(p

q
· r
s

)

(x) =
p(x)r(x)

q(x)s(x)
, (7.29)

with an additional operation to cancelling any common linear factors in the numerator and denominator.

As example, let f(x) := 1
−1+x2 , g(x) := x

−1+x2 and h(x) := 1 + x. Then,

(f + g)(x) = 1
−1+x2 + x

−1+x2 = 1+x
−1+x2 = 1

−1+x
and (f · h)(x) = 1

−1+x2 · (1 + x) = 1+x
−1+x2 = 1

−1+x2 .

Next we need to augment this field with an ordering relation making it into an ordered field. We will

denote the ordering relation by >l . Since f >l g if and only if f − g >l 0, it suffices to specify the set

of positive rational functions. We have special interest in the value of these functions for x close to 0.

Therefore, we define the dominating coefficient of a polynomial p given in formula (7.26) as the coefficient

ak 6= 0, where k is such that ai = 0, 0 ≤ i ≤ k− 1 (for the function 0, we define the dominating coefficient

as 0). In this case we call k the order of p: order(p) = k. The dominating coefficient of polynomial p is

denoted by d(p). Notice that d(p) = 0 if and only if p = 0. Let P be the set of positive elements of F (R),

defined by

f(x) =
p(x)

q(x)
∈ P if and only if d(p)d(q) > 0. (7.30)

284 CHAPTER 7. MORE SENSITIVE OPTIMALITY CRITERIA

We now define f ≥l g if either f >l g or f = g. With this definition the field F (R) is a total ordered field

(the proof is left to the reader as Exercise 7.10). Observe that the function f(x) = 1
x is ’infinity large’ in

the sense that 1
x
>l n for any n ∈ N. Similarly, the reciprocal function g(x) = x is ’infinity small’ in the

sense that x <l
1
n for any n ∈ N. Hence, the field is a non-Archimedian ordered field.1

The continuity of polynomials implies that the rational function f = p
q ∈ P if and only if p(x)

q(x) > 0 for

all x sufficiently near to 0. Hence, we obtain the following result.

Lemma 7.9

The rational function f = p
q ∈ P if and only if there exists a positive real number x0 such that f(x) =

p(x)
q(x)

> 0 for all x ∈ (0, x0).

We shall apply the above properties on discounted rewards as function of the discount factor α. As before,

we will use the parameter ρ = 1−α
α

instead of α. Note that α = 1
1+ρ

and that α ↑ 1 is equivalent to ρ ↓ 0.

The total expected discounted reward vρ(f∞) for a policy f∞ ∈ C(D) is the unique solution of the linear

system

{(1 + ρ)I − P (f)}x = (1 + ρ)r(f). (7.31)

Solving (7.31) by Cramer’s rule shows that for every i ∈ S, the function vρ
i (f∞) is an element of F (R),

say vρ
i (f∞) = p(ρ)

q(ρ) . The degree of the polynomials p and q is at most N . By Blackwell’s theorem, we

know that the interval [0, 1) of the discount factor α can be broken into a finite number of intervals, say

[0 = αs+1, αs), [αs, αs−1), . . . , [α0, α−1 = 1), in such a way that there are policies f∞k , k = 0, 1, . . . , s+1,

where f∞k is α-discounted optimal for all α ∈ [αk, αk−1). The policy f∞0 is a Blackwell optimal policy.

Observe that in each interval the components vρ
i of the value vector vρ are elements of F (R). So, for small

ρ corresponding with the interval [α0, α−1 = 1), i.e. 0 < ρ < 1−α0

α0
, vρ

i is an element of F (R).

The optimality equation of discounted rewards implies

(1 + ρ)vρ
i ≥ (1 + ρ)ri(a) +

∑

j

pij(a)v
ρ
j , (i, a) ∈ S ×A, ρ > 0. (7.32)

Since vρ
i is an element of F (R) for ρ ∈

[

0, 1−α0

α0

)

, we obtain from (7.32) the ordering relations

(1 + ρ)vρ
i ≥l (1 + ρ)ri(a) +

∑

j

pij(a)v
ρ
j , (i, a) ∈ S ×A. (7.33)

An N -vector w(ρ) with elements in F (R) is called Blackwell-superharmonic if

(1 + ρ)wi(ρ) ≥l (1 + ρ)ri(a) +
∑

j

pij(a)wj(ρ), (i, a) ∈ S × A. (7.34)

Theorem 7.16

The discounted value vector vρ is the (componentwise) smallest Blackwell-superharmonic vector with com-

ponents in F (R), i.e. for any Blackwell-superharmonic vector w(ρ), we have wi(ρ) ≥l v
ρ
i , i ∈ S.

Proof

From (7.33) it follows that the discounted value vector vρ is a Blackwell-superharmonic vector. Suppose

that w(ρ) is an arbitrary Blackwell-superharmonic vector. Since there are only a finite number of elements

in S × A it follows from Lemma 7.9 that there exists a positive real number ρ0 such that

1For more details about ordered fields (Archimedian and non-Archimedian) see: B.L. van der Waerden, Algebra

- Erster Teil, Springer-Verlag (1966) 235–238.

7.7. BLACKWELL OPTIMALITY AND LINEAR PROGRAMMING 285

(1 + ρ)wi(ρ) ≥ (1 + ρ)ri(a) +
∑

j pij(a)wj(ρ), (i, a) ∈ S ×A, ρ ∈ [0, ρ0).

Hence, for every α ∈
[

1
1+ρ0

)

the vector w(ρ) is α-superharmonic in the sense of (3.30). Therefore, by the

results of discounted rewards in Chapter 3, wi(ρ) ≥ vρ
i for all i ∈ S and all ρ ∈ [0, ρ0). Consequently,

wi(ρ) ≥l v
ρ
i , i ∈ S, ρ ∈ [0, ρ0).

Theorem 7.16 implies that the value vector vρ for the interval [0, ρ0) can be found as optimal solution of

the following linear program in F (R):

min
{

∑

j

wj(ρ)
∣

∣

∣ (1 + ρ)wi(ρ) ≥l (1 + ρ)ri(a) +
∑

j

pij(a)wj(ρ), (i, a) ∈ S ×A
}

. (7.35)

Consider also the following linear program in F (R), called the dual program:

max

∑

(i,a)

(1 + ρ)ri(a) · xia(ρ)

∣

∣

∣

∣

∣

∑

(i,a) {(1 + ρ)δij − pij(a)} · xia(ρ) = 1, j ∈ S
xia(ρ) ≥l 0, (i, a) ∈ S ×A

}

. (7.36)

For a fixed positive ρ, the linear programs (7.35) and (7.36) are equivalent to the linear programs of

Chapter 3. Therefore, we also have for each fixed ρ a one-to-one correspondence between the basic feasible

solutions and the policies of C(D). For the present programs with elements from F (R) we will, as in the

simplex method with real numbers, rewrite the equalities
∑

(i,a) {(1 + ρ)δij − pij(a)} · xia(ρ) = 1, j ∈ S,

such that at each iteration there is precisely one positive xia(ρ) for each state i. Hence, the only difference

with the usual simplex method with real numbers is that instead of real numbers the elements in the

programs are rational functions.

At any iteration there is an extreme feasible solution x(ρ) of (7.36), corresponding to a policy f∞, and

a reduced cost vector w(ρ) such that the complementary slackness property is satisfied, i.e.

xia(ρ) ·
{∑

j {(1 + ρ)δij − pij(a)} · wj(ρ) − (1 + ρ)ri(a)
}

= 0, (i, a) ∈ S × A.

Since xjf(j)(ρ) > 0, j ∈ S, we have
∑

j {(1 + ρ)δij − pij(f)} · wj(ρ) = (1 + ρ)ri

(

f(i)
)

, i ∈ S. Hence,

w(ρ) = vρ(f∞). The validation of the above described approach and some additional properties follow

from the following lemma.

Lemma 7.10

(1) The elements in the simplex tableau can be written as rational functions with the same denominator,

say n(ρ), which is the product of the previous pivot elements.

(2) The numerators and common denominator are polynomials with degree at most N ; the numerators

of the reduced costs are polynomials with degree at most N + 1.

(3) The pivot operations in the simplex tableau are as follows:

a. The new common denominator is the numerator of the current pivot element.

b. The new numerator of the pivot element is the current common denominator.

c. The new numerators of the other elements in the pivot row are unchanged.

d. The new numerators of the other elements in the pivot column are the old numerator multiplied

by −1.

e. For the other elements, say an element with numerator p(ρ), the new numerator becomes

p(ρ)t(ρ)−r(ρ)s(ρ)
n(ρ)

, which is a polynomial, where t(ρ) is the numerator of the old pivot element, r(ρ)

is the numerator of the element in the pivot row and the same column as the element with

numerator p(ρ), and s(ρ) is the numerator of the element in the pivot column and the same

row as the element with numerator p(ρ).

286 CHAPTER 7. MORE SENSITIVE OPTIMALITY CRITERIA

Proof

(1) We can compute a simplex tableau corresponding to some policy f∞ as follows. Let zj(ρ), j ∈ S be

artificial variables, i.e. consider the system
∑

(i,a) {(1 + ρ)δij − pij(a)} · xia(ρ) + zj(ρ) = 1, j ∈ S.

Then exchange by the usual pivot operations zj(ρ) with xjf(j)(ρ) for j = 1, 2, . . . , N . The first basis

matrix is the identity matrix I corresponding to the artificial variables. Hence, in the first simplex

tableau the elements are polynomials (in fact linear functions) in ρ, which may be considered as rational

functions with common denominator 1. It is well known from the theory of linear programming (see

e.g. [341]) that the elements of a simplex tableau have a common denominator, namely the determinant

of the basis matrix which is the product of all previous pivot elements when the first basis matrix is

the identity matrix. This result, with a similar proof, is also valid of the elements are rational functions

instead of real numbers.

(2) Any basis matrix is of the form (1+ρ)I−P (f). So it has linear functions on the diagonal and constants

on the off-diagonal elements. Hence, the determinant of the matrix is a polynomial with degree at

most N . By Cramer’s rule, the elements of the inverse have numerators which are polynomials with

degree at most N − 1. The elements in a column of the simplex tableau, except the reduced costs, are

obtained by multiplication of the inverse of the basis matrix with the right hand side or a nonbasic

column. Such columns are constants or linear functions. Hence, the polynomials of the numerators

have degree at most N . Since the reduced costs are (rewritten) terms of the objective function
∑

(i,a) (1+ρ)ri(a) ·xia(ρ), they are obtained by multiplying the variables xia(ρ) with a linear function,

so these numerators have degree at most N + 1.

(3) The transformation rules for the simplex method with rational functions are similar to these rules in

case of real numbers. Let
t(ρ)
n(ρ) be the pivot element. Then n(ρ) is the product of all previous pivots.

The new product of the pivots is n(ρ) · t(ρ)
n(ρ) = t(ρ). The rules b, c and d are straightforward. Consider

an element p(ρ)
n(ρ) outside the pivot row or pivot column. Let r(ρ)

n(ρ) be the element in the pivot row and

the same column as the element p(ρ)
n(ρ)

and let s(ρ)
n(ρ)

be the element in the pivot column and the same

row as the element p(ρ)
n(ρ) . Then the new element becomes: p(ρ)

n(ρ)−
r(ρ)
n(ρ) ·

s(ρ)
n(ρ) ·

n(ρ)
t(ρ) = 1

t(ρ) ·
{p(ρ)·t(ρ)−r(ρ)·s(ρ)

n(ρ)

}

.

The the property that t(ρ) is the common denominator of the new tableau implies that
p(ρ)·t(ρ)−r(ρ)·s(ρ)

n(ρ)

is a polynomial.

We shall solve the dual program (7.36) starting with ρ very large, or equivalently α very close to 0. For

α = 0 the policy f∞ such that ri

(

f(i)
)

= maxa ri(a), i ∈ S is an optimal policy. We start with the basic

solution corresponding to this policy f∞. We can compute the first feasible simplex tableau as follows.

Let zj(ρ), j ∈ S be the artificial variables, i.e. we consider the system

∑

(i,a)

{(1 + ρ)δij − pij(a)} · xia(ρ) + zj(ρ) = 1, j ∈ S.

Then we exchange by the usal pivot operations zj(ρ) with xjf(j)(ρ) for j = 1, 2, . . . , N . This tableau is

optimal for all ρ ≥ ρ∗, where ρ∗ is the smallest ρ for which the reduced costs (the reduced costs are also

elements of F (R)) are nonnegative. To compute ρ∗ we have to compute the zeros of some polynomials. 2

The reduced cost that determines ρ∗ determines the next pivot column. After a pivot operation we repeat

this approach to obtain a next interval on which the new policy is optimal. In this way we continue until

we have an interval that ends with ρ∗ = 0. That final interval corresponds to a Blackwell optimal policy.

This approach determines optimal policies over the entire range [0, 1) of the discount factor α.

2The computation of real zeros of polynomials can be done by Maple. We refer also to the literature on numerical

analysis and to [125] in which paper a method based on Sturm’s Theorem is discussed.

7.7. BLACKWELL OPTIMALITY AND LINEAR PROGRAMMING 287

Example 7.4

S = {1, 2, 3} : A(1) = A(2) = A(3) = {1, 2}.
r1(1) = 8, r1(1) = 11

4
; r2(1) = 16, r2(2) = 15; r3(1) = 7, r3(2) = 4..

p11(1) = 1
2 , p12(1) = 1

4 , p13(1) = 1
4 ; p11(2) = 1

16 , p12(2) = 3
4 , p13(2) = 3

16 ;

p21(1) = 1
2 , p22(1) = 0, p23(1) = 1

2 ; p21(2) = 1
16 , p22(2) = 7

8 , p23(2) = 1
16 ;

p31(1) = 1
4 ; p32(1) = 1

4 ; p33(1) = 1
2 ; p31(2) = 1

8 ; p32(2) = 3
4 ; p33(2) = 1

8 .

For this example the objective function becomes:

(1 + ρ) · {8x11(ρ) + 11
4 x12(ρ) + 16x21(ρ) + 15x22(ρ) + 7x31(ρ) + 4x32(ρ)}

The linear constraints are:

(1
2

+ ρ)x11(ρ) + (15
16

+ ρ)x12(ρ) − 1
2
x21(ρ) − 1

16
x22(ρ) − 1

4
x31(ρ) − 1

8
x32(ρ) = 1

− 1
4x11(ρ) − 3

4x12(ρ) + (1 + ρ)x21(ρ) + (1
8 + ρ)x22(ρ) − 1

4x31(ρ) − 3
4x32(ρ) = 1

− 1
4
x11(ρ) − 3

16
x12(ρ) − 1

2
x21(ρ) − 1

16
x22(ρ) + (1

2
+ ρ)x31(ρ) + (7

8
+ ρ)x32(ρ) = 1

The first simplex tableau is (the common denominator is the top element in the second column

of the simplex tableau; the first common denominator is 1).

1 x11(ρ) x12(ρ) x21(ρ) x22(ρ) x31(ρ) x32(ρ)

z1(ρ) 1 + 1
2 + ρ + 15

16 + ρ − 1
2 − 1

16 − 1
4 − 1

8

z2(ρ) 1 − 1
4

− 3
4

+1 + ρ + 1
8

+ ρ − 1
4

− 3
4

z3(ρ) 1 − 1
4

− 3
16

− 1
2

+ 1
16

+ 1
2

+ ρ + 7
8

+ ρ

0 −8− 8ρ − 11
4 − 11

4 ρ −16 − 16ρ −15 − 15ρ −7− 7ρ −4 − 4ρ

In the first iteration the pivot column is the column of the variable x11(ρ) and the pivot row is

the row of z1(ρ). The next tableau becomes (with common denominator 1
2 + ρ).

1
2

+ ρ z1(ρ) x12(ρ) x21(ρ) x22(ρ) x31(ρ) x32(ρ)

x11(ρ) 1 +1 + 15
16

+ ρ − 1
2

− 1
16

− 1
4

− 1
8

z2(ρ) 3
4

+ ρ + 1
4

− 9
64

− 1
2
ρ + 3

8
+ 3

2
+ ρ2 + 3

16
+ 5

8
ρ + ρ2 − 3

16
− 1

4
ρ − 13

16
− 3

4
ρ

z3(ρ) 3
4

+ ρ + 1
4

+ 9
64

+ 1
16

ρ − 3
8
− 1

2
ρ − 3

16
− 1

16
ρ + 3

16
+ ρ + ρ2 − 3

16
+ 11

8
ρ + ρ2

8+8ρ 8+8ρ +49
8

+ 91
8

ρ+ 21
4

ρ2 −12−28ρ−16ρ2 −8−23ρ−15ρ2 −11
2
− 25

2
ρ−7ρ2 −3−7ρ−4ρ2

After inserting x21(ρ) and x31(ρ) into the basis the next tableau is obtained, which is the first

feasible tableau in which the common denominator is 15
16ρ+ 2ρ2 + ρ3.

15
16ρ + 2ρ2 + ρ3 z1(ρ) x12(ρ) z2(ρ)

x11(ρ) 9
8

+ 9
4
ρ + ρ2 + 3

8
+ 3

2
ρ + ρ2 + 87

67
ρ + 39

16
ρ2 + ρ3 + 3

8
+ 1

2
ρ

x21(ρ) 9
16

+ 3
2
ρ + ρ2 + 3

16
+ 1

4
ρ − 3

8
ρ − 1

2
ρ2 + 3

16
+ ρ + ρ2

x31(ρ) 9
8 + 9

4ρ + ρ2 + 3
8 + 1

4ρ − 3
64 ρ + 1

16 ρ2 + 3
8 + 1

2ρ
207
8

+ 669
8

ρ+ 355
4

ρ2+31ρ3 +69
8

+ 221
8

ρ+ 103
4

ρ2+8ρ3 +63
32

ρ+ 269
32

ρ2+ 187
16

ρ3+ 21
4

ρ4 +69
8

+ 257
8

ρ+ 79
2

ρ2 +16ρ3

x22(ρ) z3(ρ) x32(ρ)

+ 21
64

ρ + 7
16

ρ2 + 3
8

+ 1
4
ρ + 1

32
ρ + 1

8
ρ2

+ 9
32ρ + 9

8ρ2 + ρ3 + 3
16 + 1

4ρ − 3
8ρ − 1

2ρ2

+ 21
64ρ + 7

16ρ2 + 3
8 + 3

2ρ + ρ2 + 41
32ρ + 19

8 ρ2 + ρ3

−297
64

ρ− 645
64

ρ2− 71
16

ρ3+ρ4 +69
8

+ 201
8

ρ+ 47
2

ρ2+7ρ3 −17
32

ρ+ 35
32

ρ2+ 37
8

ρ3 +3ρ4

288 CHAPTER 7. MORE SENSITIVE OPTIMALITY CRITERIA

It can be shown that this tableau is optimal for ρ ∈ [6.18,∞), or equivalently, α ∈ [0, 0.14]. For

ρ < 6.18 the column of x22(ρ) becomes the next pivot column. The next tableau, after exchanging

x22(ρ) with x21(ρ), is optimal for ρ ∈ [0.91, 6.18], or equivalently, α ∈ [0.14, 0.52]. For ρ < 0.91

the column of x32(ρ) becomes the next pivot column. The next tableau, after exchanging x32(ρ)

with x31(ρ), is optimal for ρ ∈ [0.27, 0.91], or equivalently, α ∈ [0.52, 0.79]. Finally, for ρ < 0.27

the column of x12(ρ) becomes the pivot column. The final tableau, after exchanging x12(ρ) with

x11(ρ), is optimal for ρ ∈ (0, 0.27], or equivalently, α ∈ [0.79, 1). Hence, we have the following

results.

α ∈ [0, 0.14] : f(1) = 1, f(2) = 1, f(3) = 1 is the optimal policy.

α ∈ [0.14, 0.52] : f(1) = 1, f(2) = 2, f(3) = 1 is the optimal policy.

α ∈ [0.52, 0.79] : f(1) = 1, f(2) = 2, f(3) = 2 is the optimal policy.

α ∈ [0.79, 1) : f(1) = 2, f(2) = 2, f(3) = 2 is the optimal policy.

The policy f∞ with f(1) = f(2) = 2 is Blackwell optimal.

For the details of this example we refer to [125].

7.8 Bias optimality and policy iteration (unichain case)

We have seen in Example 6.7 that the policy iteration algorithm 6.4 will not find, in general, a bias

optimal policy for unichain MDPs. We shall see that a simple adaptation of Algorithm 6.4 provides a

correct algorithm.

Let (x, y) be a solution of the policy evaluation equation in the final iteration of Algorithm 6.4

corresponding to the average optimal policy f∞∗ , i.e. equation x · e + {I − P (f∗)}y = r(f∗), and let

ti(a) := ri(a) −
∑

j {δij − pij(a)}yj − φ for all (i, a) ∈ S × A. Then, x = φ, t(f∗) = 0 and ti(a) ≤ 0

for all (i, a) ∈ S × A. Furthermore, define A2(i) := {a ∈ A(i) | ti(a) = 0} for all i ∈ S, and

F ∗ := {f∞ ∈ C(D) | f(i) ∈ A2(i)}. We know that y is unique up to a constant. So, although y is

ambiguously defined, A2(i) is not ambiguous for all i ∈ S. Of course, f∞∗ is contained in F ∗, but F ∗ may

contain additional policies when some state i has multiple actions a with ti(a) = 0.

Note that F ∗ is the set of those policies f∞ for which φ · e + {I − P (f)}y = r(f). So, by (6.16),

u0(f) = y−P ∗(f)y. Consequently, maximizing u0(f) over F ∗ is equivalent to maximizing P ∗(f)(−y) over

F ∗. The latter is the average reward in an altered MDP in which the action sets are A2(i), i ∈ S, and the

immediate reward in state i equals −y for all a ∈ A2(i).

Theorem 7.17

If g∞ is bias optimal, then g∞ ∈ F ∗.

Proof

Take any f∞ /∈ F ∗. We shall show that f∞ is not bias optimal. Let (x = φ, y) be a solution of the policy

evaluation equation in the final iteration of Algorithm 6.4, i.e. x · e+{I −P (f∗)}y = r(f∗) for some policy

f∞∗ and ti(a) ≤ 0 for all (i, a) ∈ S ×A. Because f∞ /∈ F ∗, we have t(f) = r(f)− {I − P (f)}y − φ · e < 0.

Select policy g∞ such that, for each i ∈ S, decision g(i) ∈ A2(i) and, in addition, g(i) = f(i) whenever

ti(f) = 0. Hence, g∞ ∈ F ∗, so t(g) = r(g)−{I −P (g)}y− φ · e = 0. Similar to the proof of Theorem 6.10

we can show that either φ(f∞) < φ(g∞) or φ(f∞) = φ(g∞) and u0(f) < u0(g). Hence, f∞ is not a bias

optimal policy.

7.9. BIAS OPTIMALITY AND LINEAR PROGRAMMING 289

As a consequence of Theorem 7.17, optimizing P ∗(f)(−y) over F ∗ provides a bias optimal policy. Hence,

the next algorithm determines a bias optimal policy and the bias value vector, where the bias value vector

u0 is defined by u0 := u0(f) with f∞ a bias optimal policy.

Algorithm 7.2 Determination of a bias optimal policy by policy iteration (unichain case)

Input: Instance of a unichain MDP.

Output: A bias optimal deterministic policy g∞ and the bias value vector u0.

1. Apply Algorithm 6.4, terminating with (x = φ, y).

2. for all (i, a) ∈ S ×A do ti(a) := ri(a) −
∑

j {δij − pij(a})yj − φ

3. for all i ∈ S do A2(i) := {a ∈ A(i) | ti(a) = 0}

4. for all (i, a) ∈ S ×A2 do r2i (a) := −yi

5. Apply Algorithm 6.4 to the altered MDP with action sets A2(i), i ∈ S, and immediate rewards

r2i (a), (i, a) ∈ S × A2 in order to find g∞ as an average optimal policy for the altered MDP with

value vector φ2.

6. g∞ is a bias optimal policy for the original MDP with u0 := y + φ2 as the bias value vector.

Example 6.7 (continued)

We will apply Algorithm 7.2 to Example 6.7.

1. If we apply Algorithm 6.4, starting with f(1) = 2, f(2) = 1, we terminate with x = φ = 4 and

y = (0, 4).

2. t1(1) = t1(2) = t2(1) = 0.

3. A2(1) = {1, 2}, A2(2) = {1}.
4. r21(1) = 0, r21(2) = 0, r22(1) = −4.

5. If we apply Algorithm 6.4, starting with g(1) = 1, g(2) = 1, we terminate with φ2 = (0, 0) and

with g∞ as average optimal policy.

6. g∞ a bias optimal policy and u0 = (0, 4) + (0, 0) = (0, 4) is the bias value vector.

7.9 Bias optimality and linear programming

7.9.1 The general case

In this section we present a three-step procedure that yields a bias optimal policy. In each step an MDP

problem is solved. The first two of the three steps are to find an average optimal policy. In the first step

the original MDP problem for average rewards is solved and the dual linear program provides an optimal

solution (x∗ = φ, y∗). In the second step an altered MDP is considered with value vector φ2, similar as in

Algorithm 7.2. We will show that the bias value vector u0 satisfies u0
i = y∗i + φ2

i for all i ∈ R, where R

is the set of the states that are recurrent under at least one bias optimal policy. Therefore, it remains to

treat only the states that are transient under every bias optimal policy. Unfortunately, this set is unknown.

However, we can solve the problem with a final MDP problem which is related to the total rewards of a

certain, often simplified, MDP.

290 CHAPTER 7. MORE SENSITIVE OPTIMALITY CRITERIA

Program 1

We first solve the dual pair of linear programs for an average optimal policy. So, we compute optimal

solutions (v∗ = φ, u∗) and (x∗, y∗) of the pair of dual linear programs

min

∑

j

βjvj

∣

∣

∣

∣

∣

∑

j{δij − pij(a)}vj ≥ 0, (i, a) ∈ S ×A
vi +

∑

j

(

δij − pij(a)
)

uj ≥ ri(a), (i, a) ∈ S ×A

(7.37)

and

max

∑

(i,a)

ri(a)xi(a)

∣

∣

∣

∣

∣

∣

∣

∑

(i,a) {δij − pij(a)}xi(a) = 0, j ∈ S
∑

a xj(a) +
∑

(i,a) {δij − pij(a)}yi(a) = βj , j ∈ S
xi(a), yi(a) ≥ 0, (i, a) ∈ S ×A

,

(7.38)

where βj > 0, j ∈ S, is arbitrarily chosen.

Program 2

Let

A1(i) := {a ∈ A(i) | ∑j{δij − pij(a)}φj = 0}, i ∈ S;

A2(i) := {a ∈ A1(i) | φi +
∑

j

(

δij − pij(a)
)

u∗j = ri(a)}, i ∈ S;

S1 := {i ∈ S | A1(i) 6= ∅}; S2 := {i ∈ S | A2(i) 6= ∅}.

By equation (5.33), we have S1 = S. Any policy f∞ ∈ C(D) induces a Markov chain P (f). Let R(f) and

T (f) be the sets of recurrent and transient states, respectively, in this Markov chain.

Lemma 7.11

Let f∞ ∈ C(D) be an average optimal policy. Then,

(1) f(i) ∈ A1(i), i ∈ S.

(2) f(i) ∈ A2(i), i ∈ R(f).

(3) u0
i (f) = u∗i − {P ∗(f)u∗}i, i ∈ R(f).

(4) u0
i (f) ≤ u∗i − {P ∗(f)u∗}i, i ∈ T (f).

Proof

(1) P (f)φ = P (f)P ∗(f)r(f) = P ∗(f)r(f) = φ. Consequently, A1(i) 6= ∅, i ∈ S.

(2) From Theorem 5.20 it follows that (xf , yf), defined by (5.35) and (5.36), is an optimal solution of the

dual program (5.29). In the proof of Theorem 5.20 is shown that R(f) = Sx = {i | xf
i

(

f(i)
)

> 0} and

that f(i) ∈ A2(i), i ∈ Sx (see (5.37)).

(3) Since dij(f) = 0 for all i ∈ R(f) and all j ∈ T (f) (see section 5.3), it follows from part (2) that

u0(f)i = {D(f)r(f)}i =
{

D(f){φ + [I − P (f)]u∗}
}

i
= {[I − P ∗(f)]u∗}i for all i ∈ R(f).

(4) Since dij(f) ≥ 0 for all i, j ∈ T (f) (see section 5.3), we obtain

dij(f){φj +
∑

k

(

δjk − pjk(f)
)

u∗k} ≥ dij(f)rj(f), i, j ∈ T (f).

Part (2) of this lemma implies

dij(f){φj +
∑

k

(

δjk − pjk(f)
)

u∗k} = dij(f)rj(f), i ∈ T (f), j ∈ R(f).

Hence, ui(f) = {D(f)r(f)}i ≤
{

D(f){φ + [I − P (f)]u∗}
}

i
= {[I − P ∗(f)]u∗}i, i ∈ T (f).

7.9. BIAS OPTIMALITY AND LINEAR PROGRAMMING 291

A bias optimal policy is an average optimal policy which in addition maximizes u0(f) over the set of

average optimal policies. Lemma 7.11 shows that maximizing u0(f) over the average optimal policies is,

for the states i ∈ R(f) ⊆ S2, maximizing −{P ∗(f)u∗}i. Notice that −P ∗(f)u∗ is the average reward for

rewards r2i (a) := −u∗i for all (i, a). Lemma 7.11 also shows that f(i) ∈ A2(i), i ∈ R(f), for all average

optimal policies. Since the states S\S2 are transient under all average optimal policies, we consider a

modified MDP with state space S2 and action sets A2(i), i ∈ S2. In order to have a correct MDP we

have to remove in the states i ∈ S2 the actions a ∈ A2(i) for which pij(a) > 0 for at least one state

j ∈ S\S2 . Since R(f) is a closed set for all average optimal policies f∞, actions corresponding to average

optimal policies are not removed. Furthermore, all policies f∞ in the modified MDP satisfy φ = P (f)φ

and φ+ {I − P (f)}u∗ = r(f). Hence,

φ = P ∗(f)r(f) = φ(f∞) and u0(f) = D(f)r(f) = u∗ − P ∗(f)u∗. (7.39)

In the next algorithm the states and actions of the modified MDP are constructed.

Algorithm 7.3 Construction of the modified MDP

Input: An MDP and the sets S2 and A2(i), i ∈ S2, defined above Lemma 7.11.

Output: A correct MDP with state space S2 and action sets A2(i), i ∈ S.

1. if pij(a) = 0 for all i ∈ S2, a ∈ A2(i), j ∈ S\S2 then go to step 5.

2. select some i ∈ S2, a ∈ A2(i) with
∑

j∈S\S2
pij(a) > 0.

3. A2(i) := A2(i)\{a}; if A2(i) = ∅ then S2 := S2\{i}.

4. return to step 1.

5. STOP.

The linear programs for an average optimal policy in the modified MDP are

min

∑

j

βjwj

∣

∣

∣

∣

∣

∑

j{δij − pij(a)}wj ≥ 0, (i, a) ∈ S2 × A2

wi +
∑

j{δij − pij(a)}zj ≥ −u∗i , (i, a) ∈ S2 × A2

(7.40)

and

max

∑

(i,a)

(−u∗i)ti(a)

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a) {δij − pij(a)}ti(a) = 0, j ∈ S2

∑

a tj(a) +
∑

(i,a) {δij − pij(a)}si(a) = βj , j ∈ S2

ti(a), si(a) ≥ 0, (i, a) ∈ S2 × A2

.

(7.41)

where βj > 0, j ∈ S, is arbitrarily chosen.

Program 3

Let (w∗, z∗) be an optimal solution of program (7.40) and let (t∗, s∗) be an extreme optimal solution of the

program (7.41). From Chapter 5 we know that w∗ = φ2, the value vector of the modified MDP, and that

any f∞∗ satisfying t∗i
(

f∗(i)
)

> 0 if
∑

a t
∗
i (a) > 0 and s∗i

(

f∗(i)
)

> 0 if
∑

a t
∗
i (a) = 0 is an average optimal

policy for the modified MDP.

In the sequel we will show (see Lemma 7.14) that f∞∗ is a bias optimal policy for every state i which

is recurrent under at least one bias optimal policy. Notice this set of states is unknown. Furthermore, we

have to determine a policy which is also bias optimal in the other states. Therefore, we use the following

observation.

292 CHAPTER 7. MORE SENSITIVE OPTIMALITY CRITERIA

Let f∞ be an average optimal policy for some MDP and suppose that the value vector of this MDP

is the 0-vector. Then, the α-discounted reward vector vα(f∞) satisfies by the Laurent series expansion

vα(f∞) = u0(f) + ε(α), where limα↑1 ε(α) = 0. Hence, the bias term u0(f) may be considered as

limα↑1 vα(f∞), which is the total expected reward for policy f∞ (assumed that the total expected reward

for this policy is well-defined). Notice that the value vector of the average reward is the 0-vector if we use

r3i (a) := ri(a)− φ as immediate rewards for all (i, a).

We shall also show (see the proof of Lemma 7.15 below) that for a bias optimal policy f∞ we have

u0
i (f) ≥ u∗i + φ2

i for all i ∈ S2. As we have seen in Chapter 4 we can use for total rewards the linear

programming formulation for discounted rewards with α = 1. We also include in the linear program the

inequalities that the total reward is at least u∗i + φ2
i , i ∈ S2. Finally, from Lemma 7.11 part (1) it follows

that only actions of A1(i), i ∈ S, may be considered. By these observations the third set of linear programs

are

min

∑

j

βjgj

∣

∣

∣

∣

∣

∑

j{δij − pij(a)}gj ≥ ri(a)− φi, (i, a) ∈ S ×A1

gi ≥ u∗i + φ2
i i ∈ S2

(7.42)

and

max

∑

(i,a)∈S×A1
(ri(a)−φi)qi(a)

+
∑

i∈S2
(u∗i + φ2

i)hi

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a)∈S×A1
{δij−pij(a)}qi(a)+

∑

i∈S2
δijhi = βj , j ∈ S
qi(a) ≥ 0, (i, a) ∈ S × A1

hi ≥ 0, i ∈ S2

.

(7.43)

Combining the above observation result in the following algorithm.

Algorithm 7.4 Determination of a bias optimal policy by linear programming

Input: Instance of an MDP.

Output: A bias optimal deterministic policy g∞

1. Compute an optimal solution (v∗ = φ, u∗) of linear program (7.37).

2. for all i ∈ S do

begin A1(i) := {a ∈ A(i) | ∑j{δij − pij(a)}φj = 0};
A2(i) := {a ∈ A1(i) | φi +

∑

j{δij − pij(a)}u∗j = ri(a)}
end

3. S2 := {i ∈ S | A2(i) 6= ∅}.

4. Determine the modified MDP with state space S2 and action sets A2(i) by Algorithm 7.3.

5. Compute an optimal solution (w∗ = φ2, z∗) of linear program (7.40) and an extreme optimal solution

(t∗, s∗) of (7.41).

6. for all i ∈ S2 do

select f∗(i) such that t∗i
(

f∗(i)
)

> 0 if
∑

a t
∗
i (a) > 0 and s∗i

(

f∗(i)
)

> 0 if
∑

a t
∗
i (a) = 0.

7. Compute an optimal solution g∗ of linear program (7.42) and an extreme optimal solution (q∗, h∗)

of linear program (7.43).

8. S∗ := {i ∈ S2 | g∗i = u∗i + φ2
i }.

9. Select policy g∞ such that g(i) = f∗(i) for i ∈ S∗ and q∗i
(

g(i)
)

> 0 for i ∈ S\S∗ (STOP).

7.9. BIAS OPTIMALITY AND LINEAR PROGRAMMING 293

Example 7.5

S = {1, 2, 3, 4}; A(1) = A(2) = A(3) = A(4) = {1, 2}. Let β1 = β2 = β3 = β4 = 1
4 .

r1(1) = 2, r1(2) = 3; r2(1) = 0, r2(2) = 2; r3(1) = 0, r3(2) = −5; r4(1) = 4, r4(2) = 1.

p12(1) = p13(2) = p21(1) = p23(2) = p32(1) = p34(2) = p41(1) = p43(1) = 1 (the other transition

probabilities are 0).

1. The linear program (7.37) is:

min{ 1
4
v1 + 1

4
v2 + 1

4
v3 + 1

4
v4}

subject to

v1 − v2 ≥ 0

v1 − v3 ≥ 0

− v1 + v2 ≥ 0

v2 − v3 ≥ 0

− v2 + v3 ≥ 0

v3 − v4 ≥ 0

− v1 + v4 ≥ 0

− v3 + v4 ≥ 0

v1 + u1 − u2 ≥ 2

v1 + u1 − u3 ≥ 3

v2 − u1 + u2 ≥ 0

v2 + u2 − u3 ≥ 2

v3 − u2 + u3 ≥ 0

v3 − u2 + u3 ≥ −5

v4 − u1 + u4 ≥ 4

v4 − u3 + u4 ≥ 1

An optimal solution is: v∗1 = φ1 = v∗2 = φ2 = v∗3 = φ3 = v∗4 = φ4 = 1 (unique) and u∗1 = 2, u∗2 = 1,

u∗3 = 0, u∗4 = 6 (not unique).

2. A1(1) = A1(2) = A1(3) = A4(1) = {1, 2}; A2(1) = A2(2) = A2(3) = {1, 2}, A2(4) = ∅;
3. S2 = {1, 2, 3}.
4. Modified MDP: S2 = {1, 2, 3}; A2(1) = A2(2) = {1, 2}, A2(3) = {1}.
5. The primal program (7.40) is:

min{ 1
4
w1 + 1

4
w2 + 1

4
w3}

subject to

w1 − w2 ≥ 0

w1 − w3 ≥ 0

− w1 + w2 ≥ 0

w2 − w3 ≥ 0

− w2 + w3 ≥ 0

w1 + z1 − z2 ≥ −2

w1 + z1 − z3 ≥ −2

w2 − z1 + z2 ≥ −1

w2 + z2 − z3 ≥ −1

w3 − z2 + z3 ≥ 0

An optimal solution is: w∗
1 = φ2

1 = w∗
2 = φ2

2 = w∗
3 = φ2

3 = −1
2 (unique) and z∗1 = 1

2 , z
∗
2 = 0, z∗3 = 1

2

(not unique). The dual program (7.41) becomes (without the nonnegativity constraints):

294 CHAPTER 7. MORE SENSITIVE OPTIMALITY CRITERIA

max{−2t1(1)− 2t1(2)− t2(1) − t2(2)}
subject to

t1(1) + t1(2) − t2(1) = 0

− t1(1) + t2(1) + t2(2) − t3(1) = 0

− t1(2) − t2(2) + t3(1) = 0

t1(1) + t1(2) + s1(1) + s1(2) − s2(1) = 1
4

t2(1) + t2(2) − s1(1) + s2(1) + s2(2) − s3(1) = 1
4

t3(1) − s1(2) s2(2) + s3(1) = 1
4

An extreme optimal solution is: t∗1(1) = t∗1(2) = t∗2(1) = 0, t∗2(2) = t∗3(1) = 3
8 ; s∗1(1) = 1

4 ,

s∗1(2) = 0, s∗2(1) = 0, s∗2(2) = 1
8 , s

∗
3(1) = 0.

6. f∗(1) = 1, f∗(2) = 2, f∗(3) = 1.

7. The programs (7.42) and (7.43) are:

min{1
4g1 + 1

4g2 + 1
4g3 + 1

4g4}
subject to

g1 − g2 ≥ 1; g1 ≥ 3
2 ;

g1 − g3 ≥ 2; g2 ≥ 1
2 ;

− g1 + g2 ≥ −1; g3 ≥ −1
2 ;

g2 − g3 ≥ 1;

− g2 + g3 ≥ −1;

g3 − g4 ≥ −6;

− g1 + g4 ≥ 3;

− g3 + g4 ≥ 0;

and (without the nonnegativity constraints)

max{q1(1) + 2q1(2)− q2(1) + q2(2)− g3(1)− 6q3(2) + 3q4(1) + 3
2h1 + 1

2h2 − 1
2h3}

subject to

q1(1) + q1(2) − q2(1) − q4(1) + h1 = 1
4

− q1(1) + q2(1) + q2(2) − q3(1) + h2 = 1
4

− q1(2) − q2(2) + q3(1) + q3(2) − q4(2) + h3 = 1
4

− q3(2) + q4(1) + q4(2) = 1
4

respectively. An optimal solution of the primal program is g∗1 = 3
2 , g

∗
2 = 1

2 , g
∗
3 = −1

2 , g
∗
4 = 9

2

and q∗1(1) = q∗1(2) = q∗2(1) = q∗2(2) = q∗3(1) = q∗3(2) = 0, q∗4(1) = 1
4 , q

∗
4(2) = 0, h∗1 = 1

2 , h
∗
2 = 1

4 ,

h∗3 = 1
4 is an extreme optimal solution of the dual program.

8. S∗ = {1, 2, 3}.
9. g(1) = 1, g(2) = 2, g(3) = 1, g(4) = 1 is a bias optimal policy.

In order to show that Algorithm 7.4 is correct, we need several lemmata.

Lemma 7.12

The policy g∞, constructed in step 9 of Algorithm 7.4, is well-defined.

Proof

We have to show that
∑

a q
∗
j (a) > 0 for all j ∈ S\S∗. Take any j ∈ S\S∗, then either j ∈ S\S2 or

j ∈ S2\S∗. In the last case we have g∗j > u∗j + φ2
j , implying, by the complementary slackness property of

7.9. BIAS OPTIMALITY AND LINEAR PROGRAMMING 295

linear programming, that h∗j = 0. So, if j ∈ S\S∗, it follows from the constraints of program (7.43) that
∑

a q
∗
j (a) = βj +

∑

(i,a)∈S×A1
pij(a)q

∗
i (a) ≥ βj > 0.

Lemma 7.13

Let f∞ be an average optimal policy and let g be a feasible solution of program (7.42). Then,

{[I − P (f)]g}i = ri(f) − φi for all i ∈ R(f) and gi ≥ u0
i (f) + {P ∗(f)g}i for all i ∈ T (f).

Proof

From Lemma 7.11 part (1) it follows that f(i) ∈ A1(i) for all i ∈ S. Hence, from the constraints of linear

program (7.42) we obtain [I −P (f)]g− r(f) +φ ≥ 0. Since we have p∗ii(f) > 0, i ∈ R(f) and furthermore

P ∗(f){[I −P (f)]g− r(f) + φ} = P ∗(f){−r(f) + φ} = 0, we obtain {[I −P (f)]g}i = ri(f)− φi, i ∈ R(f).

Since dij(f) ≥ 0, i, j ∈ T (f) and {[I − P (f)]g}j = rj(f) − φj for all j ∈ R(f), we can write

0 ≤
{

D(f){[I − P (f)]g − r(f) + φ}
}

i

=
{

D(f){[I − P (f)]g}
}

i
− {D(f)r(f)}i + {D(f)P ∗(f)r(f)}i

= {[I − P ∗(f)]g}i − u0
i (f), i ∈ T (f).

Lemma 7.14

Let g∞ be a bias optimal policy and let f∞∗ be an average optimal policy for the modified MDP as selected

in step 6 of Algorithm 7.4. Then, u0
i = u0

i (f∗) = u∗i − {P ∗(f∗)u∗}i = u∗i + φ2
i for all i ∈ R(g).

Proof

By Lemma 7.11 part (2), R(g) ⊆ S2. Take any i ∈ R(g). Since g∞ be a bias optimal policy, u0
i = u0

i (g).

Because f∞∗ is an optimal policy in the modified MDP, φ2(f∞∗) = P ∗(f)(−u∗) ≥ P ∗(g)(−u∗). Notice

that, since the states S\S2 are transient under any average optimal policy, any policy in the modified

MDP can be extended to an average optimal policy for the original MDP. Hence, by Lemma 7.11 part

(3) and (4), we obtain u0
i = u0

i (g) = u∗i − {P ∗(g)u∗}i ≤ u∗i − {P ∗(f∗)u∗}i ≤ u0
i (f∗) ≤ u0

i . Therefore,

u0
i = u0

i (f∗) = u∗i − {P ∗(f∗)u
∗}i = u∗i + φ2

i for all i ∈ R(g).

Lemma 7.15

The bias value vector u0 is the unique optimal solution of program (7.42).

Proof

By (7.39), we have u0
i ≥ u0

i (f∗) = u∗i − {P (f∗)u∗}i = u∗i + φ2
i , i ∈ S2. We first show that u0 is a feasible

solution of program (7.42). Assume not, i.e.
∑

j{δij − pij(a)}u0
j < ri(a)− φi for some (i, a) ∈ S ×A1.

Let g∞ be a bias optimal policy and define the policy f∞ by f(j) :=
{ g(j) if j 6= i;

a if j = i.

Since {I − P (g)}u0 = {I − P (g)}u0(g) = {I − P (g)}D(g)r(g) = {I − P ∗(g)}r(g) = r(g) − φ, we have

{r(f) + P (f)u0 − u0 − φ}i > 0 and {r(f) + P (f)u0 − u0 − φ}j = 0 for all j 6= i. (7.44)

f(i) ∈ A1(i), i ∈ S, so φ = P ∗(f)φ. Therefore, 0 ≤ P ∗(f){r(f) + P (f)u0 − u0 − φ} = φ(f∞) − φ ≤ 0,

implying P ∗(f){r(f) +P (f)u0−u0− φ} = 0. Hence, p∗ii(f) = 0, i.e. i ∈ T (f). Since P (f) and P (g) differ

only in row i and i ∈ T (f), we have R(f) ⊆ R(g). For j ∈ R(f) and k /∈ R(f), we have djk(f) = djk(g) = 0.

Hence, u0
j(f) =

∑

k∈R(f) djk(f)rk(f) =
∑

k∈R(g) djk(g)rk(g) = u0
j(g) = u0

j , j ∈ R(f). Furthermore,

{P ∗(f)u0}i =
∑

j∈R(f)

p∗ij(f)u
0
j =

∑

j∈R(f)

p∗ij(f)u
0
j (f) = {P ∗(f)D(f)r(f)}i = 0. (7.45)

296 CHAPTER 7. MORE SENSITIVE OPTIMALITY CRITERIA

Since dii(f) > 0 and using (7.44) and (7.45), we can write

u0
i (f) = {D(f)r(f)}i =

∑

j dij(f)rj(f)

>
∑

j dij(f){[I − P (f)]u0 + φ}j = {D(f)[I − P (f)]u0 +D(f)φ}i
= {[I − P ∗(f)]u0}i + {D(f)P ∗(f)φ}i = u0

i ,

implying a contradiction. So, we have shown that u0 is a feasible solution of program (7.42).

Finally we show that u0 is the, componentwise, smallest solution of (7.42).

Let w be an arbitrary feasible solution of (7.42).

If j ∈ R(g), then Lemma 7.14 implies u0
j = u0

j (f∗) = u∗j + φ2
j ≤ wj.

If j ∈ T (g), then Lemma 7.13 implies wj ≥ u0
j(g) + {P ∗(g)w}j ≥ u0

j(g) = u0
j , the last inequality because

0 = P ∗(g)D∗(g)r(g) = P ∗(g)u0(g) = P ∗(g)u0 ≤ P ∗(g)w (this inequality because u0
j ≤ wj, j ∈ R(g)).

Hence, we have shown that u0
j ≤ wj for all j ∈ S.

Lemma 7.16

u0
i − {P (f∗)u0}i = ri(f∗) − φi, i ∈ S∗.

Proof

We consider the modified MDP with state space S2 and action sets A(i), i ∈ S2 . From the constraints

of (7.42) and the feasibility of u0 for (7.42) it follows that u0
i − {P (f∗)u0}i ≥ ri(f∗) − φi for all i ∈ S∗.

Suppose that u0
i −{P (f∗)u0}i > ri(f∗)−φi for some i ∈ S∗. Since P ∗(f∗){u0−P (f∗)u0− r(f∗)− φ} = 0,

state i /∈ R(f∗), i.e. i ∈ T (f∗). Because {u0 − P (f∗)u0 − r(f∗)− φ}j = 0 and dij(f∗) ≥ 0 for all j ∈ T (f∗)

and dii(f∗) > 0, we can write

0 <
{

D(f∗)[u0 − P (f∗)u0 − r(f∗)− φ]
}

i
=
{

D(f∗)[u0 − P (f∗)u0 − r(f∗) − P ∗(f∗)r(f∗)]
}

i

= {u0 − P ∗(f∗)u0 − u0(f∗)}i ≤ {u0 − P ∗(f∗)u0(f∗) − u0(f∗)}i = {u0 − u0(f∗)}i.

From Lemma 7.15 it follows that S∗ = {j ∈ S2 | u0
j = u∗j + φ2

j}. Relation (7.39) and the optimality of f∞∗
in the modified MDP imply that u0

j (f∗) = u∗j − {P ∗(f∗)u∗}j = u∗j + φ2
j , j ∈ S2. Hence,

u0
j (f∗) = u0

j , j ∈ S∗, (7.46)

contradicting the previous statement 0 < {u0 − u0(f∗)}i.

Lemma 7.17

S∗ is a closed set in the Markov chain P (g), where g∞ is defined in step 9 of Algorithm 7.4.

Proof

Since g(i) = f∗(i), i ∈ S∗ and S2 is closed in the Markov chain P (f∗), we have to show that S∗ is a closed

set in in the Markov chain P (f∗) for the modified MDP. From Lemma 7.16 and relation (7.46) we have

for all i ∈ S∗

0 = {u0 − P (f∗)u0 − r(f∗)− P ∗(f∗)r(f∗)}i = {u0(f∗)− P (f∗)u0 − r(f∗)− P ∗(f∗)r(f∗)}i
0 =

{

u0(f∗) + P (f∗)[u0(f∗)− u0]− P (f∗)u0(f∗) − r(f∗)− P ∗(f∗)r(f∗)
}

i

0 = {P (f∗)[u0(f∗)− u0]}i + {[I − P (f∗)]D(f∗)r(f∗)}i − {[I − P ∗(f∗)]r(f∗)}i
0 = {P (f∗)[u0(f∗)− u0]}i =

∑

j pij(f∗){u0(f∗)− u0}j =
∑

j /∈S∗
pij(f∗){u0(f∗)− u0}j.

Since u0(f∗) = u∗ − P ∗(f∗)u∗ ≤ u∗ + φ2 on S2, we have u0
j(f∗) − u0

j ≤ u∗j + φ∗
j − u0

j < 0 for all j /∈ S∗.

Hence, pij(f∗) = 0, i ∈ S∗, j /∈ S∗, i.e. S∗ is a closed set in the Markov chain P (f∗).

7.9. BIAS OPTIMALITY AND LINEAR PROGRAMMING 297

Lemma 7.18

The states of S\S∗ are transient in the Markov chain P (g), where g∞ is defined in step 9 of Algorithm

7.4.

Proof

Suppose there is a state j ∈ S\S∗ which is recurrent under P (g). Since S∗ is closed under P (f∗) there

exists a nonempty ergodic set J ⊆ S\S∗. Let J = {j1, j2, . . . , jm}. The constraints of program (7.43)

imply
∑

a∈A1(j)
q∗j (a) + h∗j = βj +

∑

(i,a)∈S×A1
pij(a)q

∗
i (a) ≥ βj > 0, j ∈ S2

∑

a∈A1(j)
q∗j (a) = βj +

∑

(i,a)∈S×A1
pij(a)q

∗
i (a) ≥ βj > 0, j ∈ S\S2

Since (q∗, h∗) is an extreme optimal solution and since the linear program has N equality constraints, for

each state j either h∗j > 0 (and q∗j (a) = 0 for all a ∈ A1(j)) or q∗j (a) > 0 for exactly one action, say

action aj (the other variables h∗j and q∗j (a), a 6= aj , are zero). From the complementary slackness property

of linear programming it follows that h∗j = 0 for all j ∈ S2\S∗. Hence, in every state ji of J we have

exactly one positive variable, namely q∗jiaji
, i = 1, 2, . . . , m. The corresponding column vectors of the

linear program with elements δjik − pjik(aji
), k = 1, 2, . . . , N , are linearly independent. Since J is closed,

δjik − pjik(aji
) = 0, k /∈ J. Therefore, we have

∑

k∈J {δjik − pjik(aji
)} =

∑N
k=1 {δjik − pjik(aji

)} = 1− 1 = 0, i = 1, 2, . . . , m,

which contradicts the linear independence of these vectors.

Theorem 7.18

The policy g∞, defined in step 9 of Algorithm 7.4, is bias optimal.

Proof

Since q∗i
(

g(i)
)

> 0 for i ∈ S\S∗, it follows from the complementary slackness property that

u0
i − {P (g)u0}i = ri(g) − φi, i ∈ S\S∗. (7.47)

P (g) and P (f∗) have the same rows on the closed set S∗. Then, by (7.47) and Lemma 7.16, we obtain

u0 − P (g)u0 = r(g)− φ. Since g(i) ∈ A1(i), i ∈ S, we have φ = P (g)φ = P ∗(g)φ. Consequently,

0 = P ∗(g){u0 − P (g)u0} = P ∗(g){r(g) − φ} = φ(g∞)− φ, implying D(g)φ = D(g)P ∗(g)r(g) = 0 and

u0(g) = D(g)r(g) = D(g){I −P (g)}u0 = u0−P ∗(g)u0. Because u0
j(g) = u0

j for all j ∈ S∗ (see (7.46)) and

because the states of S\S∗ are transient in the Markov chain P (g) (see Lemma 7.18), we obtain

u0(g) = u0 − P ∗(g)u0 = u0 − P ∗(g)u0(g) = u0. Hence, g∞ is a bias optimal policy.

7.9.2 The unichain case

Linear programming for bias optimality in the irreducible case was discussed in section 7.6.2. The present

section deals with the unichain case. In the unichain case the value vector φ is constant and we consider

φ as a scalar. Program (7.37) becomes

min {v | v +
∑

j

(

δij − pij(a)
)

uj ≥ ri(a), (i, a) ∈ S ×A}. (7.48)

with as dual program

max

∑

(i,a)

ri(a)xi(a)

∣

∣

∣

∣

∣

∣

∣

∑

(i,a) {δij − pij(a)}xi(a) = 0, j ∈ S
∑

(i,a) xi(a) = 1

xi(a) ≥ 0, (i, a) ∈ S × A

. (7.49)

298 CHAPTER 7. MORE SENSITIVE OPTIMALITY CRITERIA

Let the optimal solutions of (7.48) and (7.49) be (v∗ = φ, u∗) and x∗, respectively. Define A2(i), i ∈ S,

and S2 as in section 7.9.1, i.e. A2(i) := {a ∈ A(i) | φ +
∑

j

(

δij − pij(a)
)

u∗j = ri(a)} for all i ∈ S and

S2 := {i ∈ S | A2(i) 6= ∅}. Also the programs for the modified MDP simplify and become

min {w | w +
∑

j

{δij − pij(a)}zj ≥ −u∗i , (i, a) ∈ S2 ×A2} (7.50)

and

max

∑

(i,a)

(−u∗i)ti(a)

∣

∣

∣

∣

∣

∣

∣

∑

(i,a) {δij − pij(a)}ti(a) = 0, j ∈ S2
∑

(i,a) ti(a) = 1

ti(a) ≥ 0, (i, a) ∈ S2 ×A2

. (7.51)

In this unichain case the algorithm becomes as follows (the proof of correctness follows straightforward

from the previous section).

Algorithm 7.5 Determination of a bias optimal policy by linear programming (unichain case)

Input: Instance of a unichain MDP.

Output: A bias optimal deterministic policy g∞

1. Compute an optimal solution (v∗ = φ, u∗) of linear program (7.48).

2. for all i ∈ S do A2(i) := {a ∈ A(i) | φ+
∑

j{δij − pij(a)}u∗j = ri(a)}.

3. S2 := {i ∈ S | A2(i) 6= ∅}.

4. Determine the modified MDP with state space S2 and action sets A2(i) by Algorithm 7.3.

5. Compute an optimal solution (w∗ = φ2, z∗) of linear program (7.50) and an extreme optimal solution

t∗ of (7.51).

6. for all i ∈ S2 do

select f∗(i) such that t∗i
(

f∗(i)
)

> 0 if
∑

a t
∗
i (a) > 0 and arbitrary from A2(i) if

∑

a t
∗
i (a) = 0.

7. Compute an optimal solution g∗ of linear program (7.42) and an extreme optimal solution (q∗, h∗)

of linear program (7.43), where A1(i) = A(i) for all i ∈ S.

8. S∗ := {i ∈ S2 | g∗i = u∗i + φ2
i }.

9. Select policy g∞ such that g(i) = f∗(i) for i ∈ S∗ and q∗i
(

g(i)
)

> 0 for i ∈ S\S∗ (STOP).

7.10 Turnpike results and bias optimality (unichain case)

This section deals with the undiscounted MDP when the planning horizon is long but fixed and finite.

Throughout this section we assume that each transition matrix P (f) is an aperiodic Markov chain which

has one ergodic set plus perhaps some transient states. Let vn be the N -vector whose ith component is

the maximum total expected reward when the initial state is i and when the planning horizon consists of

n epochs. With v0 := 0, the standard recursive relation of dynamic programming characterizes vn by the

equation system

vn
i = maxa {ri(a) + pij(a)v

n−1
j }, i ∈ S, n = 1, 2, (7.52)

Let fn be an optimal decision rule in epoch n, i.e. vn = r(fn) + P (fn)vn−1. Then, policy Rn, defined by

Rn := (f1, f2, . . . , fn), is an optimal policy for the total rewards over this finite horizon MDP, also called

a time-optimal policy.

7.10. TURNPIKE RESULTS AND BIAS OPTIMALITY (UNICHAIN CASE) 299

This section analyses the asymptotic behavior of vn and fn as n approaches infinity. Theorems describ-

ing such behavior are often called turnpike theorems. A policy Rn = (f1, f2, . . . , fn) is called eventually

stationary if an integer m exists, with 1 ≤ m < n such that fm = fm+1 = fm+2 = · · · . An interesting

question is: is the time-optimal policy eventually stationary? One might hope so, since the effect of the

end of the planning horizon on decision made at the beginning can be expected to vanish as the planning

horizon approaches infinity. But this need not be the case, as illustrated by the next example.

Example 7.6

Consider the following MDP with transition probabilities and immediate rewards that are dependent on

scalars p and q with 0 < p < q < 1.

S = {1, 2}; A(1) = {1, 2}, A(2) = {1}; p11(1) = p, p12(1) = 1− p; p11(2) = q, p12(2) = 1− q;
p21(1) = 1, p22(1) = 0; r1(1) = 2− p, r1(2) = 2− q, r2(1) = 0.

The are two deterministic policies f∞1 and f∞2 with f1(1) = 1 and f2(1) = 2, respectively. The stationary

distribution π1 of the Markov chain P (f1) satisfies π1 =
(

1
2−p

, 1−p
2−p

)

. Hence, φ(f∞1) = (π1)T r(f1) = 1.

The solution of the policy evaluation equation (6.15), i.e. x·e+{I−P (f)}y = r(f), with y1 is x = 1, y1 = 0

and y2 = −1. Since, by (6.16), u0(f) = y − P ∗(f)y, we obtain u0(f1) =
(

1−p
2−p ,

−1
2−p

)

.

Similarly, the computation for f∞2 yields π2 =
(

1
2−q ,

1−q
2−q

)

, φ(f∞2) = 1 and u0(f2) =
(

1−q
2−q ,

−1
2−q

)

.

Since 0 < p < q < 1, u0
1(f1) > u0

1(f2) and u0
2(f1) > u0

2(f2). So, f∞1 and f∞2 are both optimal policies, but

f∞1 is bias optimal and f∞2 not.

We shall show that the time-optimal policy Rn oscillates between f∞1 and f∞2 . The proof that this occurs

can be given by observing that tn oscillates around 0, where tn := vn
1 − vn

2 − 1.

vn
1 = max{wn(1), wn(2)}, where wn(1) := 2−p+pvn−1

1 +(1−p)vn−1
2 andwn(2) := 2−q+qvn−1

1 +(1−q)vn−1
2 .

Note that wn(1)−wn(2) = −(p − q) + (p− q)vn−1
1 − (p − q)vn−1

2 = (p − q)tn−1 and (p− q) < 0.

Hence, fn(1) = 1 if tn−1 < 0 and fn(1) = 2 if tn−1 > 0.

If tn−1 < 0, then tn = vn
1 − vn

2 − 1 = {2− p+ pvn−1
1 + (1− p)vn−1

2 } − vn−1
1 − 1 = (p− 1)tn−1 > 0.

Similarly, if tn−1 < 0, then tn = (q − 1)tn−1 < 0.

Since t0 = −1, the sequence tn oscillates, and fn(1) = 1 when n is odd and fn(1) = 2 when n is even.

In this example we will also show that vn → n · φ+ u∗ + d · e, with d > 0, as n→∞. To compute the

asymptotic form of vn, one can exploit the fact that fn(1) oscillates. Working first with n even, we can

write with yn := v2n, n = 1, 2, . . .

yn = v2n = r(f2) + P (f2)v
2n−1 = r(f2) + P (f2){r(f1) + P (f1)v

2n−2}
= {r(f2) + P (f2)r(f1)} + P (f2)P (f1)y

n−1 .

Let r := r(f2) + P (f2)r(f1) =
(

2+s
2−p

)

and P := P (f2)P (f1) =
(

1−s s
p 1−p

)

, where s := q(1− p) ∈ [0, 1].

Then, yn = r+Pyn−1 for n = 1, 2, Note that the Markov chain P is aperiodic and irreducible. Hence,

P n → P ∗ as n→∞. From Theorem 5.8, part (3), it follows that yn = (nφ) · e+ u0 +P nu0 for all n ∈ N.

Therefore, yn → (ng) · e+ u0 as as n→∞, where g = πT r with π the stationary distribution of P .

A little algebra gives: π1 = p
p+s , π2 = s

p+s ; u0
1 = s

p+s , u
0
2 = − p

p+s and g1 = g2 = 2.

Since v2n = wn, we obtain v2n → 2n ·
(

1
1

)

+
(1− p

p+q−pq

− p

p+q−pq

)

.

Because in the original MDP the average value φ and the bias value vector u∗ satisfy φ = 1 and

u∗1 = 1−p
2−p , u

∗
2 = −1

2−p , we have v2n → (2nφ) · e+ u∗ + d · e with d := 1
2−p −

p
p+q−pq as n→∞.

300 CHAPTER 7. MORE SENSITIVE OPTIMALITY CRITERIA

It is easy to verify that d > 0.

Next, we consider n odd. We can write

v2n+1 = r(f1) + P (f1)v
2n → r(f1) + P (f1){(2nφ) · e+ u∗ + d · e} as n→∞.

Since φ · e = P ∗(f1)r(f1), u∗ = D(f1)r(f1) and I + P (f1)D(f1) = D(f1) + P ∗(f1), we have

v2n+1 → (2n+ 1)φ · e+ u∗ + d · e as n→∞.

Hence, for all n we have vn → (nφ) · e+ u∗ + d · e, with d > 0, as n→∞.

In the sequel we will show that in any unichain MDP vn → (nφ) · e + u∗ + d · e, with d > 0, as n → ∞.

Let en := vn − (nφ) · e− u∗ for n = 0, 1, . . . (cf. (5.46)). Let f∞∗ be a bias optimal policy and let π(f∗)

be the stationary distribution of P (f∗). Then, π(f∗)Tu∗ = π(f∗)TD(f∗)r(f∗) = 0. Note that e0 = −u∗, so

π(f∗)
T e0 = 0, implying that e0 has normally both positive and negative elements.

First, we have

en = maxa {ri(a) +
∑

j pij(a)v
n−1
j − n · φ− u∗i }

= maxa {ri(a) +
∑

j pij(a)[e
n−1
j + (n− 1) · φ+ u∗j]− n · φ− u∗i }

= maxa {[ri(a) +
∑

j pij(a)u
∗
j − φ− u∗i] +

∑

j pij(a)e
n−1
j }

= maxa {r∗i (a) +
∑

j pij(a)e
n−1
j },

where r∗i (a) := ri(a) +
∑

j pij(a)u
∗
j − φ− u∗i for all (i, a) ∈ S ×A.

The equation en = maxa {r∗i (a)+
∑

j pij(a)e
n−1
j }, i ∈ S, is the value iteration for an MDP with immediate

rewards r∗i (a) and with terminal reward e0 := −u∗. Consider Algorithm 6.4 with the bias optimal policy

f∞∗ as starting policy. Then, by Theorem 6.10, the algorithm terminates in the first iteration. Hence, we

have ri(a) +
∑

j pij(a)yj ≤ φ(f∞∗) + yi = φ+ yi for all (i, a) ∈ S × A. Since, by (6.16), y = u0(f∗) + c · e
for some scalar c, we obtain r∗i (a) ≤ 0 for all (i, a) ∈ S × A.

Furthermore, the maximizing actions for the value iteration scheme {vn} and {en} are the same, namely:

fn(i) = argmax{ri(a) +
∑

j pij(a)v
n−1
j } ⇔

fn(i) = argmax{ri(a) +
∑

j pij(a)[e
n−1
j + (n− 1)φ+ u∗j]} ⇔

fn(i) = argmax{ri(a) +
∑

j pij(a)u
∗
j +

∑

j pij(a)e
n−1
j } ⇔

fn(i) = argmax{ri(a) +
∑

j pij(a)u
∗
j − φ− u∗i +

∑

j pij(a)e
n−1
j } ⇔

fn(i) = argmax{r∗i (a) +
∑

j pij(a)e
n−1
j }.

Let f∞∗ be a bias optimal policy and let Rn := (f1, f2, . . . , fn), n ≥ 1, be a time optimal policy. Then, by

Lemma 5.8, part (1),

P (f∗)e
n ≤ en+1 ≤ P (fn+1)e

n for n = 0, 1, (7.53)

Then, it follows that (minj e
n
j)·e = (minj e

n
j)·P (f∗)e ≤ P (f∗)en ≤ en+1. Hence, minj e

n
j ≤minj e

n+1
j , i.e.

minj e
n
j is nondecreasing in n. Similarly, one can show that maxj e

n
j is nonincreasing in n. In particular,

since e0 = −u∗, we have

minj (−u∗j) ≤ en
i ≤ maxj (−u∗j) for all i ∈ S and n = 0, 1, (7.54)

Define mi := lim infn→∞ ei, Mi := lim supn→∞ ei, i ∈ S, and m := mini mi, M := maxi Mi.

Lemma 7.19

If πk(f∗) > 0, then m = mk = Mk.

7.10. TURNPIKE RESULTS AND BIAS OPTIMALITY (UNICHAIN CASE) 301

Proof

In the proof of Theorem 5.24 we have already shown that m ≥ P ∗(f∗)M . Therefore, it follows that

P ∗(f∗)m ≥ P ∗(f∗)M ≥ P ∗(f∗)m, i.e. P ∗(f∗)(M −m) = 0. Hence, if πk(f∗) > 0, then Mk = mk. From

m ≥ P ∗(f∗)M , we obtain m ≥ P ∗(f∗)m, i.e. mi ≥
∑

j πj(f∗)mj , i ∈ S, implyingm ≥∑j πj(f∗)mj ≥ m.

Hence, if πk(f∗) > 0, then mk = m, which completes the proof that, if πk(f∗) > 0, m = mk = Mk.

Let S+ := {k | πk(f∗) > 0}. It is well known that S+ is closed under P (f∗). Furthermore, define SM by

SM := {i | Mi = M}. The next lemma shows that SM is closed under P (fM), where fM (i) for any i ∈ S
is defined by the following procedure:

Let {nl}, l = 1, 2, . . . be a subsequence such that:

(1) Mi = liml→∞ enl+1 .

(2) fM (i) = fnl+1(i) for l = 1, 2, . . . (since A(i) is finite fM (i) is well-defined).

Lemma 7.20

SM is closed under P (fM).

Proof

Since, by Lemma 5.8, part (1), enl+1 ≤ P (fnl+1)e
nl , we can write for all i ∈ S,

Mi = liml→∞ enl+1 ≤ lim supl→∞ {
∑

j pij(fM)enl

j } ≤
∑

j pij(fM) · lim supl→∞ enl

j ≤
∑

j pij(fM)Mj .

For i ∈ SM , we have Mi = M . Hence, 0 ≥∑j pij(fM)(Mj −M) =
∑

j pij(fM)Mj −M ≥Mi −M = 0.

Since pij(fM)(Mj −M) = 0 for all i ∈ SM and all j ∈ S, we have pij(fM) = 0 for i ∈ SM and j /∈ SM , i.e.

SM is closed under P (fM).

Lemma 7.21

m = M and en → d · e for some d ≥ 0.

Proof

Suppose m < M . Lemma 7.19 verifies Mk = mk = m, whenever k ∈ S+. So, since m < M , the sets S+

and SM are disjoint. Define g∞ such that g(i) := f∗(i), i ∈ S+ and g(i) := fM (i), i ∈ SM . Then P (g) has

(at least) two ergodic subchains, which contradicts our hypothesis in this section. Therefore, m = M , i.e.

limn→∞ ei exits for all i ∈ S and is independent of i. Denote this limit by d; then, en → d · e as n→ ∞.

To see that d ≥ 0, we use again Lemma 5.8, part (1), which provides,

en ≥ P (f∗)en−1 ≥ · · · ≥ P n(f∗)e0 = −P n(f∗)u∗ = −P n(f∗)D(f∗)r(f∗)→ −P ∗(f∗)D(f∗)r(f∗) = 0.

Hence, d · e = limn→∞ en ≥ 0.

Lemma 7.22

Let A2(i) := {a ∈ A(i) | r∗i (a) = 0}, i ∈ S. Then, for all sufficiently large n, fn(i) ∈ A2(i) for all i ∈ S.

Proof

We have already observed that r∗i (a) ≤ 0 for all (i, a) ∈ S ×A. Let ε := −maxi,a {r∗i (a) | r∗i (a) < 0} > 0.

Take n1 big enough such that ‖en − d · e‖ < 1
2
ε for all n ≥ n1. For n > n1 and a /∈ A2(i), we obtain

r∗i (a) +
∑

j pij(a)e
n−1
j < −ε+ 1

2ε+ d = d− 1
2ε < en

i . Hence, a 6= fn(i).

A simple implication of Lemma 7.22 is that Rn is eventually stationary whenever |A2(i)| = 1 for all i ∈ S,

which is often the case. Define vm,n in terms of a planning horizon that is m+ n epochs long, where vm,n
i

302 CHAPTER 7. MORE SENSITIVE OPTIMALITY CRITERIA

be the total expected reward for starting in state i, using a bias optimal policy f∞∗ for the first m epochs

and using the time-optimal policy Rn for the remaining n epochs. In the beginning of Section 6.2.2 we

have derived that vm(f∞) = m · φ(f∞) + u0(f) − Pm(f)u(f) for every f∞ ∈ C(D). Hence, we have

vm,n = (mφ) · e+ u∗ − Pm(f∗)u
∗ + Pm(f∗)v

n

= (mφ) · e+ u∗ − Pm(f∗)u∗ + Pm(f∗){(nφ) · e+ u∗ + en}
= [(m+ n)φ] · e+ u∗ + Pm(f∗)en.

Lemma 7.23

For any ε > 0 there exists an integer n1 such that for every n ≥ n1 and every m, vm+n − vm,n ≤ ε · e.

Proof
vm+n − vm,n = {[(m+ n)φ] · e+ u∗ + en+m} − {[(m+ n)φ] · e+ u∗ + Pm(f∗)en

= en+m − Pm(f∗)en ≥ 0,

the last inequality by Lemma 5.8, part (1). As n→∞, we obtain em+n − Pm(f∗)en → d · e− d · e = 0.

So, for any fixed m and any n large enough, we have vm+n − vm,n ≤ ε · e.

7.11 Overtaking, average overtaking and cumulative overtaking

optimality

A policy R∗ is overtaking optimal if lim infT→∞ {vT (R∗) − vT (R)} ≥ 0 for all policies R.

Example 7.7

S = {1, 2, 3}; A(1) = {1}, A(2) = {1, 2}, A(3) = {1}.
r1(1) = 0, r2(1) = 1; r2(2) = 0, r3(1) = 1.

p11(1) = 0, p12(1) = 1, p13(1) = 0; p21(1) = 1, p22(1) = 0, p23(1) = 0;

p21(2) = 0, p22(2) = 0, p23(2) = 1; p31(1) = 0, p32(1) = 1, p33(1) = 0.

There are two deterministic stationary policies f∞1 with f1(2) = 1 and f∞2 with f2(2) = 2.

Observe that:

vT
1 (f∞1) =

{

1
2T − 1

2 if T is odd
1
2T if T is even

; vT
2 (f∞1) =

{

1
2T + 1

2 if T is odd
1
2T if T is even

; vT
3 (f∞1) =

{

1
2T + 1

2 if T is odd
1
2T + 1 if T is even

;

vT
1 (f∞2) =

{

1
2
T − 1

2
if T is odd

1
2T − 1 if T is even

; vT
2 (f∞2) =

{

1
2
T − 1

2
if T is odd

1
2T if T is even

; vT
3 (f∞2) =

{

1
2
T + 1

2
if T is odd

1
2T if T is even

.

Hence,

vT
1 (f∞1)− vT

1 (f∞2) =

{

0 if T is odd

1 if T is even
; vT

2 (f∞1)− vT
2 (f∞2) =

{

1 if T is odd

0 if T is even
;

vT
3 (f∞1)− vT

3 (f∞2) =

{

0 if T is odd

1 if T is even
.

Therefore, lim infT→∞ {vT
i (f∞1) − vT

i (f∞2)} = 0, i ∈ S, and lim supT→∞ {vT
i (f∞1) − vT

i (f∞2)} = 1, i ∈ S.

So f∞1 dominates f∞2 in the overtaking optimal sense. in fact, one can show that f∞1 is overtaking optimal.

In contrast with other criteria, an overtaking optimal policy doesn’t exist in general as the next example

shows.

7.12. A WEIGHTED COMBINATION OF DISCOUNTED AND AVERAGE REWARDS 303

Example 7.8

S = {1, 2, 3}; A(1) = {1, 2}, A(2) = {1}, A(3) = {1}.
r1(1) = 1, r1(2) = 0; r2(1) = 0, r3(1) = 2.

p11(1) = 0, p12(1) = 1, p13(1) = 0; p11(2) = 0, p12(2) = 0, p13(2) = 1;

p21(1) = 0, p22(1) = 0, p23(1) = 1; p31(1) = 0, p32(1) = 1, p33(1) = 0.

There are two deterministic stationary policies f∞1 with f1(1) = 1 and f∞2 with f2(1) = 2. Observe that:

vT
1 (f∞1) =

{

T if T is odd

T − 1 if T is even
; vT

2 (f∞1) =

{

T + 1 if T is odd

T if T is even
; vT

3 (f∞1) =

{

T + 1 if T is odd

T if T is even
;

vT
1 (f∞2) =

{

T − 1 if T is odd

T if T is even
; vT

2 (f∞2) =

{

T − 1 if T is odd

T if T is even
; vT

3 (f∞2) =

{

T + 1 if T is odd

T if T is even
.

Hence,

vT
1 (f∞1)− vT

1 (f∞2) =

{

1 if T is odd

−1 if T is even
; vT

2 (f∞1)− vT
2 (f∞2) = vT

3 (f∞1)− vT
3 (f∞2) = 0 for all T .

Therefore, lim infT→∞ {vT
1 (f∞1) − vT

1 (f∞2)} = −1 and lim infT→∞ {vT
1 (f∞2)− vT

1 (f∞1)} = −1.

Hence neither f∞1 dominates f∞2 nor f∞2 dominates f∞1 in the overtaking optimal sense. in fact, for this

model there exists no overtaking optimal policy.

One might suspect that periodic chains are the sole cause of the nonexistence of an overtaking optimal

policy. But Brown ([34]) provided an example that has no periodic chains, but nevertheless no overtaking

optimal policy.

Example 7.8 shows that the criterion of overtaking optimality is overselective. Therefore, we consider the

following less selective criterion. A policy R∗ is called average overtaking optimal if

lim inf
T→∞

1

T

T
∑

t=1

{vt(R∗)− vt(R)} ≥ 0 for all policies R.

Notice that this criterion is the same as 0-average optimality which is also equivalent to bias optimality.

It is easy to verify that in Example 7.8 both f∞1 and f∞2 are average overtaking optimal policies.

We also introduce another criterion which is less selective than overtaking optimality, but more selective

than average overtaking optimality. A policy R∗ is called cumulative overtaking optimal if

lim inf
T→∞

T
∑

t=1

{vt(R∗) − vt(R)} ≥ 0 for all policies R.

Notice that if R∗ is cumulative overtaking optimal it is also an average overtaking optimal policy, so that

the criterion of cumulative overtaking optimality is more selective that the criterion of average overtaking

optimality. It is easy to verify that in Example 7.8 f∞1 dominates f∞2 in the cumulative overtaking optimal

sense, namely:
∑T

t=1{vt(f∞1)− vt(f∞2)} =

{

1 if T is odd;

0 if T is even.

7.12 A weighted combination of discounted and average rewards

The two most commonly considered reward criteria for MPDs are the total discounted rewards and the

long-run average rewards. The first tends to neglect the far future, while the second one tends to neglect

the short-term rewards. In this section we consider a new optimality criterion consisting of a weighted

304 CHAPTER 7. MORE SENSITIVE OPTIMALITY CRITERIA

combination of these two criteria. Example 7.9 (see below) motivates this choice. For the sensitive criteria,

discussed so far in this chapter, priority is given to finding an average optimal policy, using additional

criteria for further selection within the class of average optimal policies. An implication of the weighted

combination criterion will be that an optimal policy might not exist, even when we allow nonstationary

randomized policies. We present an iterative algorithm for computing an ε-optimal nonstationary policy

with a simple structure.

Example 7.9

Suppose that the owner of a business is currently using a very dependable supplier of a rare material

which is essential for his business. However, a new supplier proposes to meet his demand at a much

lower price, but is less dependable. The owner of the business estimates that with probability 0.1 the new

supplier may fail to deliver the raw material in any given year, and that such a failure would result in

bankruptcy. Assuming that the annual profits with the old and new supplier will be 100.000 and 154.000

euro, respectively, that the discount factor α = 0.8, and that each year a new contract has to be signed

with the supplier.

Consider, for the decision problem whether or not to switch to the new supplier, the following MDP

model. Introduce two states: state 1 for business operation and state 2 for bankruptcy. In state 1 there

are two actions: a = 1 for switching to the new supplier and a = 2 for keeping the old supplier; state 2 is

an absorbing state. Hence the transition probabilities are: p11(1) = 0.9, p12(1) = 0.1; p11(2) = 1, p12(2) =

0; p21(1) = 0, p22(1) = 1. The immediate rewards are: r1(1) = 154.000; r1(2) = 100.000; r2(1) = 0.

There are two deterministic stationary policies: f∞1 and f∞2 corresponding to signing a contract with

the new and old supplier, respectively. It is easy to see that the total expected discounted rewards are:

vα(f∞1) = 550.000 and vα(f∞2) = 500.000. Hence, the policy f∞1 is α-discounted optimal. However, the

use of this policy results finally in bankruptcy and the expected average reward φ(f∞1) = 0. Note that

φ(f∞2) = 100.000.

Consider for some k ≥ 1 a policy Rk of the form Rk = (g1, g2, . . . , gk, h1, h2, . . .), where gj := f1 for

j = 1, 2, . . . , k and hj := f2 for j = 1, 2, Then, it is easy to verify that vα(Rk) = 550−0.72k ·50, which

is between 500.000 and 550.000. The probability of bankruptcy is 1− (0.9)k. Hence, policies of this form

will enable the owner to balance the increased profits of the new supplier against the risk of bankruptcy.

Policies of the type Rk are more sensitive to the future then the discounted optimal policy f∞1 .

For any policy R and initial state i ∈ S, the weighted reward wi[λ1, λ2](R) is defined by:

wi[λ1, λ2](R) := λ1 · (1− α)vα
i (R) + λ2 · φi(R), (7.55)

where λ1, λ2 ∈ [0, 1] are fixed parameters and α ∈ [0, 1) is the discount factor.

1. Note that for λ1 = 1 and λ2 = 0 this criterion is the total discounted reward; for λ1 = 0 and λ2 = 1

this criterion is the average reward.

2. A policy R∗ that optimizes wi[λ1, λ2](R) is a Pareto optimal policy in a bi-objective optimization

problem in which the decision maker wishes to ’simultaneously optimize’ both the discounted and the

average reward criterion.

3. The results of Derman and Strauch ([71]) imply that supC wi[λ1, λ2](R) = supC(M) wi[λ1, λ2](R) for

all i ∈ S, so we only need to consider Markov policies. It is obvious that the following inequalities

hold:

sup
R∈C(D)

wi[λ1, λ2](R) ≤ sup
R∈C(S)

wi[λ1, λ2](R) ≤ sup
R∈C(M)

wi[λ1, λ2](R) ≤ λ1 ·(1−α)vα
i +λ2·φi, i ∈ S. (7.56)

The upper bound on the right-hand side of (7.56) will be referred to as the utopian bound.

7.12. A WEIGHTED COMBINATION OF DISCOUNTED AND AVERAGE REWARDS 305

4. Note that in the discounted MDP there always exists an α0 ∈ [0, 1) and a deterministic policy f∞0
such that f∞0 is optimal for both the discounted and average reward criterion (such policy is also called

a Blackwell optimal policy). Such a policy clearly attains the utopian bound and is therefore optimal

for the weighted reward criterion if the discount factor α ≥ α0.

The next example will demonstrate that the first two inequalities in (7.56) can be strict. The example also

shows that optimal policies do not generally exist for the weighted optimality criterion.

Example 7.10

Consider the MDP with S = {1, 2}; A(1) = {1, 2}, A(2) = {1}; p11(1) = 1, p12(1) = 0; p11(2) = 0,

p12(2) = 1; p21(1) = 1, p22(1) = 0; r1(1) = 0; r1(2) = −10; r2(1) = 12;α = 1
2
; λ1 = 1

4
and λ2 = 3

4
.

We shall write w(R) instead of w[λ1, λ2](R).

There are two deterministic stationary policies: f∞1 and f∞1 corresponding to action 1 and 2 in state 1,

respectively. It is easy to see that vα
1 (f∞1) = 0, vα

2 (f∞1) = 12, φ1(f
∞
1) = φ2(f

∞
1) = 0 and vα

1 (f∞2) = −16
3
,

vα
2 (f∞2) = 28

3 , φ1(f
∞
2) = φ2(f

∞
2) = 1. Hence, w1(f

∞
1) = 0, w2(f

∞
1) = 3

2 , w1(f
∞
2) = 1

12 and w2(f
∞
2) = 23

12 .

Notice that the utopian bound in state 1 equals 3
4 and in state 2 this bound is 9

4 .

Clearly, f∞1 is discounted optimal and f∞2 is average optimal. Furthermore, f∞2 is optimal for the weighted

optimality criterion, and supC(D) w1(f
∞) = 1

12 and supC(D) w2(f
∞) = 23

12 .

Let π∞ be a randomized stationary policy which chooses action 1 in state 1 with probability p ∈ [0, 1].

Then, it is straightforward to show that vα
1 (π∞) = −16(1−p)

3−p
, vα

2 (π∞) = 4(7−p)
3−p

, φ1(π
∞) = 2(1−p)

2−p
and

φ2(π
∞) = 2(1−p)

2−p . Therefore, w1(π
∞) = 1−p2

2(2−p)(3−p) and w2(π
∞) = 23−21p+4p2

2(2−p)(3−p).

Define the function g(p) by g(p) := 1−p2

2(2−p)(3−p) . Then the best randomized stationary π∞ in state 1

for the weighted combination of discounted and average reward is obtained by maximizing g(p) over

p ∈ [0, 1]. Since g′(p) = 5−14p+5p2

2(2−p)(3−p), we have g′(p) = 0 for p = 7−2
√

6
5 ≈ 0.42. Hence, we obtain

supC(S) w1(π
∞) ≈ g(0.42) ≈ 0.10 > 1/12 = supC(D) w1(f

∞), we have shown that the first inequality of

(7.56) is strict in this example.

Next, consider the Markov policy Rk, which uses f1 for the first k stages, and then switches to f2 perma-

nently. Then, it is easy to see that vα
1 (Rk) = (1

2)k · −16
3 and φ(Rk) = 1. Therefore, wα

1 (Rk) = (1
2)k · −2

3 + 3
4 .

Hence, Rk approaches the utopian bound 3
4 arbitrarily close as k → ∞, but never reaches it. This

immediately implies that the second inequality of (7.56) is also strict.

We now show that an optimal policy does not exist. Suppose that R∗ = (π1, π2, . . .) is an optimal policy.

Without loss of generality we may assume that R∗ is a Markov policy. We must have w1(R
∗) = 3

4 , because

R∗ is as least so good as any policy Rk which uses f1 for the first k stages, and then switches to f2

permanently. Clearly R∗ 6= f∞1 , because w1(f
∞
1) = 0. Therefore, there exists some k such that πk is the

first decision rule of R∗ which chooses action 2 in state 1 with a positive probability, say with probability

p > 0. The discounted rewards of R∗ can be bounded as follows: the payoff for the first k−1 stages is 0, the

payoff at stage k is (1
2
)k−1 ·(−10p), the payoff at stage k+1 is at most (1

2
)k ·12p and the payoff for all stages

after k+2 is at most (1
2)k+1 · vα

1 = 0. Therefore, vα
1 (R∗) ≤ (1

2)k−1 · (−10p)+ (1
2)k · 12p = (1

2)k · (−8p) < 0.

Because φ1(R
∗) ≤ φ1 = 1, we obtain w1(R

∗) = 1
8v

α
1 (R∗) + 3

4φ1(R
∗) < 3

4 , which contradicts the optimality

of R∗.

We shall say that a Markov policy R = (π1, π2, . . .) is ultimately deterministic if there exists a positive

integer t0 and a policy f∞ ∈ C(D) such that πt = f for all t ≥ t0. Let C(UD) denote the set of ultimately

deterministic policies. In the next theorem we consider the case that the value vector φ of the average

rewards is constant, i.e. independent of the starting state. This is for instance the case in unichain and

306 CHAPTER 7. MORE SENSITIVE OPTIMALITY CRITERIA

communicating MDPs. The theorem shows that for MDPs with φ independent of the starting state the

utopian bound is achieved and that ε-optimal ultimately deterministic policies with a simple structure can

be constructed easily from two deterministic policies, namely from the discounted and the average optimal

policy.

Theorem 7.19

Suppose that the value vector φ of the average reward is constant, say φi = c for all i ∈ S. Then,

(1) Let g∞ be a discounted optimal policy and h∞ be an average optimal policy.

Let ε > 0 be given and define M := max(i,a) ri(a) and m := min(i,a) ri(a).

Take Rε = (f1, f2, . . .) with ft :=
{ g for t < t(ε)

h for t ≥ t(ε)
where t(ε) := b log [ε/(M−m)]

log α c+ 1.

Then, Rε is a (λ1ε)-optimal policy.

(2) supR∈C(M) wi[λ1, λ2](R) = supR∈C(UD) wi[λ1, λ2](R) = λ1 · (1− α)vα
i + λ2 · φi.

Proof

Part 1:

Note that for any positive integer t0, any policy R and any starting state i, we have
∑∞

t=t0+1 α
t−1

Ei,R {rXt
, Yt} ≤ αt0 · M

1−α
and

∑∞
t=t0+1 α

t−1
Ei,R {rXt

, Yt} ≥ αt0 · m
1−α

.

To assure that αt0 · M−m
1−α < ε

1−α it suffices to take t0 >
log [ε/(M−m)]

log α . Thus, t(ε) satisfies this inequality.

Now, we can write for any i ∈ S,

vα
i − vα

i (Rε) =
∑∞

t=1 α
t−1

Ei,g∞ {rXt
, Yt} −

∑∞
t=1 α

t−1
Ei,Rε

{rXt
, Yt}

=
∑∞

t=t0+1 α
t−1

Ei,g∞ {rXt
, Yt} −

∑∞
t=t0+1 α

t−1
Ei,Rε

{rXt
, Yt}

≤ αt0 · M−m
1−α < ε

1−α .

Furthermore, we have c = φi = φi(h
∞) = φi(Rε), because rewards over the first t0 stages do not influence

the average reward over an infinite horizon and since the value vector in independent of the initial state i.

Therefore, we obtain

wi[λ1, λ2](Rε) = λ1 · (1− α)vα
i (Rε) + λ2 · φi(Rε) > λ1 · (1− α)vα

i + λ2 · φi − (λ1ε) for all i ∈ S,

showing that Rε is a (λ1ε)-optimal policy.

Part 2:

By the existence of a (λ1ε)-optimal policy for any ε > 0, we can write for all i ∈ S
supR∈C(M) wi[λ1, λ2](R) = supR∈C(UD) wi[λ1, λ2](R) = λ1 · (1− α)vα

i + λ2 · φi.

We now turn our attention back to the general case, that is, the average reward is allowed to depend on

the starting state. We first need the following lemma.

Lemma 7.24

Let R = (π1, π2, . . .) be an arbitrary Markov policy and let h∞ ∈ C(D) be an average optimal policy.

Take some k ∈ N and define the policy Rk = (ρ1, ρ2, . . .) by ρt :=
{ πt if t ≤ k − 1

h if t ≥ k
.

Then, φi(R) ≤ φi(Rk) for all i ∈ S.

7.12. A WEIGHTED COMBINATION OF DISCOUNTED AND AVERAGE REWARDS 307

Proof

Fix some positive integer k and some i ∈ S. Then, we can write

φi(R) = lim infT→∞
1
T

∑T
t=1 Ei,R {rXt

(Yt)} = lim infT→∞
1
T

∑T
t=k Ei,R {rXt

(Yt)},

the last equality because rewards over the first k − 1 periods do not influence the average reward over an

infinite horizon. Define R̂ = (π̂1, π̂2, . . .) by π̂1 := πk, π̂2 := πk+1, Then, for any t ≥ k, we have for

all (j, a) ∈ S × A,

Pi,R{Xt = j, Yt = a} =
∑

l Pi,R{Xk = l} · PR{Xt = j, Yt = a | Xk = l}
=

∑

l Pi,Rk
{Xk = l} · PR{Xt = j, Yt = a | Xk = l}

=
∑

l Pi,Rk
{Xk = l} · PR̂{Xt−k+1 = j, Yt−k+1 = a | X1 = l}

,

the first equality by conditioning over the state at stage k, the second equality since R and Rk coincide

up to time k and the last equality follows from the definition of R̂. Hence,

Ei,R{rXt
(Yt)} =

∑

(j,a) Pi,R{Xt = j, Yt = a} · rj(a)

=
∑

l Pi,Rk
{Xk = l} · El,R̂{rXt−k+1 (Yt−k+1)}.

,

Now, we obtain

φi(R) = lim infT→∞
1
T

∑T
t=k Ei,R {rXt

(Yt)}
= lim infT→∞

1
T

∑T
t=k

∑

l Pi,Rk
{Xk = l} · El,R̂{rXt−k+1 (Yt−k+1)}

≤ lim supT→∞
1
T

∑T
t=k

∑

l Pi,Rk
{Xk = l} · El,R̂{rXt−k+1 (Yt−k+1)}

≤ ∑

l Pi,Rk
{Xk = l} · lim supT→∞

1
T

∑T
t=k ·El,R̂{rXt−k+1(Yt−k+1)}

=
∑

l Pi,Rk
{Xk = l} · φi(R̂),

.

where φ(R̂) is defined in Section 1.2.2. It can be shown (see p. 101 in [148]) that the average optimal

stationary policy h∞ is also optimal with respect to the criterion supR φ(R). Therefore, we have

φi(R) ≤ ∑

l Pi,Rk
{Xk = l} · φl(h

∞)

=
∑

l Pi,Rk
{Xk = l} · limT→∞

1
T

∑T
t=1 El,h∞{rXt

(Yt)}
=

∑

l Pi,Rk
{Xk = l} · limT→∞

1
T

∑T
t=1 Eh∞{rXt+k−1 (Yt+k−1) | Xk = l}.

.

Since the policies h∞ and Rk have the same decision rules from stage k, we also have

Eh∞{rXt+k−1(Yt+k−1) | Xk = l} = ERk
{rXt+k−1 (Yt+k−1) | Xk = l} for all t ≥ 1.

Consequently, we can write

φi(R) ≤ ∑

l Pi,Rk
{Xk = l} · limT→∞

1
T

∑T
t=1 ERk

{rXt+k−1(Yt+k−1) | Xk = l}
= limT→∞

1
T

∑T
t=1

∑

l Pi,Rk
{Xk = l} · ERk

{rXt+k−1(Yt+k−1) | Xk = l}
= φi(Rk),

.

the last inequality by conditioning over the state at stage k and the property that rewards during the first

k − 1 stages have no effect on the average reward over an infinite horizon.

In the remaining part of this section we consider the weighted optimality criterion. Assume that are given:

i ∈ S as fixed initial state and ε as a tolerance. A policy R∗ is called (i, ε)-optimal if wi[λ1, λ2](R
∗) ≥

supR wi[λ1, λ2](R)− ε.

Theorem 7.20

Let h∞ ∈ C(D) be an average optimal policy. Then, there exists a positive integer t(ε) and a policy

Rε = (π1, π2, . . .) ∈ C(UD) with πt = h for all t ≥ t(ε) such that Rε is (i, ε)-optimal.

308 CHAPTER 7. MORE SENSITIVE OPTIMALITY CRITERIA

Proof

By the previous remark 3, there exists a Markov policy R = (π1, π2, . . .) which is (i, ε/2)-optimal. Define

Rε = (π1, π2, . . .) by πt :=
{ πt for t ≤ t(ε) − 1

h for t ≥ t(ε)
for some positive integer t(ε).

From the first lines in the proof of Theorem 7.19 it follows that t(ε) can be chosen such that

vα
i (Rε) ≥ vα

i − ε
2λ1(1−α) ≥ vα

i (R)− ε
2λ1(1−α) , i.e. λ1(1− α)vα

i (Rε) ≥ λ1(1− α)vα
i (R)− ε/2.

By the construction of policy Rε and Lemma 7.24 it follows that φi(Rε) ≥ φi(R). Hence,

wi[λ1, λ2](Rε) = λ1(1− α)vα
i (Rε) + λ2φi(Rε)

≥ λ1(1− α)vα
i (R) − ε/2 + λ2φi(R)

= wi[λ1, λ2](R) − ε/2
≥ supR wi[λ1, λ2](R)− ε.

.

In the remainder of this section we shall construct an algorithm to compute an ε-optimal policy for the

weighted combination of discounted and average rewards. To that end, we shall use Theorem 7.20 which

guarantees the existence of (i, ε)-optimal ultimately deterministic policies whose ’tail’ consists of an average

optimal deterministic policy.

Lemma 7.25

Let R1 = (π1, π2, π3, . . .) any ultimately deterministic policy and let R2 := (, π2, π3, π4, . . .). Then,

wi[λ1, λ2](R1) = λ1(1− α)
∑

a ri(a)π
1
ia +

∑

a

∑

j pij(a)π
1
iawj[αλ1, λ2](R2) for all i ∈ S.

Proof

By the definition of R2 and the property that R1 ∈ C(UD), we obtain for any i ∈ S,

vα
i (R1) =

∑

a ri(a)π
1
ia + α

∑

a

∑

j pij(a)π
1
iav

α
j (R2) and φi(R1) =

∑

a pij(a)π
1
iaφj(R2).

Hence,

wi[λ1, λ2](R1 = λ1(1− α)vα
i (R1) + λ2φi(R1)

= λ1(1− α){∑a ri(a)π
1
ia + α

∑

a

∑

j pij(a)π
1
iav

α
j (R2)}+ λ2

∑

a pij(a)φj(R2)

= λ1(1− α)
∑

a ri(a)π
1
ia +

∑

a

∑

j pij(a)π
1
ia{αλ1(1 − α)vα

j (R2) + λ2φj(R2)

= λ1(1− α)
∑

a ri(a)π
1
ia +

∑

a

∑

j pij(a)π
1
iawj[αλ1, λ2](R2).

Lemma 7.26

Let R1 ∈ C(UD) be an ε-optimal policy with respect to w[αλ1, λ2](R). For each i ∈ S, let ai ∈ A(i) be

the action that achieves maxa {λ1(1 − α)ri(a) +
∑

j pij(a)wj [αλ1, λ2](R1)}. Let f1 be the deterministic

decision rule which uses action ai in state i and let R2 := (f1, R1). Then, R2 ∈ C(UD) and is ε-optimal

with respect to w[λ1, λ2](R).

Proof

Take any i ∈ S and some δ > 0. Let R3 = (π1, π2, . . .) ∈ C(UD) be an (i, δ)-optimal policy with respect

to w[λ1, λ2](R) (such policy exists by Theorem 7.20). Define R4 by R4 = (π2, π
3, . . .). Then, we can write

by Lemma 7.25, the definition of ai and the ε-optimality of R1 with respect to w[αλ1, λ2](R),

wi[λ1, λ2](R2) = λ1(1 − α)ri(ai) +
∑

j pij(ai)wj [αλ1, λ2](R1)

= maxa {λ1(1− α)ri(a) +
∑

j pij(a)wj[αλ1, λ2](R1)}
≥ maxa

{

λ1(1− α)ri(a) +
∑

j pij(a){wj[αλ1, λ2](R4) − ε}
}

= maxa {λ1(1− α)ri(a) +
∑

j pij(a)wj[αλ1, λ2](R4)} − ε
≥ ∑

a π
1
ia{λ1(1 − α)ri(a) +

∑

j pij(a)wj[αλ1, λ2](R4)} − ε
= wi[λ1, λ2](R3)− ε.

7.12. A WEIGHTED COMBINATION OF DISCOUNTED AND AVERAGE REWARDS 309

Now, let R be an arbitrary policy. Using the above inequality and the (i, δ)-optimality of policy R3 with

respect to wi[λ1, λ2](R), we get

wi[λ1, λ2](R2) ≥ wi[λ1, λ2](R3)− ε ≥ wi[λ1, λ2](R)δ − ε.
Since δ can be chosen arbitrarily small, and R and i are arbitrary chosen, we have shown that R2 is

ε-optimal with respect to w[λ1, λ2](R). It is obvious that R2 ∈ C(UD).

Remarks

1. For any t ≥ 0 and any policy R, wi[α
tλ1, α2](R) = αtλ1(1−α)vα

i (R)+λ2φi(R) ≤ αtλ1(1−α)vα
i +λ2φi

for all i ∈ S. Consequently, supR wi[α
tλ1, α2](R) ≤ αtλ1(1− α)vα

i + λ2φi, i ∈ S.

2. For any ε > 0 and any f∞ ∈ C(D), there exists a T ∈ N such that αTλ1(1− α){vα
i − vα

i (f∞)} ≤ ε
for all i ∈ S.

3. Let f∞ ∈ C(D) be an average optimal policy. Then, by the remarks 1 and 2, there exists a T ∈ N

such that for all i ∈ S,

supR wi[α
Tλ1, λ2](R) ≤ αTλ1(1− α)vα

i + λ2φi

≤ αTλ1(1− α)vα
i (f∞) + ε+ λ2φi(f

∞)

= wi[α
Tλ1, λ2](f

∞) + ε+ λ2φi(f
∞),

i.e. f∞ is an ε-optimal policy with respect to w[αTλ1, λ2](R).

4. By remark 3, an ultimately stationary ε-optimal policy with respect to w[αTλ1, λ2](R) exists. Then,

repeated application of Lemma 7.26 assures the existence of an ε-optimal ultimately deterministic

policy with respect to w[λ1, λ2](R). This is executed in the next algorithm.

Algorithm 7.6 Determination of an ε-optimal ultimately deterministic policy with respect to w[λ1, λ2](R)

Input: Instance of an MDP, λ1 ∈ [0, 1], λ2 ∈ [0, 1] and α ∈ [0, 1).

Output: An ε-optimal ultimately deterministic policy with respect to w[λ1, λ2](R).

1. Compute the α-discounted value vector vα, the average value vector φ and an average optimal policy

f∞ ∈ C(D).

2. Determine the smallest positive integer T such that αTλ1(1− α){vα
i − vα

i (f∞)} ≤ ε for all i ∈ S.

3. R := f∞.

4. for t = T step −1 until 1 do

begin

for all i ∈ S do wi[α
tλ1, λ2](R) := αtλ1(1− α)vα(R) + λ2φ(R);

for all i ∈ S do

select ai ∈ A(i) such that ai achieves maxa {αt−1λ1(1−α)ri(a) +
∑

j pij(a)wj[α
tλ1, λ2](R)};

for all i ∈ S do ft(i) := ai;

R := (ft, R)

end

5. R is an ε-optimal policy with respect to w[λ1, λ2](R) (STOP).

Theorem 7.21

Algorithm 7.6 is correct, i.e. policy R = (f1, f2, . . . , fT , f, f, . . .) is an ε-optimal policy with respect to

w[λ1, λ2](R).

310 CHAPTER 7. MORE SENSITIVE OPTIMALITY CRITERIA

Proof

By remark 3, f∞ is an ε-optimal policy with respect to w[αTλ1, λ2](R). Then, by Lemma 7.26, the policy

(f1, f, f, . . .) is a ε-optimal policy with respect to w[αT−1λ1, λ2](R). By repeated application (T times)

of this argument, we obtain that R := (f1, f2, . . . , fT , f, f, . . .) is an ε-optimal policy with respect to

w[λ1, λ2](R).

7.13 A sum of discount factors

The use of the discounted reward criterion is consistent with the notion that what happens far in the

future is unimportant. It arises through the notion that immediate rewards are better than delayed

rewards. Discount factors depend on perceived investment opportunities. When there are several different

investment opportunities then it is natural to consider the sum of several expected total discounted rewards

with different discount factors. Such criteria arise in models of investment with different risk classes. Two

cash flow streams with different risks would have different discount factors and the value of the portfolio

is the sum of the discounted values of each cash flow in the portfolio.

As in the previous section, for this model there may not exist a stationary optimal or ε-optimal policy.

However, we can prove the existence of an optimal ultimately deterministic policy. The algorithm is of the

same level of complexity as the computation of optimal policies for the standard reward problem.

In this model we assume that there are several one-step rewards and discount factors, say rewards

rk
i (a), (i, a) ∈ S × A and discount factors αk for k = 1, 2, . . . , K. The total expected discounted reward

for income stream k given initial state i and policy R is given by

vk
i (R) :=

∞
∑

t=1

(αk)t−1
∑

j,a

Pi,R{Xt = j, Yt = a} · rk
j (a). (7.57)

The sum of discounted rewards when the initial state is i and policy R is used, is defined by

wi(R) :=

K
∑

k=1

vk
i (R). (7.58)

The value vector w of this model is defined by wi := supR wi(R), i ∈ S. For ε > 0, a policy R∗ is called

ε-optimal if wi(R∗) ≥ wi − ε for all i ∈ S.

Example 7.11

In this example we show that for ε > 0 small enough, there exists no ε-optimal stationary policy. Moreover,

we show that the best policy in the class C(S) is not deterministic, but randomized.

Consider a usual MDP with S = {1, 2};A(1) = {1, 2}, A(2) = {1}; p11(1) = 1, p12(1) = 0; p11(2) = 0,

p12(2) = 1; p21(1) = 0, p22(2) = 1; r1(1) = 1, r1(2) = 0; r2(1) = 2. Let α ∈ [0, 1) be the discount factor.

There are two deterministic stationary policies: f∞1 and f∞2 , corresponding to action 1 and 2 in, respec-

tively. It is easy to see that v1(f
∞
1) = 1

1−α , v2(f
∞
1) = 2

1−α , v1(f
∞
2) = 2α

1−α and v2(f
∞
2) = 2

1−α . Hence,

f∞1 is optimal for α ≤ 1
2

and f∞2 is optimal for α ≥ 1
2
.

Next, consider a stationary policy π∞ with π11 = β and π12 = 1− β. Then, P (π) =
(

β 1−β
0 1

)

and

r(π) =
(

β
2

)

. The vector vα(π∞) is the unique solution of the system {I − αP (π)}x = r(π). After some

algebra, we obtain vα
1 (π∞) = β+2α−3αβ

(1−α)(1−αβ)
and vα

2 (π∞) = 2α
1−α

.

Now, we shall compute the best policy in C(S) for the sum criterion with K = 2. Let rk
i (a) = ri(a) for

7.13. A SUM OF DISCOUNT FACTORS 311

k = 1, 2 and for all (i, a) ∈ S ×A and let α1 = 1
5 and α2 = 3

5 . Then, we obtain

vα1

1 (π∞) = 5+5β
10−2β) , v

α1

2 (π∞) = 1
2 , v

α2

1 (π∞) = 15−5β
5−3β) and vα2

2 (π∞) = 3. Hence, w1(π
∞) = 5β2−120β+175

6β2−40β+50

and w2(π
∞) = 7

2
. Taking the derivative with respect to β and equating to zero, we see that w1(π

∞) is

optimal for β = 20−5
√

5
13 ≈ 0.8722, with vα1

1 (π∞) ≈ 1.1339, vα2

1 (π∞) ≈ 2.6341 and w1(π
∞) ≈ 3.7680.

Finally, define R = (π1, π2, . . .) ∈ C(UD) with π1 := f1 and π2 := f2 for t ≥ 2. Direct calculation yields

vα1
1 (R) = 1 +

2α2
1

1−α1
= 1.1, vα2

1 (R) = 1 +
2α2

2

1−α1
= 2.8, so w1(R) = 3.9.

We conclude that for ε < 3.9 − 3.7680 = 0.1320 there does not exists an ε-optimal policy in C(S), and

moreover that the best policy in C(S) is strictly better that the best policy in C(D).

Assume, without loss of generality, that the discount factors satisfy α1 > α2 > · · · > αK. We establish the

existence of optimal Markov policies for the sum criterion by embedding our model into an MDP model

with an infinite state space S × N, where N := {1, 2, . . .}. Denote the genetic state by (i, t) for i ∈ S and

t ∈ N. The actions and immediate rewards stay unchanged, i.e. the action set in state (i, t) is A(i) for

all i ∈ S and t ∈ N, and rk
(i,t)(a) := rk

i (a) for all i ∈ S, t ∈ N and k = 1, 2, . . . , K. The new transition

probabilities are defined through

p(i,t)(j,s)(a) :=
{ pij(a) if s = t+ 1

0 otherwise
for all i, j ∈ S, t, s ∈ N and a ∈ A(i).

We can write the reward (7.57) by wi(R) = Ei,R

{
∑∞

t=1 (α1)
t−1

∑K
k=1

(

αk

α1

)t−1
rk
Xt

(Yt)
}

.

Letting r(i,t)(a) :=
∑K

k=1

(

αk

α1

)t−1
rk
(i,t)(a) =

∑K
k=1

(

αk

α1

)t−1
rk
i (a), we have for the sum of discounted

rewards w(R) in the new MDP model

w(i,1)(R) = Ei,R

{

∞
∑

t=1

(α1)
t−1 rk

Xt
(Y t)

}

, (7.59)

where Xt, Y t are the state and action, respectively, at stage t in the new MDP model.

It is well known (e.g. see [227], Theorem 6.2.10 on page 154) that an MDP with an infinite state space,

finite action sets and bounded one-step rewards has an optimal policy in the class C(D). Notice that there

is a one-to-one correspondence between the set of stationary deterministic policies in the new MDP model

and the set of deterministic Markov policies in the original MDP model. Namely, let f
∞

be a stationary

deterministic policy in the new model with action f(i, t) in state (i, t); then, the corresponding deterministic

Markov policy is policy R = (f1, f2, . . .) with ft(i) := f(i, t); furthermore, w(i,1)(f
∞

) = wi(R) for all

i ∈ S. Hence, let f
∞
∗ be an optimal stationary deterministic policy in the new MDP model. Then,

R∗ = (f∗1 , f
∗
2 , . . .) with f∗t (i) := f∗(i, t) is an optimal deterministic Markov policy in the original model.

Therefore, we have the following result.

Theorem 7.22

There exists an optimal deterministic Markov policy for any MDP with optimality criterion the sum of

discount factors as defined in (7.58).

The next theorem shows the existence of an ε-optimal policy in the class C(UD).

Theorem 7.23

For any ε > 0 there exists an ε-optimal ultimately deterministic policy.

312 CHAPTER 7. MORE SENSITIVE OPTIMALITY CRITERIA

Proof

Let R∗ = (g1, g2, . . .) be an optimal deterministic Markov policy for the sum of discounted rewards as

optimality criterion. Choose T ∈ N such that M · (α1)
T

1−α1
≤ ε

2K , where M := max1≤k≤Kmax(i,a) |rk
i (a)|.

Let h∞ ∈ C(D) be an optimal policy for the MDP with one-step-rewards r1(a) and discount factor α1.

Define the policy R ∈ C(UD) by R = (f1, f2, . . .) with ft :=
{ gt for t ≤ T ;

h for t > T .
Then, we obtain

wi − wi(R) = wi(R∗)− wi(R)

= Ei,R∗

{∑∞
t=1

∑K
k=1 (αk)t−1 rk

Xt
(Yt)

}

− Ei,R

{∑∞
t=1

∑K
k=1 (αk)t−1 rk

Xt
(Yt)

}

= Ei,R∗

{∑∞
t=T+1

∑K
k=1 (αk)t−1 rk

Xt
(Yt)

}

− Ei,R

{∑∞
t=T+1

∑K
k=1 (αk)t−1 rk

Xt
(Yt)

}

≤ ∑∞
t=T+1

∑K
k=1 (αk)t−1M +

∑∞
t=T+1

∑K
k=1 (αk)t−1M

≤ 2KM
∑∞

t=T+1 (α1)
t−1 = 2KM · (α1)

T

1−α1
≤ ε, i ∈ S.

so the ultimately deterministic policy R is ε-optimal.

Let vk be the value vector of the discounted problem with discount factor αk and one-step-rewards

rk
i (a), (i, a) ∈ S × A. Let the vector vk be such that vk(R) ≥ vk for all policies R, e.g. take for vk

the constant vector with elements (1−αk)−1 ·min(i,a) r
k
i (a). Denote by A1(i) the set of conserving actions

in the problem with k = 1, i.e. A1(i) := {a ∈ A(i) | v1
i = r1i (a) + α1

∑

j pij(a)v
1
j }, i ∈ S.

It is well known (see section 3.3) that f∞ is an optimal policy for the problem with k = 1 if and only

if f(i) ∈ A1(i) for all i ∈ S. Let S1 := {i ∈ S | A1(i) 6= A(i)}. Furthermore, let

ε1 :=
{ mini∈S1 v

1
i −maxa∈A(i)\A1(i) {r1i (a) + α1

∑

j pij(a)v
1
j } if S1 6= ∅

0 otherwise
and let

T1 :=
{ min

{

t ≥ 1
∣

∣

∑K
k=2

(

αk

α1

)t−1 ·maxi (vk
i − vk

i) < ε1
}

if ε1 > 0;

1 if ε1 = 0.

Lemma 7.27

Let R = (f1 , f2, . . .) be an optimal deterministic Markov policy for the sum of discounted rewards problem

and let t ≥ T1. Then, ft(i) ∈ A1(i) for all i ∈ S.

Proof

If S1 = ∅, then A1(i) = A(i) for all i ∈ S, and the lemma is trivial. Therefore, we consider the case S1 6= ∅,
in which case ε1 > 0.

Take any f ∈ C(D) and any t ∈ N . Let (i, l) be any pair of states satisfying Pi,f∞ {Xt = l} > 0. We will

show that

Ei,R

{

∞
∑

s=t

K
∑

k=1

(αk)s−1rk
Xs

(Ys)
∣

∣

∣ Xt = l
}

≥ Ei,f∞

{

∞
∑

s=t

K
∑

k=1

(αk)s−1rk
Xs

(Ys)
∣

∣

∣ Xt = l
}

. (7.60)

To prove (7.60) by contradiction, we define a policy R = (π1, π2, . . .) through

πs
i1a1···is−1as−1is

:=
{ f(is) if s ≥ t and it = l;

fs(is) otherwise.

Hence, R and R are identical unless Xt = l, which has a positive probability under policy f∞, and in that

case R follows f∞ from stage t. Therefore, assuming that (7.60) does not hold, we can write

7.13. A SUM OF DISCOUNT FACTORS 313

wi(R) = Ei,R

{
∑∞

s=1

∑K
k=1(αk)s−1rk

Xs
(Ys)

}

= Ei,R

{
∑t−1

s=1

∑K
k=1(αk)s−1rk

Xs
(Ys)

}

+ Ei,R

{
∑∞

s=t

∑K
k=1(αk)s−1rk

Xs
(Ys)

}

= Ei,R

{
∑t−1

s=1

∑K
k=1(αk)s−1rk

Xs
(Ys)

}

+ Ei,R

{
∑∞

s=t

∑K
k=1(αk)s−1rk

Xs
(Ys)

∣

∣ Xt = l
}

+

Ei,R

{
∑∞

s=t

∑K
k=1(αk)s−1rk

Xs
(Ys)

∣

∣ Xt 6= l
}

< Ei,R

{∑t−1
s=1

∑K
k=1(αk)s−1rk

Xs
(Ys)

}

+ Ei,f∞

{∑∞
s=t

∑K
k=1(αk)s−1rk

Xs
(Ys)

∣

∣ Xt = l
}

+

Ei,R

{∑∞
s=t

∑K
k=1(αk)s−1rk

Xs
(Ys)

∣

∣ Xt 6= l
}

= wi(R).

This contradicts the optimality of R, so (7.60) is proved. For the optimal deterministic Markov policy

R = (f1 , f2, . . .) we consider the shifted policies Rs := (fs, fs+1, . . .) for s = 1, 2, We can prove,

analogously as we proved (7.60), that
∑K

k=1(αk)t−1vk
l (Rt) ≥∑K

k=1(αk)t−1vk
l (f∞), i.e.

K
∑

k=1

(αk)t−1{vk
l (Rt)− vk

l (f∞)} ≥ 0. (7.61)

To prove Lemma 7.27 by contradiction, we assume that for some t ≥ T1 there exists a state l ∈ S with

ft(l) /∈ A1(l). Let f∞ ∈ C(D) be an optimal policy for the discounted problem with k = 1. Then,

f(i) ∈ A1(i) for all i ∈ S. Then, we have by the definition of T1,

ε1 >
K
∑

k=2

(αk

α1

)t−1 · (vk
l − vk

l) ≥
K
∑

k=2

(αk

α1

)t−1 · {vk
l (Rt)− vk

l (f∞)}. (7.62)

The optimality of f∞ for the discounted problem with k = 1 and inequality (7.61) imply

v1
l − vl(R

t) = v1
l (f∞)− vl(R

t) and αt−1
1 {vl(R

t) − v1
l (f∞)}+

∑K
k=2 α

t−1
k · {vl(R

t)− v1
l (f∞)} ≥ 0. Hence,

∑K
k=2

(

αk

α1

)t−1 · {vl(R
t)− v1

l (f∞)} ≥ v1
l (f∞)− vl(R

t) = v1
l − vl(R

t). Consequently, by (7.62),

ε1 >

K
∑

k=2

(αk

α1

)t−1 · (vk
l − vk

l) ≥
K
∑

k=2

(αk

α1

)t−1 · {vk
l (Rt)− vk

l (f∞)} ≥ v1
l − vl(R

t). (7.63)

Because ft(l) ∈ A(i)\A1(l), we obtain from the definition of ε1

ε1 ≤ v1
l − {r1l

(

ft(l)
)

+ α1

∑

j plj

(

ft(l)
)

v1
j }

≤ v1
l − {r1l

(

ft(l)
)

+ α1

∑

j plj

(

ft(l)
)

v1
j (Rt+1)}

= v1
l − v1

l (Rt),

which contradicts (7.63).

If A1(i) is a singleton for each i ∈ S, then Lemma 7.27 implies that ft(i) is unique for all i ∈ S and for

all t ≥ T1. Therefore, in that case there is an optimal ultimately deterministic policy. Optimal actions

ft(i) for t = 1, 2, . . . , T1 − 1 can be found as solution of a T1-step dynamic programming model with the

one-step rewards at stage t for 1 ≤ t ≤ T1 − 1 given by
∑K

k=1 (αk)t−1rk
i (a), (i, a) ∈ S ×A and at stage T1

there are terminal rewards
∑K

k=1 (αk)T1−1vk
i (f∞), where the policy f∞ takes actions from the singletons

A1(i), i ∈ S.

If A1(l) is not a singleton for some l ∈ S, then for t ≥ T1 the action set in state i may be reduced to A1(i)

for all i ∈ S. Moreover, for any deterministic Markov policy R = (f1 , f2, . . .) using actions from A1(i) for

all i ∈ S one has v1(R) = v1. Hence, the expected rewards for criterion v1 from stage T1 onward are the

same for any deterministic Markov policy R = (f1 , f2, . . .) satisfying ft(i) ∈ A1(i) for all i ∈ S and for all

t ≥ T1.

314 CHAPTER 7. MORE SENSITIVE OPTIMALITY CRITERIA

Thus, if our goal is to construct an optimal policy from state T1 onward, then we have reduced the problem

with K reward functions r1, r2, . . . , rK to the problem with K − 1 reward functions r2, r3, . . . , rK . Let

A0(i) := A(i), i ∈ S, and let vk,k be the value vector of the problem with rewards rk and discount factor

αk. Furthermore, let Ak(i), i ∈ S, be the set of conserving actions for the problem with value vector vk,k,

i.e.

Ak(i) := {a ∈ Ak−1 | vk,k
i = rk

i (a) + αk

∑

j pij(a)v
k,k
j }, i ∈ S.

Define Sk, εk and Tk by

Sk := {i ∈ S | Ak(i) 6= Ak−1(i)}.

εk :=
{ mini∈Sk

{

vk,k
i −maxa∈Ak−1(i)\Ak(i) {rk

i (a) + αk

∑

j pij(a)v
k,k
j }

}

if Sk 6= ∅;
0 otherwise.

Tk :=
{ min

{

t ≥ Tk−1

∣

∣

∑K
l=k+1

(

αl

αk

)t−1 ·maxi (vk,l
i − vk,l

i) < εk

}

if εk > 0;

Tk−1 if εk = 0,

where vk,l for l = k+ 1, k+ 2, . . . , K is the value vector of the problem with rewards rl
i(a), discount factor

αl and action sets Ak−1(i) and vk,l is such that vk,l(R) ≥ vk,l for all policies R, e.g. take vk,l the constant

vector with elements (1− αl)
−1 ·min(i,a)∈S×Ak−1

rl
i(a).

We are now ready to state an algorithm for the computation of an ultimately deterministic optimal policy.

In this algorithm we use the notation v1,l and v1,l for vl and vl, respectively, for l = 1, 2, . . . , K.

Algorithm 7.7 Determination of an ultimately deterministic optimal policy for an MDP with as

optimality criterion the sum of discounted rewards.

Input: Instance of an MDP, an integer K ≥ 2 and discount factors α1, α2, αK with α1 > α2 > · · · > αK

and immediate rewards rk
i (a), (i, a) ∈ S ×A.

Output: An ultimately deterministic optimal policy R.

1. k := 1; for all i ∈ S do A0(i) := A(i); T0 :=∞.

2. Compute for the MDP with discount factor αk and immediate rewards rk
i (a):

(a) the value vector vk,k.

(b) for all i ∈ S do Ak(i) := {a ∈ Ak−1 | vk,k
i = rk

i (a) + αk

∑

j pij(a)v
k,k
j }.

(c) Sk := {i ∈ S | Ak(i) 6= Ak−1(i)}.

(d) εk :=
{ mini∈Sk

{

vk,k
i −maxa∈Ak−1(i)\Ak(i) {rk

i (a) + αk

∑

j pij(a)v
k,k
j }

}

if Sk 6= ∅;
0 otherwise.

3. for l = k + 1, k+ 2, . . . , K do

begin compute for the MDP with discount factor αl, immediate rewards rl
i(a) and action sets

Ak−1(i), i ∈ S, the value vector vk,l;

vk,l := (1− αl)
−1 ·min(i,a)∈S×Ak−1

rl
i(a).

Tk :=
{ min

{

t ≥ Tk−1

∣

∣

∑K
l=k+1

(

αl

αk

)t−1 ·maxi (vk,l
i − vk,l

i) < εk

}

if εk > 0;

Tk−1 if εk = 0,

end

4. if Ak(i) is a singleton for all i ∈ S or if k = K then

begin T = Tk; for all i ∈ S do A∗(i) := Ak(i); go to step 5 end

else

begin k := k + 1; go to step 2 end

7.14. BIBLIOGRAPHIC NOTES 315

5. select a policy f∞ ∈ C(D) such that f(i) ∈ A∗(i) for all i ∈ S.

6. for k = 1 step 1 until K do

compute for the MDP with discount factor αk and immediate rewards rk
i (a) the values vk

i (f∞), i ∈ S.

7. Consider the T -step dynamic programming model with state space S, action sets A(i), i ∈ S,

transition probabilities pij(a), (i, j, a) ∈ S × S × A, one-step rewards at stage t given by
∑K

k=1 (αk)t−1rk
i (a), (i, a) ∈ S×A and at stage T there are terminal rewards

∑K
k=1 (αk)T1−1vk

i (f∞);

compute optimal actions ft(i), t = 1, 2, . . . , T − 1 of this T -step dynamic programming model.

8. Define the ultimately deterministic policy R by R := (f1, f2, . . . , fT−1, f, f, . . .) (STOP).

Theorem 7.24

Algorithm 7.7 is correct, i.e. it constructs an ultimately deterministic optimal policy.

Proof

We apply Lemma 7.27 iteratively at most K times. After the kth iteration we replace the original model

by the model that starts at time point Tk. This means that the initial rewards r1, r2, . . . , rK are replaced

by αTk−1
1 r1, αTk−1

2 r2, . . . , αTk−1
1 rK. Lemma 7.27 allows us to reduce the action sets to Ak(i) after the

kth iteration. After a finite number (at most K) of iterations we have from Lemma 7.27 that the policy

f ∈ C(D) defined in step 5 of the algorithm is an optimal policy from stage T onward. Furthermore, any

solution of the finite stage dynamic programming problem described in step 7 of the algorithm provides

an optimal policy for the stages 1, 2, . . . , T − 1. Hence, the algorithm is correct.

Remark

In order to compute Tk we need to compute vk,l and vk,l for l = k + 1, k + 2, . . . , K. We have already

mentioned that to avoid the computation of the largest lower bound for vk,l, i.e. minR v
k,l(R) one may use

the trivial lower bound (1 − αl)
−1 ·min(i,a)∈S×Ak−1

rl
i(a). Similarly, one may replace the smallest upper

bound vk,l = maxR v
k,l(R) by the trivial upper bound (1 − αl)

−1 · max(i,a)∈S×Ak−1
rl
i(a). This results

in a considerable reduction in the computation of Tk. However, this leads to a larger value of Tk and,

consequently, to a larger value for T . Hence, it increases the complexity of the finite horizon problem in

step 7 of the algorithm.

7.14 Bibliographic notes

The material presented in this chapter has its roots in Blackwell’s seminal paper [29]. Among other

results, Blackwell introduced the criteria we now refer to as 0-discount optimality and Blackwell optimality

(he referred to policies which achieve these criteria as nearly optimal and optimal, respectively). He

demonstrated the existence of a Blackwell optimal policy and convergence of the multichain average reward

policy iteration method through use of a partial Laurent series expansion. That paper raised also the

following challenging questions:

a. What is the relationship between 0-discount optimality and Blackwell optimality?

b. When are average optimal policies 0-discount optimal?

c. How does one compute 0-discount optimal and Blackwell optimal policies?

Veinott ([308], [311] and [312]) and Miller and Veinott ([199]) addressed these issues. In his 1966 paper

[308], Veinott provided a policy iteration algorithm for finding a 0-discount optimal policy (he referred

316 CHAPTER 7. MORE SENSITIVE OPTIMALITY CRITERIA

to such policy as 1-optimal). In his comprehensive 1969 paper [311], Veinott provides the link between

0-discount optimality and Blackwell optimality. Miller and Veinott developed the complete Laurent series

expansion and related it to the lexicographic ordering (see section 7.4) and used this ordering to provide a

finite policy iteration method for n-discount optimality for any n. For the presentation of the lexicographic

ordering we refer also to Dekker ([53]) and Dekker and Hordijk ([54]). Miller and Veinott also showed that

N − 1-discount optimality is equivalent to Blackwell optimality (see section 7.5). In his 1974 paper ([312])

Veinott provides a more accessible overview of the above work and a simplified presentation of the main

results in [311].

In [208] O’Sullivan presents another method for finding an n-discount optimal policy for a substochas-

tic MDP by solving a sequence of 3n + 5 simpler subproblems which can be solved using either policy

improvement or linear programming. He also presents a new method for determining the coefficients of

the Laurent expansion for a substochastic MDP. This method reduces the problem to that of finding the

coefficients within a number of irreducible, substochastic systems.

The linear programming method for the computation of an n-discount optimal policy in the irreducible

case (see section 7.6) is due to Avrachenkov and Altman ([7]).

The approach for the computation of a Blackwell optimal policy by linear programming, based on

asymptotic linear programming (see section 7.7), was proposed by Hordijk, Dekker and Kallenberg ([125]).

Unfortunately, this method cannot be used for the calculation of n-discount optimal policies that are not

Blackwell optimal. Related papers are written by Smallwood ([274]) and Jeroslow ([141]).

The material of the sections 7.8 and 7.10 is taken from Denardos paper [61]. Denardo ([59]) has

proposed the three-step procedure with linear programming to find a bias optimal policy. Kallenberg

([148]) has improved and streamlined this approach, which is presented in section 7.9.

Veinott ([308]) introduced in 1966 the criterion of average overtaking optimality. Already in 1965 Brown

showed ([34]) that an overtaking optimal policy need not exists, in general. Example 7.8 is due to Denardo

and Miller ([65]). Denardo and Rothblum ([66]) have presented an additional assumption under which

overtaking optimal policies do exist. Lippman ([181]) has shown the equivalence between average overtaking

optimality and 0-discount optimality. Sladky ([273]) generalized overtaking and average overtaking to n-

average optimality. He showed the equivalence between n-average optimality and n-discount optimality.

Rothblum and Veinott ([248]) and Rothblum ([246]) generalized and unified the overtaking optimality

criteria through the introduction of a family of (n, k)-optimality criteria. Their concepts of (0, 0), (0, 1)

and (1, 0)-optimality are equivalent to overtaking, average overtaking and cumulative overtaking optimality,

respectively.

The section on a weighted combination of discounted and average rewards is due to Krass, Filar and

Sinha ([172]). The last section, dealing with the sum of several expected total discounted rewards with

different one-step rewards and discount factors, is based on a paper by Feinberg and Shwartz ([84]).

7.15 Exercises

Exercise 7.1

Give a direct proof Lemma 7.3, i.e. if a policy is n-average optimal, then it is m-average optimal for

m = −1, 0, . . . , n.

7.15. EXERCISES 317

Exercise 7.2

Sow that for all n ≥ 0, T ≥ 2 and f∞ ∈ C(D):

a. vn,T (f∞) = vn,T−1(f∞) + vn−1,T (f∞).

b. vn,T (f∞) =
(

T+n
n+1

)

r(f) + P (f)vn,T−1(f∞).

Exercise 7.3

Consider the following model:

S = {1, 2}; A(1) = {1, 2}, A(2) = {1}; r1(1) = 5, r1(2) = 10, r2(1) = −1.

p11(1) = 0.5, p12(1) = 0.5; p11(2) = 0, p12(1) = 1; p21(1) = 0, p22(1) = 1.

Determine for both deterministic policies the α-discounted rewards and for which α the policy is optimal.

Exercise 7.4

Consider the following model:

S = {1, 2}; A(1) = {1, 2}, A(2) = {1}; r1(1) = 1, r1(2) = 2, r2(1) = 0.

p11(1) = 0.5, p12(1) = 0.5; p11(2) = 0, p12(1) = 1; p21(1) = 0, p22(1) = 1.

Determine for both deterministic policies the Laurent series expansion in 1 − α and derive from this

expansion the vectors uk(f), k = −1, 0, 1,

Exercise 7.5

Consider the following model:

S = {1, 2, 3}; A(1) = {1, 2}, A(2) = A(3) = {1}; r1(1) = a, r1(2) = 1, r2(1) = b, r3(1) = 0.

p11(1) = 0, p12(1) = 1, p13(1) = 0; p11(2) = 0.5, p11(2) = 0.5, p13(2) = 0;

p21(1) = 0, p22(1) = 0, p23(1) = 1; p31(1) = 0, p32(1) = 0, p33(1) = 1.

Determine a and b such that both deterministic policies are (−1)-discount, 0-discount and

1-discount optimal. Which policy is Blackwell optimal?

Exercise 7.6

Let for f∞ ∈ C(D) and ρ > 0 the resolvent Rρ(f) be defined by Rρ(f) = {ρI + (I − P (f)}−1.

Show that

(1) Rρ(f) = α{I − αP (f)}−1, where α = 1
1+ρ .

(2) limρ↓0 ρRρ(f) = P ∗(f).

Exercise 7.7

Determine a 0-optimal policy with Algorithm 7.1 for the following model:

S = {1, 2}; A(1) = {1, 2}, A(2) = {1}; r1(1) = 4, r1(2) = 0, r2(1) = 8.

p11(1) = 1, p12(1) = 0; p11(2) = 0, p12(2) = 1; p21(1) = 1, p22(1) = 0.

Start with f(1) = 2, f(2) = 1.

Exercise 7.8

Show that vα(R)− vα(f∞) =
∑∞

k=−1 ρ
kψk(f, g) for the nonstationary policy R = (g, f, f, f, . . .).

318 CHAPTER 7. MORE SENSITIVE OPTIMALITY CRITERIA

Exercise 7.9

Consider the following model:

S = {1, 2, 3, 4}; A(i) = {1, 2}, i = 1, 2, 3, 4.

p11(1) = 0; p12(1) = 1; p13(1) = 0; p14(1) = 0; r1(1) = 1

p11(2) = 0; p12(2) = 1
2
; p13(2) = 1

2
; p14(2) = 0; r1(2) = 1

2

p21(1) = 0; p22(1) = 0; p23(1) = 1; p24(1) = 0; r2(1) = 0

p21(2) = 0; p22(2) = 0; p23(2) = 1
3 ; p24(2) = 2

3 ; r2(2) = −2
3

p31(1) = 0; p32(1) = 0; p33(1) = 0 p34(1) = 1; r3(1) = 0.

p31(2) = 1
4
; p32(2) = 0; p33(2) = 0; p34(2) = 3

4
; r3(2) = 1

2

p41(1) = 1; p42(1) = 0; p43(1) = 0; p44(1) = 0; r4(1) = 3

p41(2) = 1
4 ; p42(2) = 3

4 ; p43(2) = 0; p44(2) = 0; r4(2) = 3

With (i, j, k, l), where i, j, k, l ∈ {1, 2}, we denote the 16 policies, so (1, 2, 2, 1) is the policy that takes

action 1 in state 1 and 4, and action 2 in the states 2 and 3.

a. The model is irreducible: show that the policy (1, 2, 2, 1) is irreducible.

b. Formulate the primal and dual linear program for an (-1)-discount optimal policy.

c. Solve the linear programs (use any package that is availabe for you).

d. Determine, using the in c obtained solution, the set of (−1)-discount optimal policies.

e. Formulate the primal and dual linear program for an 0-discount optimal policy.

f. Solve the linear programs for an 0-discount optimal policy.

g. Determine, using the in f obtained solution, the set of 0-discount optimal policies.

h. Formulate the primal and dual linear program for an 1-discounted optimal policy.

i. Solve the linear programs for an 1-discounted optimal policy.

j. Determine, using the in i obtained solution, the set of 1-discounted optimal policies.

Exercise 7.10

Show that the ordering of F (R) given by (7.30) is a correct total ordering.

Exercise 7.11

Consider the following MDP:

S = {1, 2}; A(1) = {1, 2, 3}, A(2) = {1}; r1(1) = 1, r1(2) = 3
4
, r1(3) = 1

2
; r2(1) = 0.

p11(1) = 0, p12(1) = 1; p11(2) = 1
2
, p12(2) = 1

2
; p11(3) = 1, p12(3) = 0; , p21(1) = 0, p22(1) = 1.

Determine by the linear programming method for rational functions optimal policies for all discount factors

α ∈ (0.1).

Exercise 7.12

Consider the following MDP:

S = {1, 2, 3}; A(1) = {1, 2}, A(2) = {1, 2}, A(3) = {1}.
r1(1) = 1, r1(2) = 2; r2(1) = 2, r2(2) = 0; r3(1) = 0.

p11(1) = 1, p12(1) = 0, p13(1) = 0; p11(2) = 0, p12(2) = 0, p13(1) = 1;

p21(1) = 1, p22(1) = 0, p23(1) = 0; p21(2) = 0, p22(2) = 0, p23(2) = 1;

p31(1) = 1, p32(1) = 0, p33(1) = 0.

Determine a bias optimal policy by the linear programming method for unichain MDPs.

7.15. EXERCISES 319

Exercise 7.13

Consider the MDP of Example 7.8 with the two deterministic policies f∞1 and f∞1 . Determine

lim infT→∞
1
T

∑T
t=1{vt

i(f
∞
1)− vt

i (f
∞
2)} and lim infT→∞

1
T

∑T
t=1{vt

i(f
∞
2)− vt

i(f
∞
1)} for each i ∈ S.

Is f∞1 an average overtaking policy? Is f∞2 an average overtaking policy?

320 CHAPTER 7. MORE SENSITIVE OPTIMALITY CRITERIA

Chapter 8

Special models

In this chapter we deal with the models which were introduced in section 1.3. The red-black gambling

model was already discussed in section 4.12.1, the model ’How to serve in tennis’ was left as Exercise 1.5

to the reader and for the optimal stopping problem we refer to the sections 1.3.3 and 4.12.2. In the next

sections we discuss the following models:

8.1 Replacement problems

8.1.1 A general replacement problem

8.1.2 A replacement problem with increasing deterioration

8.1.3 Skip to the right model with failure

8.1.4 A separable replacement problem

8.2 Maintenance and repair problems

8.2.1 A surveillance-maintenance-replacement problem

8.2.2 Optimal repair allocation in a series system

8.2.3 Maintenance of systems composed of highly reliable components

8.3 Production and inventory control

8.3.1 No backlogging

8.3.2 Backlogging

8.3.3 Inventory control and single-critical-number policies

8.3.4 Inventory control and (s, S)-policies

8.4 Optimal control of queues

8.4.1 The single-server queue

8.4.2 Parallel queues

8.5 Stochastic scheduling

8.5.1 Maximizing finite-time returns on a single processor

8.5.2 Optimalicy of the µc-rule

8.5.3 Optimality of threshold policies

8.5.4 Optimality of join-the-shortest-queue policies

8.5.5 Optimality of LEPT and SEPT policies

8.5.6 Maximizing finite-time returns on two processors

8.5.7 Tandem queues

321

322 CHAPTER 8. SPECIAL MODELS

8.6 Multi-armed bandit problems

8.6.1 Introduction

8.6.2 A single project with a terminal reward

8.6.3 Multi-armed bandits

8.6.4 Methods for the computation of the Gittins index

8.7 Separable problems

8.7.1 Introduction

8.7.2 Examples (part 1)

8.7.3 Discounted rewards

8.7.4 Average rewards - unichain case

8.7.5 Average rewards - general case

8.7.6 Examples (part 2)

8.8 Bibliographic notes

8.9 Exercises

8.1 Replacement problems

In this section we discuss four variants of the replacement problem:

- a general replacement model;

- a replacement model with increasing deterioration;

- a skip to the right model with failure costs;

- a separable model.

8.1.1 A general replacement model

In this general replacement model we have state space S = {0, 1, . . . , N}, where state 0 corresponds to a

new item, and action sets A(0) = {1} and A(i) = {0, 1}, i 6= 0, where action 0 means replacing the present

item by a new item. We consider in this model costs instead of rewards. Let c be the cost of a new item.

Furthermore, assume that an item of state i has trade-in-value si and maintenance costs ci. If in state i

action 0 is chosen, then ci(0) = c − si + c0 and pij(0) = p0j, j ∈ S; for action 1, we have ci(1) = ci and

pij(1) = pij, j ∈ S. In contrast with other replacement models, where the state is determined by the age

of the item, we allow that the state of the item may change to any other state. In this case the optimal

replacement policy is in general no a control-limit rule. As optimality criterion we consider the expected

total discounted reward. For this model the primal linear program, which yields the value vector vα, is:

min

N
∑

j=0

βjvj

∣

∣

∣

∣

∣

∑N
j=0 (δij − αp0j)vj ≥ −c+ si − c0, 1 ≤ i ≤ N

∑N
j=0 (δij − αpij)vj ≥ −ci, 0 ≤ i ≤ N

, (8.1)

where βj > 0, j ∈ S, are some given numbers. Because there is only one action in state 0, namely action

1, we have vα
0 = −c0 + α

∑N
j=0 p0jv

α
j . Hence, instead of

∑N
j=0 (δij − αp0j)vj ≥ −c + si − c0, we can write

vi − v0 ≥ −c+ si, obtaining the equivalent linear program

min

N
∑

j=0

βjvj

∣

∣

∣

∣

∣

vi − v0 ≥ ri, 1 ≤ i ≤ N
∑N

j=0 (δij − αpij)vj ≥ −ci, 0 ≤ i ≤ N

, (8.2)

8.1. REPLACEMENT PROBLEMS 323

where ri := −c + si, i ∈ S. The dual linear program of (8.2) is:

max

N
∑

i=1

rixi −
N
∑

i=0

ciyi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−∑N
i=1 xi +

∑N
i=0 (δi0 − αpi0)yi = β0

xj +
∑N

i=0 (δij − αpij)yi = βj , 1 ≤ j ≤ N
xi ≥ 0, 1 ≤ i ≤ N
yi ≥ 0, 0 ≤ i ≤ N

. (8.3)

Theorem 8.1

There is a one-to-one correspondence between the extreme solutions of (8.3) and the set of deterministic

policies.

Proof

Let (x, y) be an extreme solution of (8.3). Then, (x, y) has exactly N + 1 positive components. Since

y0 = β0 +
∑N

i=1 xi + α
∑N

i=0 pi0yi ≥ β0 > 0 and xj + yj = βj + α
∑N

i=0 pijyi ≥ βj > 0, 1 ≤ j ≤ N, in

each state j, 0 ≤ j ≤ N , either xj or yj is strictly positive. Hence, (x, y) corresponds to the deterministic

policy, defined by: if xj > 0, then action 0 (replacement) is chosen and if xj = 0, then yj > 0 and action

1 (no replacement) is chosen.

Conversely, let f∞ be a deterministic policy. Partition the states {1, 2, . . . , N} in S0 ∪ S1, where S0 and

S1 correspond to the states in which action 0 and action 1, respectively, are chosen. Let xj := 0 for all

j ∈ S1 and yj := 0 for all j ∈ S0. Then, the equations of (8.3) are equivalent to the following system of

N + 1 equations with N + 1 variables:

−∑j∈S0
xj + y0 − α

∑

i∈S1
pi0yi = β0

xj − α
∑

i∈S1
pijyi = βj , j ∈ S0

yj − α
∑

i∈S1
pijyi = βj , j ∈ S1

(8.4)

Consider a linear combination of the columns of (8.4) which yields the 0-vector:

−∑j∈S0
µj + µ0 − α

∑

i∈S1
pi0µi = 0

µj − α
∑

i∈S1
pijµi = 0, j ∈ S0

µj − α
∑

i∈S1
pijµi = 0, j ∈ S1

(8.5)

Since µ0 = α
∑

i∈S1
pi0µi+

∑

j∈S0
µj = α

∑

i∈S1
pi0µi+

∑

j∈S0
{α∑i∈S1

pijµi} = α
∑

j∈S1
{pi0+

∑

j∈S0
pij}µi,

we have

µj = α
∑

i∈S1

qijµi, j ∈ {0} ∪ S1, (8.6)

where qij :=

{

pi0 +
∑

j∈S0
pij i ∈ S1, j = 0,

pij i ∈ S1, j ∈ S1.

Remark that Q is a probability matrix on {0} ∪ S1, because qij ≥ 0 for all i and j, and also we have
∑

j∈{0}∪S1
qij = pi0 +

∑

j∈S0
pij +

∑

j∈S1
pij =

∑

j∈S pij = 1 for all i. Let νj := µj, j ∈ {0} ∪ S1, then

(8.6) implies that νT (I − αQ) = 0. Since I − αQ is nonsingular, we have ν = 0, i.e. µj = 0 for all

j ∈ {0} ∪ S1. Then, from (8.5) it follows that µj = 0, j ∈ S0 , implying that µj = 0 for all j. Hence, the

columns of (8.4) are linear independent and, consequently, (x, y) is an extreme solution of (8.3) and the

correspondence is one-to-one.

Consider the simplex method to solve (8.3) and start with the basic solution that corresponds to the policy

which chooses action 1 (no replacement) in all states. Hence, in the first simplex tableau yj, 0 ≤ j ≤ N,

are the basic variables and xi, 1 ≤ i ≤ N, the nonbasic variables. Take the usual version of the simplex

324 CHAPTER 8. SPECIAL MODELS

method in which the column with the most negative cost is chosen as pivot column. It turns out, as will be

shown in Theorem 8.2, that this choice gives the optimal action for that state, i.e. in that state action 0,

the replacement action, is optimal. Hence, after interchanging xi and yi, the column of yi can be deleted.

Consequently, we obtain the following greedy simplex algorithm.

Algorithm 8.1 The greedy simplex algorithm

Input: Instance of a general replacement problem.

Output: An optimal deterministic policy f∞.

1. Start with the basic solution corresponding to the nonreplacing actions.

2. if the reduced costs are nonnegative then the corresponding policy is optimal (STOP).

otherwise

begin

select the column with the most negative reduced cost as pivot column;

execute the usual simplex transformation;

delete the pivot column

end

3. if all columns are removed then replacement in all states is the optimal policy (STOP).

otherwise return to step 2.

Theorem 8.2 The greedy simplex algorithm is correct and has complexity O(N3).

Proof

For the correctness of the algorithm it has to be shown that the deletion of the pivot column is allowed.

This will be shown by induction on the number of iterations. The first simplex tableau is correct, because

no column had been deleted. Suppose that previous iterations were correct and consider the present

simplex tableau, corresponding to policy f∞, with basic variables y0, yi, i ∈ S1, and xi, i ∈ S0. The

reduced cost corresponding to state i and action a is in general (see section 3.5):
∑

j {δij − αpij(a)}vα
j (f∞) − ri(a).

For action 0 (replacement) we denote the reduced cost in state i by wi(f) and this quantity becomes

wi(f) = vα
i (f∞)− α∑j p0jv

α
j (f∞) + (c− si + c0) = vα

i (f∞)− vα
0 (f∞)− ri,

the last equality because vα
0 (f∞) = −c0 + α

∑

j p0jv
α
j (f∞).

For action 1 (no replacement) we denote the reduced cost in state i by zi(f) and we obtain

zi(f) =
∑

j {δij − αpij}vα
j (f∞) + ci.

Since the reduced costs corresponding to basic variables are zero, we have
{
∑

j {δij − αpij}vα
j (f∞) = −ci, i ∈ S1 ∪ {0}

vα
i (f) − vα

0 (f∞) = ri, i ∈ S0

Let S∗
0 := {i | action 0 is in state i optimal}, S∗

1 := S\S∗
0 and let f∞∗ be an optimal policy.

Then, state 0 is in S∗
1 , S0 ⊆ S∗

0 (by the induction hypothesis), and

{
∑

j {δij − αpij}vα
j (f∞∗) = −ci, i ∈

vα
i (f∞∗) − vα

0 (f∞∗) = ri, i ∈
Assume that the column of the nonbasic variable xk is chosen as pivot column. Then, the reduced cost of

column k is the most negative reduced cost: wk(f) < 0 and wk(f) ≤ wi(f), 1 ≤ i ≤ N . It is sufficient to

8.1. REPLACEMENT PROBLEMS 325

show that in state k action 0 is optimal, i.e. k ∈ S∗
0 . Let d(f) := vα(f) − vα(f∗). Then, because f∞∗ is

optimal, S0 ⊆ S∗
0 and vα

i (f∞∗)− vα
0 (f∞∗) = ri, i ∈ S∗

0 , we obtain

{

di(f) = α
∑

j pijdj(f), i ∈ S∗
1

di(f) = d0(f) +wi(f) ≥ d0(f) +wk(f), i ∈ S∗
0

(8.7)

Let m ∈ S∗
1 be such that dm(f) = mini∈S∗

1
di(f) and suppose that dm(f) ≤ d0(f) + wk(f). Then,

dm(f) ≤ di(f), 0 ≤ i ≤ N, and (8.7) implies that dm(f) = α
∑

j pmjdj(f) ≥ αdm(f), i.e. dm(f) ≥ 0. Since

0 ≤ dm(f) ≤ di(f), 0 ≤ i ≤ N, and d(f) ≤ 0, we have d(f) = 0. This means that vα(f∞) = vα(f∞∗) = vα.

Hence, the present simplex tableau is optimal which contradicts wk(f) < 0. Therefore, we have shown

that

d0(f) +wk(f) < dm(f) ≤ di(f) for all i ∈ S∗
1 .

Suppose that k ∈ S∗
1 . Then,

vα
k (f∞) − vα

k (f∞∗) = dk(f) ≥ dm(f) > d0(f) +wk(f) = vα
0 (f∞) − vα

0 (f∞∗) +wk(f).

Hence,

vα
k = vα

k (f∞∗) < vα
k (f∞)− vα

0 (f∞) + vα
0 (f∞∗) − vα

k (f∞) + vα
0 (f∞) + rk = vα

0 + rk,

i.e. vα is infeasible for (8.2): contradiction. This completes the first part of the proof.

In the first step of the algorithm, the simplex tableau for a specific basic solution has to be determined.

This is one matrix inversion and has complexity O(N3). Since in each iteration one column is removed,

there are at most N iterations. In each iteration a simplex tranformation is executed which takes O(N2).

Hence, the overall complexity of the algorithm is O(N3).

Remark:

An optimal stopping problem may be considered as a special case of a replacement problem with as

optimality criterion the total expected reward, i.e. α = 1. In an optimal stopping problem there are two

actions in each state. The first action is the stopping action and the second action corresponds to continue.

If the stopping action is chosen in state i, then a final reward si is earned and the process terminates. If

the second action is chosen, then a reward ri is received and the transition probability of being in state j

at the next decision time point is pij, j ∈ S. This optimal stopping problem can is a special case of the

replacement problem with p0j = 0 for all j ∈ S, ci(0) = −si and ci(1) = −ri for all i ∈ S. Hence, also

for the optimal stopping problem, the linear programming approach of this section can be used and the

complexity is also O(N3).

8.1.2 A replacement model with increasing deterioration

Consider a replacement model with state space S = {0, 1, . . . , N + 1}. An item is in state 0 if and only if

it is new; an item is in state N + 1 if and only if it is inoperative. There are two actions: action 0 is to

replace the item by a new one and action 1 is not to replace the item; in the states 0 and N + 1 only one

action is possible, action 1 and action 0, respectively. Action 0 gives an instantaneous transition to state

0. Hence, the transition probabilities are:

pij(0) = p0j, 1 ≤ i ≤ N + 1, j ∈ S, and pij(1) = pij, 0 ≤ i ≤ N, j ∈ S.

We assume two types of cost, the cost c0 ≥ 0 to replace an operative item and the cost c0 + c1, where

c1 ≥ 0, to replace an inoperative item. We state the following equivalent (see Lemma 8.1) assumptions. If

state i is interpreted as the condition of an item, then Assumption 8.2 means increasing deterioration.

326 CHAPTER 8. SPECIAL MODELS

Assumption 8.1

The transition probabilities are such that for every nondecreasing function xj, j ∈ S, the function

F (i) :=
∑N+1

j=0 pijxj is nondecreasing in i.

Assumption 8.2

The transition probabilities are such that for every k ∈ S, the function Gk(i) =
∑N+1

j=k pij is nondecreasing

in i.

Lemma 8.1

The Assumptions 8.1 and 8.2 are equivalent.

Proof

Let Assumption 8.1 hold. Take any k ∈ S. Then, for the nondecreasing function xj :=
{ 0 j < k

1 j ≥ k
the

function F (i) :=
∑N+1

j=0 pijxj =
∑N+1

j=k pij = Gk(i) is nondecreasing in i.

Conversely, let Assumption 8.2 hold. Take any nondecreasing function xj , j ∈ S.

Then, with ck := xk − xk−1 ≥ 0, 1 ≤ k ≤ N + 1, we can write xj =
∑j

k=1 ck + x0, 1 ≤ j ≤ N + 1.

Therefore, we obtain

F (i) =
∑N+1

j=0 pijxj = pi0x0 +
∑N+1

j=1 pij{
∑j

k=1 ck + x0}
= x0 +

∑N+1
j=1

∑j
k=1 ckpij = x0 +

∑N+1
k=1 ck {

∑N+1
j=k pij}.

Since
∑N+1

j=k pij = Gk(i) is nondecreasing in i and ck ≥ 0 for k = 1, 2, . . . , N + 1, the function F (i) is also

nondecreasing in i.

We first consider the discounted rewards. The method of value iteration for this model becomes (with

v0
i := 0 for all i) for n = 0, 1, . . .

vn+1
i =

α
∑

j p0jv
n
j , i = 0

min{α∑j pijv
n
j , c0 + α

∑

j p0jv
n
j } , 1 ≤ i ≤ N

c0 + c1 + α
∑

j p0jv
n
j , i = N + 1.

(8.8)

We assume that Assumption 8.1 (or 8.2) holds. Clearly, v0
i is a nondecreasing function in i. Assume vn

j is

nondecreasing in j. Then, it follows from Assumption 8.1 and (8.8) that vn+1
i is also nondecreasing in i.

Hence, also vα
i = limn→∞ vn

i is nondecreasing in i.

Theorem 8.3

Let i∗ be such that i∗ = max{i | α∑j pijv
α
j ≤ c0 +α

∑

j p0jv
α
j }. Then, the control-limit policy f∞∗ which

replaces in the states i > i∗ is a discounted optimal policy.

Proof

Since vα
i is nondecreasing in i, by Assumption 8.1, also α

∑

j pijv
α
j is nondecreasing in i. By the definition

of i∗ and because vα is the unique solution of the optimality equation

vα
i =

α
∑

j p0jv
α
j , i = 0

min{α∑j pijv
α
j , c0 + α

∑

j p0jv
α
j } , 1 ≤ i ≤ N

c0 + c1 + α
∑

j p0jv
α
j , i = N + 1

,

we obtain

vα
i =

α
∑

j pijv
α
j , 0 ≤ i ≤ i∗

c0 + α
∑

j p0jv
α
j , i∗ < i ≤ N

c0 + c1 + α
∑

j p0jv
α
j , i = N + 1

implying that the control-limit policy f∞∗ is optimal.

8.1. REPLACEMENT PROBLEMS 327

Theorem 8.3 implies that the next algorithm computes an optimal control-limit policy for this model. The

integer k in step 2a of the algorithm is the number of nonbasic variables corresponding to the replacing

actions in the states i = 1, 2, . . . , N . Similar to Algorithm 8.1 it can be shown that the complexity of

Algorithm 8.2 is O(N3).

Algorithm 8.2 Computation of an optimal control-limit policy.

Input: Instance of a replacement problem with increasing deterioration.

Output: An optimal deterministic control-limit policy f∞.

1. (a) Start with the basic solution corresponding to the nonreplacing actions in the states

i = 1, 2, . . . , N and to the only action in the states 0 and N + 1.

(b) k := N .

2. if the reduced costs are nonnegative then the corresponding policy is optimal (STOP).

otherwise

begin

choose the column corresponding to state k as pivot column;

execute the usual simplex transformation;

delete the pivot column;

k := k − 1

begin

3. if k = 0 then replacement in all states i 6= 0 is the optimal policy (STOP)

otherwise return to step 2

Remark

Next, we consider the average reward. By Theorem 8.3 for each α ∈ (0, 1) there exists a control-limit

policy f∞α that is α-discounted optimal. Let {αk, 1, 2, . . .} be any sequence of discount factors such

that limk→∞ αk = 1. Since there are only a finite number of different control-limit policies, there is a

subsequence of {αk, 1, 2, . . .} which has with one of these control-limit policies as optimal policy. Therefore,

we may assume that f∞αk
= f∞0 for all k. Letting k → ∞, we obtain for every deterministic policy f∞,

φ(f∞) = limk→∞(1 − αk)vα
k (f∞) ≤ limk→∞(1 − αk)vα

k (f∞0) = φ(f∞0). Therefore, also for the average

reward criterion there exists a control-limit optimal policy.

8.1.3 Skip to the right model with failure

This model is a slightly different from the previous one. Let the state space S = {0, 1, . . . , N + 1}, where

state 0 corresponds to a new item and state N +1 to failure. The states i, 1 ≤ i ≤ N, may be interpreted

as the age of the item. The system has in state i a failure probability pi during the next period. When

failure occurs in state i, which is modeled as being transferred to state N + 1, there is an additional cost

fi. In state N + 1 the item has to be replaced by a new one. When there is no failure in state i, the next

state is state i + 1: the system skips to the right, i.e. the age of the item increases. As in the previous

section action 0 and 1 correspond to no replacement and replacement, respectively; furthermore, action 0

gives an instantaneous transition to state 0. We assume two types of cost, the cost c to buy a new item

and maintenance cost ci for an item in state i. The action sets, the cost of a new item, the maintenance

costs and the transition probabilities are as follows.

328 CHAPTER 8. SPECIAL MODELS

S = {0, 1, . . . , N + 1}; A(0) = {1}; A(0) = {0, 1}, 1 ≤ i ≤ N ; A(N + 1) = {0}.

1 ≤ i ≤ N + 1 : pij(0) =
{ 1− p0 j = 1

p0 j = N + 1
; ci(0) = c + c0 + p0f0

0 ≤ i ≤ N : pij(1) =
{ 1− pi j = i+ 1

pi j = N + 1
; ci(1) = ci + pifi

We impose the following assumptions:

(A1) c ≥ 0; ci ≥ 0, fi ≥ 0, 0 ≤ i ≤ N .

(A2) p0 ≤ p1 ≤ · · · ≤ pN , i.e. older items have greater failure probability.

(A3) c0 + p0f0 ≤ c1 + p1f1 ≤ · · · ≤ cN + pNfN , i.e. the sum of the maintenance and failure costs grow

with the age of the item.

Take any k ∈ S. Since
∑N+1

j=k pij(1) =
{ pi i ≤ k − 2

1 i ≥ k − 1
, this summation is, by assumption A2, nonde-

ceasing in i. Hence, Assumption 8.1, and consequently also Assumption 8.2, is satisfied. This enables us

to treat this model in a similar way as the previous one.

The method of value iteration for this model becomes (with v0
i = 0 for all i) for n = 0, 1, . . .

vn+1
i =

c0 + p0f0 + α
∑

j p0j(1)vn
j , i = 0

min{c+ c0 + p0f0 + α
∑

j pij(0)vn
j , ci + pifi + α

∑

j pij(1)vn
j } , 1 ≤ i ≤ N

c+ c0 + p0f0 + α
∑

j pN+1j(0)vn
j , i = N + 1.

(8.9)

Since pij(0) = p0j(1) for all i and j, equation (8.9) is equivalent to

vn+1
i =

c0 + p0f0 + α
∑

j p0j(1)vn
j , i = 0

min{c + c0 + p0f0 + α
∑

j p0j(1)vn
j , ci + pifi + α

∑

j pij(1)vn
j } , 1 ≤ i ≤ N

c+ c0 + p0f0 + α
∑

j p0j(1)vn
j , i = N + 1.

(8.10)

Similarly to the analysis in the previous section, we can derive the following results.

Theorem 8.4

(1) vn
i is nondecreasing in i for every n = 0, 1,

(2) Let i∗ be such that i∗ = max{i | ci + pifi + α
∑

j pij(1)vα
j ≤ c+ c0 + p0f0 + α

∑

j p0j(1)vα
j }.

Then, the control-limit policy f∞∗ which replaces in the states i > i∗ is an optimal policy.

Remarks:

1. Algorithm 8.2 is also applicable to this model.

2. Similarly as in the previous section it can be shown that for the average reward criterion there

exists also a control-limit optimal policy.

8.1.4 A separable replacement problem

Suppose that the MDP has the following structure:

S = {1, 2, . . . , N}; A(i) = {1, 2, . . . ,M}, i ∈ S.
pij(a) = pj(a), i, j ∈ S, a ∈ A(i), i.e. the transitions are state independent.

ri(a) = si + t(a), i ∈ S, a ∈ A(i), i.e. the rewards are separable.

This model is a special case of a separable MDP (see also Section 8.7).

8.2. MAINTENANCE AND REPAIR PROBLEMS 329

As example, consider the problem of periodically replacing a car. When a car is replaced, it can be

replaced not only by a new one, but also by a car in an arbitrary state. Let si be the trade-in-value of a

car of state i, t(a) the costs of a car of state a. Then, ri(a) = si − t(a) and pij(a) = pj(a), where pj(a) is

the probability that a car of state a is in state j at the next decision time point.

We fist consider as optimality criterion the discounted expected rewards. The next theorem shows

that a one-step look-ahead policy is optimal.

Theorem 8.5

Let a∗ be such that −t(a∗) + α
∑

j pj(a∗)sj = max1≤a≤M {−t(a) + α
∑

j pj(a)sj}. Then, the policy f∞∗ ,

defined by f∗(i) := a∗ for every i ∈ S, is an α-discounted optimal policy.

Proof

We first show that if an action, say a1, is optimal in state 1 this action is also optimal in the other states.

Let a1 optimal in state 1, i.e.

r1(a1) + α
∑

j p1j(a1)v
α
j ≥ r1(a) + α

∑

j p1j(a)v
α
j , a ∈ A(1) ⇔

s1 − t(a1) + α
∑

j pj(a1)v
α
j ≥ s1 − t(a) + α

∑

j pj(a)v
α
j , 1 ≤ a ≤M ⇔

si − t(a1) + α
∑

j pj(a1)v
α
j ≥ si − t(a) + α

∑

j pj(a)v
α
j , i ∈ S, 1 ≤ a ≤M ⇔

ri(a1) + α
∑

j pij(a1)v
α
j ≥ ri(a) + α

∑

j pij(a)v
α
j i ∈ S, a ∈ A(i),

i.e. action 1 is optimal in all states. Hence, we may restrict the policies to the set of actions {1, 2, . . . ,M}
and we have to decide which a ∈ {1, 2, . . . ,M} is the optimal one. For any choice f∞ ∈ C(D) with

f(i) = a for all i ∈ S, we have vα
i (f∞) = si − t(a) + α

∑

j pj(a)v
α
j (f∞) = si + c(a), i ∈ S, where

c(a) := −t(a) + α
∑

j pj(a)v
α
j (f∞).

A policy f∞∗ ∈ C(D) with f(i) = a∗ is α-discounted optimal if and only if

si − t(a∗) + α
∑

j pj(a∗)vα
j (f∞∗) ≥ si − t(a) + α

∑

j pj(a)v
α
j (f∞∗) ∀ (i, a) ⇔

si − t(a∗) + α
∑

j pj(a∗){sj + c(a∗)} ≥ si − t(a) + α
∑

j pj(a){sj + c(a∗)} ∀ (i, a) ⇔
−t(a∗) + α

∑

j pj(a∗)sj ≥ −t(a) + α
∑

j pj(a)sj , 1 ≤ a ≤M ⇔
−t(a∗) + α

∑

j pj(a∗)sj = max1≤a≤M{−t(a) + α
∑

j pj(a)sj}.

Corollary 8.1

Let a0 be such that −t(a0)+
∑

j pj(a0)sj = max1≤a≤M{−t(a)+
∑

j pj(a)sj}. Then, the policy f∞0 , defined

by f0(i) := a0 for every i ∈ S, is a Blackwell optimal and therefore also average optimal policy.

Proof

From Theorem 8.5 it follows that f∞0 is an α-discounted optimal policy for all α ∈ [α0, 1) for some

α0 ∈ [0, 1). Therefore, f∞0 is a Blackwell optimal policy.

8.2 Maintenance and repair problems

8.2.1 A surveillance-maintenance-replacement model

Consider a system, in use or in storage, which is deteriorating. Suppose that the deteriorating occurs

stochastically and that the conditioning of the system is known only if it is inspected, which is costly.

After inspection the manager of the system has two alternatives: (1) to replace the item by a new item;

(2) to keep the item and do some repair on it. Under the second alternative he must decide the extend of

repairs to be made and when to make the next inspection. If inspection is put too long the system may

330 CHAPTER 8. SPECIAL MODELS

fail in the interim, the consequence of which is an incurred cost which is a function of how long the system

has been inoperative. Assume that M denotes the upper bound on the number of periods that can elapse

without an inspection.

Suppose that the uninspected system evolves according to a Markov chain with states {0, 1, . . . , N+1}.
The state 0 denotes a new system and the state N + 1 an inoperative system. Let P = (pij) denote the

transition matrix of this Markov chain with piN+1 > 0, 0 ≤ i ≤ N + 1, and pN+1,N+1 = 1. Assume that

when a replacement is made an instantaneous transition to state 0 takes place; when a repair is made an

instantaneous transition takes place to one of the states 1, 2, . . . , N , depending on the extend of repairs.

Replacement or repairs are only made at the time of inspections.

Since there is a failure cost depending how long the system has been inoperative we use additional

states N + 1(1), N + 1(2), . . . , N + 1(M), where N + 1(m) denotes the fact that the system is observed to

be in state N + 1 and has been in state N + 1 for m uninspected periods. Hence, the state space S will

consist of the states 0, 1, . . . , N + 1, N + 1(1), N + 1(2), . . . , N + 1(M).

Let ci denote the cost of inspection when the system is in state i. Let rij, 1 ≤ i ≤ N + 1, 0 ≤ j ≤ N
denote the cost to repair the system from state i to state j. In particular, ri0 is the cost to replace the

item by a new one. In addition we let rN+1(m)j , m = 1, 2, . . . ,M, denote the cost to place the system in

state j from state N +1 when prior to discovering the system in state N +1, the system has been in state

N + 1 for m uninspected periods. This cost represents, in addition to the repair or replacement costs, the

cost associated with undetected failure.

At each state i = 0, 1, . . . , N , an action alm consists in placing the system in state l, 0 ≤ l ≤ N , and

deciding to skip m (0 ≤ m ≤M) time periods before observing the system again. If the system is observed

in one of the states N + 1, N + 1(1), . . . , N + 1(M), we assume that al0, 0 ≤ l ≤ N are the only possible

actions. Hence, when the system is inspected in state i and action alm is chosen there are inspection and

repair costs ci(alm) = ci + ril for each i, l and m and transition probabilities pij(alm) = p
(m+1)
lj for each

i, j, l and m.

As optimality criterion, we are interested in minimizing the expected average cost per unit time at-

tributed to a surveillance-replacement-maintenance policy. Let {Xt, Yt, t = 1, 2 . . .} be the observed states

and actions, respectively, and let the quantities Ztijm and ZTijm be defined by

Ztijm =
{ 1 if Xt = i, Yt = ajm

0 otherwise
t = 1, 2, . . . ; ZTijm =

1

T

T
∑

t=1

Ztijm, T = 1, 2,

If JT is the average cost up to time T , then for each i, j ∈ S we have

JT =

∑t(T)
t=1

∑

i,j,m (ci + rij)Ztijm
∑t(T)

t=1

∑

i,j,m (m+ 1)Ztijm + θ
,

where t(T) is the last inspection time less than or equal to T and θ := T − t(T). We also have

JT =

∑

i,j,m (ci + rij)Zt(T)ijm
∑

i,j,m (m+ 1)Zt(T)ijm + θ
T

.

Notice that t(T)→∞ when T →∞. It can be shown that

lim
T→∞

Zt(T)ijm = lim
T→∞

ZTijm = lim
T→∞

1

T

T
∑

t=1

P{Xt = i, Yt = ajm}

exists for all i, j, m (cf. Chapter 7 in [69] or Section 4.7 in [148]). Denote limT→∞ ZTijm by zi,j,m. Then,

we obtain for the limiting average cost

lim
T→∞

JT =

∑

i,j,m (ci + rij)zijm
∑

i,j,m (m+ 1)zijm
.

8.2. MAINTENANCE AND REPAIR PROBLEMS 331

Notice that the underlying Markov chain is a unichain Markov chain with state N+1 as the only absorbing

state. It also can be shown that in this case (see again Chapter 7 in [69] or Section 4.7 in [148]) that there

exists a stationary optimal policy π∞ which can be derived from the following fractional linear program:

min

∑

i,j,m (ci + rij)xijm
∑

i,j,m (m+ 1)xijm

∣

∣

∣

∣

∣

∣

∣

∣

∑

i,l,m{δij − pij(alm)}xi(alm) = 0 for all j
∑

i,l,m xi(alm) = 1

xi(ajm) ≥ 0 for all i, l, m

. (8.11)

Let x be an optimal solution of program (8.11). Then, π∞ with πiajm
:=

xiajm
P

j,m xiajm

for all i, j, m is an

optimal stationary policy.

The above problem involves minimizing a ratio of linear functions subject to linear constraints where

the lower linear form is always positive. Any problem of this form can always be transformed to a linear

programming problem. Namely, suppose we have the fractional problem

min

∑n
i=1 cixi

∑n
i=1 dixi

∣

∣

∣

∣

∣

∣

∣

∣

∑n
i=1 ajixi = 0, j = 1, 2, . . . , m

∑n
i=1 xi = 1

xi ≥ 0, i = 1, 2, . . . , n

, (8.12)

where
∑n

i=1 dixi > 0 for any feasible x. Set zi := xi
P

n
i=1 dixi

, i = 1, 2, . . . , n and zn+1 := 1
P

n
i=1 dixi

. Then

we can formulate the equivalent linear progream

min

n
∑

i=1

cixi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑n
i=1 ajizi = 0, j = 1, 2, . . . , m

∑n
i=1 dizi = 1

∑n
i=1 zi − zn+1 = 0

zi ≥ 0, i = 1, 2, . . . , n+ 1

. (8.13)

From the one-to-one relation between the fractional and linear program (remark that the reverse mapping

is xi := zi

zn+1
, 1 ≤ i ≤ n) it follows that if z is an optimal solution of the linear program derived from the

fractional program (8.11), then π∞ with πiajm
:=

ziajm
P

j,m
ziajm

for all i, j, m is an optimal stationary policy.

It can also be shown that, for each state i, ziajm
will be strictly positive for exactly one action ajm. Thus,

the optimal policy is stationary and deterministic.

8.2.2 Optimal repair allocation in a series system

Consider the maintenance and repair problem of Section 1.3.5. For this model it can be shown that the

optimal policy is irrespective of the repair rates µi, 1 ≤ i ≤ n, and is the policy that assigns the repairman

to the failed component with the smallest failure rate λi, 1 ≤ i ≤ n, (SFR policy), i.e. the longest expected

lifetime.

When a policy f∞ ∈ C(D) is employed, the time evaluation of the state of the system can be described

as a continuous, irreducible Markov chain. Furthermore, the average expected system operation time is

equal to the probability of the system being in the functioning state 1 = (1, 1, . . . , 1) (see [236]). Under

a policy f∞ ∈ C(D) returns to state 1 generate a renewal process. Employing a renewal argument it

can be shown (see [275]) that maximizing the probability of the system being in state 1 is equivalent to

minimizing the expected first passage time to state 1 over all initial states.

Let Tf (x) denote the expected first passage time from state x to state 1 when policy f∞ is employed.

The above remarks are formally stated in the following lemma.

332 CHAPTER 8. SPECIAL MODELS

Lemma 8.2

A policy f∞∗ ∈ C(D) is optimal with respect to the expected average system operation time if and only if

Tf∗
(x) ≤ Tf (x) for all x 6= 1 and all policies f∞ ∈ C(D).

The action f(x) = i means that the repairman is assigned to component i in state x. We also use the

notations:

(1k, x) = (x1, x2, . . . , xk−1, 1, xk+1, . . . , xn); C1(x) = {i | xi = 1}; λ1(x) =
∑

i∈C1(x) λi;

(0k, x) = (x1, x2, . . . , xk−1, 0, xk+1, . . . , xn); C0(x) = {i | xi = 0}.

Given policy f∞, the Markov chain remains in state x during an exponentially distributed time with rate

λ1(x) + µf(x). The transition probabilities of the Markov chain satisfy

px,(1f(x),x)(f(x)) =
µf(x)

λ1(x) + µf(x)
; px,(0k,x)(f(x)) =

λk

λ1(x) + µf(x)
, k ∈ C1(x).

Notice that by conditioning on the first transition out state x we see that Tf (x) can be obtained as unique

solution of the following system of linear equations

{

Tf (x) = 1
λ1(x)+µf(x)

{

1 + µf(x)Tf (1f(x), x) +
∑

i∈C1(x) λiTf(0i, x)
}

, x 6= 1

Tf (1) = 0.
(8.14)

A standard result in MDP is that the policy f∞∗ ∈ C(D) is optimal if and only if the associated expectd

first passage times Tf∗
(x) satisfy the following functional equation

Tf∗
(x) = minj∈C0(x)

{ 1

λ1(x) + µj

{

1 + µjTf∗
(1j, x) +

∑

i∈C1(x)

λiTf∗
(0i, x)

}

}

, x ∈ S. (8.15)

Since

{λ1(x) + µj}Tf∗
(x) ≤ (=) 1 + µjTf∗

(1j , x) +
∑

i∈C1(x) λiTf∗
(0i, x) ⇔

{∑n
i=1 (λi + µi)}Tf∗

(x) ≤ (=) 1 + µjTf∗
(1j , x) +

∑

k 6=j µkTf∗
(x) +

∑

i∈C1(x) λiTf∗
(0i, x) +

∑

i/∈C1(x) λiTf∗
(, x)

the optimality equation (8.15) is equivalent to the optimality equation

Tf∗
(x) = minj∈C0(x)

{ 1
∑n

i=1(λi+µi)

{

1+µjTf∗
(1j, x)+

∑

k 6=j

µkTf∗
(x)+

∑

i∈C1(x)

λiTf∗
(0i, x)+

∑

i/∈C1(x)

λiTf∗
(x)
}

}

.

(8.16)

Because

µjTf∗
(1j, x) +

∑

k 6=j µkTf∗
(x) +

∑

i∈C1(x) λiTf∗
(0i, x) +

∑

i/∈C1(x) λiTf∗
(x) =

∑n
k=1 µkTf∗

(x) + µj{Tf∗
(1j, x)− Tf∗

(x)}+
∑n

i=1 λiTf∗
(0i, x) +

∑

i/∈C1(x) λi{Tf∗
(x)− Tf∗

(0i, x)}
and

Tf∗
(x) = Tf∗

(1j , x) for all j ∈ C1(x), and Tf∗
(x) = Tf∗

(0i, x) for all i /∈ C1(x),

equation (8.16) is equivalent to

Tf∗
(x) =

1

θ

{

1 +

n
∑

k=1

µkTf∗
(x) +

n
∑

i=1

λiTf∗
(0i, x) +minj∈C0(x)

{

µj{Tf∗
(1j, x)− Tf∗

(0j, x)}
}

}

, (8.17)

where θ :=
∑n

i=1 (λi + µi).

8.2. MAINTENANCE AND REPAIR PROBLEMS 333

Suppose λ1 < λ2 < · · · < λn, and let f∞∗ ∈ C(D) be the policy which always puts repair on the component

of smallest index, i.e. the policy we are trying to prove optimal. From (8.17) it is clear that f∞∗ is optimal

if for all i < j with i, j ∈ C0(x) we have

µi{Tf∗
(1i, x)− Tf∗

(0i, x)} ≤ µj{Tf∗
(1j, x)− Tf∗

(0j , x)}. (8.18)

Imagine solving the problem using value iteration on the optimality equation written as (8.16), i.e.

Tm+1(x) = minj∈C0(x)

{1

θ

{

1 + µjT
m(1j , x) +

∑

k 6=j

µkT
m(x) +

∑

i∈C1(x)

λiT
m(0i, x) +

∑

i/∈C1(x)

λiT
m(x)

}

}

.

(8.19)

Consider the following inductive hypothesis H(m) for m = 0, 1, . . . :

µi{Tm(1i, x)− Tm(0i, x)} ≤ µj{Tm(1j, x)− Tm(0j, x)} ≤ 0 for all x and all i < j with i, j ∈ C0(x).

We can take T 0(x) = 0, so H(0) is true. Assuming H(m) is true for all m = 0, 1, . . . , then the minimizing

value is in each iteration f∗(x) = mini∈C0(x) {i}. If we succeed in proving the inductive step we have

shown the structure of the optimal policy as a SFR-policy. Assume that H(m) is true. Then, for all states

x we have

Tm+1(x) =
1

θ

{

1+µf∗(x)T
m(1f∗(x), x)+

∑

k 6=f∗(x)

µkT
m(x)+

∑

k∈C1(x)

λkT
m(0k, x)+

∑

k/∈C1(x)

λkT
m(x)

}

, (8.20)

where f∗(x) := mini∈C0(x) {i}. For the inductive step we have to show

µi{Tm+1(1i, x)−Tm+1(0i, x)} ≤ µj{Tm+1(1j, x)−Tm+1(0j , x)} ≤ 0 for all x and all i < j with i, j ∈ C0(x).

(8.21)

Take any state x and consider first the case in which i and j are the two smallest indices of C0(x). Notice

that (1i, x) = (1i, 0j, x), (0i, x) = (0i, 0j, x), f∗(1i, x) = j and f∗(0i, x) = i.

Then, we can write

Tm+1(1i, x) = 1
θ

{

1 + µjT
m(1i, 1j, x) + µiT

m(1i, 0j, x) +
∑

k 6=i,j µkT
m(1i, 0j, x) +

∑

k∈C1(1i,x) λkT
m(1i, 0k, x) +

∑

k∈C0(1i,x) λkT
m(1i, x)

}

Since
∑

k∈C1(1i,x) λkT
m(1i, 0k, x) = λiT

m(0i, 0j, x) +
∑

k∈C1(1i,0j,x),k 6=i λkT
m(1i, 0j, 0k, x)

and
∑

k∈C0(1i,x) λkT
m(1i, x) = λjT

m(1i, 0j, x) +
∑

k∈C0(1i,0j,x),k 6=j λkT
m(1i, 0j, 0k, x),

we obtain

Tm+1(1i, x) = 1
θ

{

1 + µjT
m(1i, 1j, x) + µiT

m(1i, 0j, x) +
∑

k 6=i,j µkT
m(1i, 0j, x) +

λiT
m(0i, 0j, x) + λjT

m(1i, 0j, x) +
∑

k 6=i,j λkT
m(1i, 0j, 0k, x)

}

.

Similarly we obtain

Tm+1(0i, x) = 1
θ

{

1 + µiT
m(1i, 0j, x) + µjT

m(0i, 0j, x) +
∑

k 6=i,j µkT
m(0i, 0j, x) +

λiT
m(0i, 0j, x) + λjT

m(0i, 0j, x) +
∑

k 6=i,j λkT
m(0i, 0j, 0k, x)

}

.

Tm+1(1j, x) = 1
θ

{

1 + µiT
m(1i, 1j, x) + µjT

m(0i, 1j, x) +
∑

k 6=i,j µkT
m(0i, 1j, x) +

λjT
m(0i, 0j, x) + λiT

m(0i, 1j, x) +
∑

k 6=i,j λkT
m(0i, 1j, 0k, x)

}

.

Tm+1(0j, x) = 1
θ

{

1 + µiT
m(1i, 0j, x) + µjT

m(0i, 0j, x) +
∑

k 6=i,j µkT
m(0i, 0j, x) +

λjT
m(0i, 0j, x) + λiT

m(0i, 0j, x) +
∑

k 6=i,j λkT
m(0i, 0j, 0k, x)

}

.

Now we have

334 CHAPTER 8. SPECIAL MODELS

µi{Tm+1(1i, x)− Tm+1(0i, x)} − µj{Tm+1(1j , x)− Tm+1(0j , x)} =

µi{µjT
m(1i, 1j, x)− µiT

m(1i, 0j, x)} + (1)

µi{µiT
m(1i, 0j, x)− µjT

m(0i, 0j, x)} + (2)

µi{
∑

k 6=i,j µkT
m(1i, 0j, x)−

∑

k 6=i,j µkT
m(0i, 0j, x)} + (3)

µi{λiT
m(0i, 0j, x)− λiT

m(0i, 0j, x)} + (4)

µi{λjT
m(1i, 0j, x)− λjT

m(0i, 0j, x)} + (5)

µi{
∑

k 6=i,j λkT
m(1i, 0j, 0k, x)−

∑

k 6=i,j λkT
m(0i, 0j, 0k, x)} + (6)

µj{µiT
m(1i, 0j, x)− µiT

m(1i, 1j, x)} + (7)

µj{µjT
m(0i, 0j, x)− µjT

m(0i, 1j, x)} + (8)

µj{
∑

k 6=i,j µkT
m(0i, 0j, x)−

∑

k 6=i,j µkT
m(0i, 1j, x)} + (9)

µj{λjT
m(0i, 0j, x)− λjT

m(0i, 0j, x)} + (10)

µj{λiT
m(0i, 0j, x)− λiT

m(0i, 1j, x)} + (11)

µj{
∑

k 6=i,j λkT
m(0i, 0j, 0k, x)−

∑

k 6=i,j λkT
m(0i, 1j, 0k, x)}. (12)

We show that (1) + (2) + · · · + (12) ≤ 0. Therefore, we first remark that, obviously, (4) = (10) = 0.

Furthermore, we mention

(6) + (12) =
∑

k 6=i,j λk

{

µi{Tm(1i, 0j, 0k, x)− Tm(0i, 0j, 0k, x)} −
µj{Tm(0i, 1j, 0k, x)− Tm(0i, 0j, 0k, x)}

}

≤ 0 (by the inductive hypothesis H(m)).

(5) + (10) = (λj − λi)
{

µi{Tm(1i, 0j, x)− Tm(0i, 0j, x)} − µj{Tm(0i, 1j, x)− Tm(0i, 0j, x)}
}

≤ 0 (because λj > λi and by the inductive hypothesis H(m)).

(3) + (9) =
∑

k 6=i,j µk

{

µi{Tm(1i, 0j, x)− Tm(0i, 0j, x)} − µj{Tm(0i, 1j, x)− Tm(0i, 0j, x)}
}

≤ 0 (by the inductive hypothesis H(m)).

(1) + (2) + (7) + (8) = µiµjT
m(1i, 1j, x)− µ2

iT
m(1i, 0j, x) + µ2

iT
m(1i, 0j, x) −

µiµjT
m(0i, 0j, x) + µiµjT

m(1i, 0j, x)− µiµjT
m(1i, 1j, x) +

µ2
jT

m(0i, 0j, x)− µ2
jT

m(0i, 1j, x)

= µj

{

µj{Tm(1i, 0j, x)− Tm(0i, 0j, x)} − µj{Tm(0i, 1j, x)− Tm(0i, 0j, x)}
}

≤ 0 (by the inductive hypothesis H(m)).

This is the hardest case to check. The nonnegativity of µi{Tm+1(1i, x)−Tm+1(0i, x)} and the other cases

are left to the reader (see also Exercise 8.1).

8.2.3 Maintenance of systems composed of highly reliable components

A situation that arises in the maintenance of systems which operate continuously and possess limited repair

capacity can be modeled as follows. A system of known structure is composed of n components and it is

maintained by r < n repairmen. Each component and the system as a whole can be in only two states,

functioning or failed.

The failure and repair times for the ith component are exponentially distributed with known parameters

λi and µi, respectively. At most one repairman may be assigned to a failed component and it is possible

to reassign a repairman from one failed component to another instantaneously. Failures may take place

even while the system is not functioning.

8.2. MAINTENANCE AND REPAIR PROBLEMS 335

Optimal policies can be obtained, in principle, using methods of Markov decision theory. However, the

computational difficulties are prohibitive due to the large number of states. Therefore, explicit solutions

and approximations are valuable. An explicit solution for a series system maintained by a single repairman

was derived in the previous Section 8.2.2.

In practice many systems are composed of highly reliable components. Therefore, we assume the failure

rate for the ith component is of the form ρλi, 1 ≤ i ≤ n. Then, for small values of ρ all components are

highly reliable. We shall derive formulas for the determination of policies that are optimal for small values

of ρ. These policies are called asymptotically optimal. For a series system with r ≥ 2 repairmen it turns

out that asymptotically optimal policies assign repairmen to failed components i with the largest expected

repair times µi. So, the result of Section 8.2.2 does not hold in the case of more than one repairman.

Let the state of the system be given by a vector x = (x1, x2, . . . , xn) with xi = 1 or 0 if the ith

component is functioning or failed. Thus S = {0, 1}n is the set of all possible states. The relation

between the status of the components and that of the system is given by a partition of S into two

sets G and B of good and bad states, where if x ∈ G the system is functioning and if x ∈ B the

system is failed. Alternatively, this relation can be specified by the structure function g, defined on S by

g(x) :=
{ 1 if x ∈ G;

0 if x ∈ B.

We assume that the system is coherent, i.e.,

(1) if x ∈ G and y ≥ x, then y ∈ G and if x ∈ B and y ≤ x, then y ∈ B.

(2) for any component i there exists a state x ∈ G such that the state (0i, x) ∈ B.

For x ∈ S we define C0(x) := {i | xi = 0} and C1(x) := {i | xi = 1}. A state x ∈ B such that y ∈ G for

any y ≥ x, y 6= x is called a cut; it corresponds to a minimal set of components which by failing cause

a system failure. The size of a cut x is the cardinality |C0(x)|. Let r(x) := min {r, |C0(x)|}, i.e., r(x)

denotes the maximum number of components that can be under repair when the system is in state x.

The above description leads to the following formulation of a continuous Markov decision problem: The

state space S = {x = (x1, x2, . . . , xn)} with xi ∈ {0, 1}, i = 1, 2, . . . , n. In state x the action set

A(x) = {a | a ∈ C0(x); |a| = r(x)}. We exclude actions that leave repairmen idle while there are failed

components, since that policies that contain that actions can not be optimal.

When the system is in state x and action a ∈ A(x) is chosen, we have the following transitions and reward:

(1) transition to state (1i, x) with rate µi;

(2) transition to state (0i, x) with rate ρλi;

(3) reward rate g(x).

Note that under any deterministic policy the status of all components can be described by a continuous

time Markov chain {X(t) = (X1(t), X2(t), . . . , Xn(t)}, where Xi(t) = xi if the ith component is xi at time

t. It is known (see [236], p. 114) that optimal deterministic policies exist, both for the total discounted

reward and the average reward criterion. Notice that the total discounted reward and the average reward

are the expected total discounted time and the expected average time, respectively, that the system is in

good states.

Let bf(x) be the expected total discounted time that the system is in bad states, when the initial state

is x and policy f∞ is employed. For notational simplicity we suppress the dependency of bf(x) on the

discount rate β ∈ (0,∞) and the parameter ρ. Similarly, denote by gf(x) be the expected total discounted

time that the system is in good states. Since bf(x)+gf(x) is the expected total discounted time, we obtain

bf(x) + gf(x) =
∫∞
0

e−βtdt = 1
β for all x ∈ S and f∞ ∈ C(D).

336 CHAPTER 8. SPECIAL MODELS

It is known (see [236] p. 120) that for any f ∈ C(D) the corresponding values bf (x), x ∈ S, can be

obtained as the unique solution of the following system of linear equations

bf (x) =
1

µ
(

f(x)
)

+ ρλ(x) + β
·
{

{1− g(x)}+
∑

j∈f(x)

µjbf(1j, x) + ρ ·
∑

j∈C1(x)

λjbf(0j , x)
}

, x ∈ S, (8.22)

where µ
(

f(x)
)

:=
∑

j∈f(x) µj and λ(x) :=
∑

j∈C1(x) λj.

Lemma 8.3

For any x ∈ S, β ∈ (0,∞) and f∞ ∈ C(D), there exists, for ρ sufficiently small, a power series expansion

of bf(x) of the form bf(x) =
∑∞

k=0 ρ
kb

(k)
f (x).

Proof

The system (8.22) can be written as

{µ
(

f(x)
)

+ β} · bf(x) = {1− g(x)}+
∑

j∈f(x) µjbf (1j, x) + ρ ·∑j∈C1(x) λj{bf(0j, x)− bf (x)}, x ∈ S.

which yields the system

bf(x) =
1

µ
(

f(x)
)

+ β
·
{

{1− g(x)}+
∑

j∈f(x)

µjbf(1j , x)+ ρ ·
∑

j∈C1(x)

λj{bf(0j , x)− bf (x)}
}

, x ∈ S. (8.23)

In matrix form (8.23) can be written as

bf = a(f) +C(f)bf + ρ ·D(f)bf . (8.24)

Under an appropriate numbering of the states (e.g. if |C0(x)| > |C0(y)| then y has a higher label than

x), then the matrix C(f) is upper triangular and all elements are less than 1. Hence, the inverse matrix

{I −C(f)}−1 exists. Thus, we have bf = {I −C(f)}−1a(f)+ ρ · {I −C(f)}−1D(f)bf , or in more compact

form,

bf = q(f) + ρ ·Q(f)bf . (8.25)

By iterating (8.25), we obtain for any m ≥ 0,

bf =

m
∑

k=0

ρk{Q(f)}kqf + ρm+1{Q(f)}m+1bf . (8.26)

For ρ sufficiently small, i.e. for 0 < ρ < 1
‖Q(f)‖ , we have bf =

∑∞
k=0 ρ

k{Q(f)}kqf . Hence, for ρ sufficiently

small, there exists a power series expansion of bf(x) of the form bf(x) =
∑∞

k=0 ρ
kb

(k)
f (x).

The next corollary provides a method for computing the coefficients b
(k)
f (x) recursively for increasing

|C0(x)|.

Corollary 8.2

For any x ∈ S, β ∈ (0,∞) and f∞ ∈ C(D), the numbers b
(k)
f (x) can be computed recursively for increasing

|C0(x)| by the following equations:

b
(0)
f (x) = 0 for x = e = (1, 1, . . . , 1);

b
(0)
f (x) = 1

µ
(

f(x)
)

+β
·
{

{1− g(x)}+
∑

j∈f(x) µjb
(0)
f (1j, x)

}

for x ∈ S with |C0(x)| = 1, 2, . . . , n;

b
(k+1)
f (x) = 1

µ
(

f(x)
)

+β
·
{

∑

j∈f(x) µjb
(k+1)
f (1j, x) +

∑

j∈C1(x) λj{b(k)
f (0j, x)− b(k)

f (x)}
}

for x ∈ S with

|C0(x)| = 0, 1, . . . , n and for k = 0, 1,

8.2. MAINTENANCE AND REPAIR PROBLEMS 337

Proof

For notational simplicity we suppress the dependency on f . Since we have the relation b(k) = Qkq, we

obtain b(0) = q = {I−C}−1a, i.e. b(0) is the unique solution of the linear system (I−C)z = a. Since I−C
is an upper triangular matrix with diagonal elements 1, we can compute b(0)(x) recursively for increasing

|C0(x)|. For |C0(x)| = 0, we have x = e and consequently,

b(0)(x) = b(0)(e) = a(e) = 1

µ
(

f(e)
)

+β
·
{

{1− g(e)}
}

= 1
β · 0 = 0.

Since a(x) = 1

µ
(

f(x)
)

+β
· {1− g(x)} and because the matrix C has in the row of state x nonzero elements

only for columns of states y = (1j, x) for every j ∈ f(x) and these elements are equal to 1

µ
(

f(x)
)

+β
·µj, we

obtain

b(0)(x) = 1

µ
(

f(x)
)

+β
·
{

{1− g(x)} +
∑

j∈f(x) µjb
(0)
f (1j, x)

}

for x ∈ S with |C0(x)| = 1, 2, . . . , n.

Note that b(k+1) is the unique solution of the system (I − C)z = Db(k). Since the matrix D has in the

row of state x nonzero elements only for columns of states y = (0j , x) and y = x for every j ∈ C1(x), and

these elements are equal to 1

µ
(

f(x)
)

+β
· λj and − 1

µ
(

f(x)
)

+β
· λj , respectively, we obtain

b
(k+1)
f (x) = 1

µ
(

f(x)
)

+β
·
{

∑

j∈f(x) µjb
(k+1)
f (1j , x)+

∑

j∈C1(x) λj{b(k)
f (0j, x)− b(k)

f (x)}
}

for x ∈ S with

|C0(x)| = 0, 1, . . . , n.

Example 8.1

Consider a system with n = 3 components and r = 2 repairmen. Let λ1 = 1, λ2 = 2, λ3 = 3, µ1 = 2,

µ2 = 1, µ3 = 2 and β = 1. Take g(x) = 1 if x1 = 1 and x2 + x3 ≥ 1. The numbering of the states, g(x),

and the actions f(x), the values
(

f(x)
)

and λ(x) for every x ∈ S are presented in the following table.

state x g(x) f(x) µ
(

f(x)
)

λ(x)

1 (0,0,0) 0 {1, 2} 3 0

2 (0,0,1) 0 {1, 2} 3 3

3 (0,1,0) 0 {1, 3} 3 2

4 (1,0,0) 0 {2, 3} 2 1

5 (0,1,1) 0 {1} 2 5

6 (1,0,1) 1 {2} 1 4

7 (1,1,0) 1 {3} 1 3

8 (1,1,1) 1 ∅ 0 6

The system (8.23) becomes:

bf(1) = 1
4 · {1 + 2bf(4) + bf(3) + ρ · 0}

bf(2) = 1
4
·
{

1 + 2bf(6) + bf(5) + ρ ·
{

3 · {bf(1)− bf(2)}
}

bf(3) = 1
4 ·
{

1 + 2bf(7) + bf(5) + ρ · {2 · {bf(1)− bf(3)}
}

bf(4) = 1
3 ·
{

1 + bf (7) + bf (6) + ρ ·
{

1 · {bf(1)− bf(4)}
}

}

bf(5) = 1
3 ·
{

1 + 2bf(8) + ρ ·
{

2 · {bf (2)− bf (5)}+ 3 · {bf(3)− bf(5)}
}

}

bf(6) = 1
2
·
{

0 + bf (8) + ρ
{

1 · {bf(2)− bf(6)}+ 3 · {bf(4) − bf(6)}
}

}

bf(7) = 1
2
·
{

0 + bf (8) + ρ · {1 · {bf(3) − bf(7)}+ 2 · {bf(4)− bf(7)}
}

}

bf(8) = 1
1 ·
{

0 + ρ · {1 · {bf(5)− bf(8)}+ 2 · {bf(6)− bf (8)}+ 3 · {bf(7)− bf(8)}
}

}

338 CHAPTER 8. SPECIAL MODELS

Hence, a(f) = (1
4 ,

1
4 ,

1
4 ,

1
3 ,

1
3 , 0, 0, 0)T and

C(f) =

0 0 1
4

1
2 0 0 0 0

0 0 0 0 1
4

1
2 0 0

0 0 0 0 1
4 0 1

2 0

0 0 0 0 0 1
3

1
3

0

0 0 0 0 0 0 0 2
3

0 0 0 0 0 0 0 1
2

0 0 0 0 0 0 0 1
2

0 0 0 0 0 0 0 0

; D(f) =

0 0 0 0 0 0 0 0
3
4 −3

4 0 0 0 0 0 0
1
2 0 −1

2 0 0 0 0 0
1
3

0 0 −1
3

0 0 0 0

0 2
3 1 0 −5

3 0 0 0

0 1
2 0 3

2 0 −2 0 0

0 0 1
2 1 0 0 −2

3 0

0 0 0 0 1 2 3 −6

.

The inverse {I − C(f)}−1 =

1 0 1
4

1
2

1
16

1
6

7
24

13
48

0 1 0 0 1
4

1
2 0 5

12

0 0 1 0 1
4 0 1

2
5
12

0 0 0 1 0 1
3

1
3

1
3

0 0 0 0 1 0 0 2
3

0 0 0 0 0 1 0 1
2

0 0 0 0 0 0 1 1
2

0 0 0 0 0 0 0 1

.

Now, we can compute q(f) = {I − C(f)}−1a(f) = (1
2 ,

1
3 ,

1
3 ,

1
3 ,

1
3 , 0, 0, 0, 0)T and

Q(f) = {I −C(f)}−1D(f) =

7
24

1
8

1
12

3
8

1
6

5
24

3
8
−13

8
3
4
−1

3
1
4

3
4

0 −1
6

5
4
−5

2
1
2

1
6 0 1

2 0 5
6

1
2 −5

2
1
3

1
6

1
6

1
2

1
3 0 1

2 −2

0 2
3

1 0 −1 4
3

2 4

0 1
2 0 3

2
1
2 −1 3

2 −3

0 0 1
2 1 1

2 1 0 −3

0 0 0 0 1 2 3 −6

.

For the computation of b
(0)
f (x), x ∈ S, we obtain:

b0f(8) = 0.

b0f(7) = 1
2
· {0 + b0f(8)} = 0.

b0f(6) = 1
2
· {0 + b0f(8)} = 0.

b0f(5) = 1
3 · {1 + 2b0f(8)} = 1

3 .

b0f(4) = 1
3 · {1 + b0f(7) + b0f(6)} = 1

3 .

b0f(3) = 1
4 · {1 + 2b0f(7) + b0f(5)} = 1

3 .

b0f(2) = 1
4 · {1 + 2b0f(6) + b0f(5)} = 1

3 .

b0f(1) = 1
4 · {1 + 2b0f(4) + b0f(3)} = 1

2 .

The computation of b
(1)
f (x), x ∈ S, is as follows:

b1f(8) = 1
1 ·
{

1 · {b0f(5)− b0f(8)}+ 2 · {b0f(6) − b0f(8)}+ 3 · {b0f(7)− b0f(8)}
}

= 1
3 .

b1f(7) = 1
2 ·
{

b
(1)
f (8) + 1 · {b0f(3)− b0f(7)}+ 2 · {b0f(4) − b0f (7)}

}

= 2
3 .

b1f(6) = 1
2 ·
{

b
(1)
f (8) + 1 · {b0f(2)− b0f(6)}+ 3 · {b0f(4) − b0f (6)}

}

= 5
6 .

b1f(5) = 1
3
·
{

2b
(1)
f (8) + 2 · {b0f(2)− b0f (5)}+ 3 · {b0f(3)− b0f(5)}

}

= 2
9
.

8.2. MAINTENANCE AND REPAIR PROBLEMS 339

b1f(4) = 1
3 ·
{

b
(1)
f (7) + b

(1)
f (6) + 1 · {b0f(1)− b0f(4)}

}

= 5
9 .

b1f(3) = 1
4 ·
{

2b
(1)
f (7) + b

(1)
f (5) + 2 · {b0f(1)− b0f(3)}

}

= 17
36 .

b1f(2) = 1
4 ·
{

2b
(1)
f (6) + b

(1)
f (5) + 3 · {b0f(1)− b0f(2)}

}

= 43
72 .

b1f(1) = 1
4 · {2b

(1)
f (4) + b

(1)
f (3)} = 57

144 .

We next determine the leading coefficient b
(l)
f (x) of the power series bf (x) =

∑∞
k=0 ρ

kb
(k)
f (x), i.e. b

(l)
f (x) 6= 0

and b
(k)
f (x) = 0 for k = 0, 1, . . . , l− 1. It turns out that the order of the leading coefficients is determined

by the structure of the system. We first need to define the following quantities:

m(g) := min
{

|C0(x)|
∣

∣ x ∈ B
}

;

Bm(g) :=
{

x ∈ B
∣

∣ |C0(x)| = m(g)
}

;

I(x) := min
{

|C0(y)| − |C0(x)|
∣

∣ y ≤ x, y ∈ B
}

, x ∈ S.
In this terminology of coherent structure, m(g) is the size of a cut of minimum size, Bm(g) is the set of all

such states and I(x) is the minimum number of components that must fail, when the system is in state

x, in order to cause a system fail. The next lemma summarizes some properties of I(x) that are easily

verifiable from its definition and the fact that g is a coherent structure.

Lemma 8.4

For any state x the following properties hold:

(1) I(e) = m(g) ≥ I(x)
(2) I(0i, x) ≥ I(x)− 1 for every i ∈ C1(x).

(3) If g(x) = 1, then I(x) ≥ 1.

(4) g(x) = 0 if and only if I(x) = 0.

(5) If y ∈ Bm(g) and j1, j2, . . . , jk ∈ C0(y), then I(x) = k for x = (1j1 , 1j2, . . . , 1jk
, y).

Lemma 8.5

For any state x and any policy f∞ ∈ C(D), we have b
(k)
f (x) = 0 for k = 0, 1, . . . , I(x)− 1.

Proof

Take any policy f∞ ∈ C(D). We will prove this lemma by induction on k.

For k = 0, we must show that b
(0)
f (x) = 0 for all x with I(x) ≥ 1.

To prove this statement, we apply induction on |C0(x)|.
If |C0(x)| = 0, then x = e, and by Corollary 8.2, b

(0)
f (e) = 0.

Assume that b
(0)
f (x) = 0 for all x with I(x) ≥ 1 and with |C0(x)| = p ≥ 1, and consider any state y

with I(y) ≥ 1 and |C0(y)| = p+ 1. Since I(y) ≥ 1, we have g(y) = 1. Take any j ∈ f(y). Then, we

obtain |C0(1j , y)| = p and I(1j , y) ≥ 1. Hence, by the induction hypothesis, b
(0)
f (1j, y) = 0. Therefore,

by Corollary 8.2, b
(0)
f (x) = 1

µ
(

f(y)
)

+β
·
{

{1− g(y)} +
∑

j∈f(y) µjb
(0)
f (1j, y)

}

= 0.

Assume that the lemma is true for some k ≥ 0, i.e. b
(k)
f (x) = 0 for all x with I(x) ≥ k + 1. We have to

show that b
(k+1)
f (x) = 0 for all x with I(x) ≥ k + 2. Again, we apply induction on |C0(x)|.

If |C0(x)| = 0, then x = e. By Corollary 8.2, b
(k+1)
f (x) = 1

β
·
{

∑n
j=1 λj{b(k)

f (0j, e) − b(k)
f (e)}

}

.

Since we may assume that I(e) ≥ k + 2, the induction hypothesis provides b
(k)
f (e) = 0. Because

I(0j , e) ≥ I(e)−1 ≥ k+1, the induction hypothesis gives b
(k)
f (0j, e) = 0 for all j, implying b

(k+1)
f (e) = 0.

Assume that b
(k+1)
f (x) = 0 for all x with I(x) ≥ k + 2 and |C0(x)| = p ≥ 1, and consider any state y

340 CHAPTER 8. SPECIAL MODELS

with I(y) ≥ k + 2 and |C0(y)| = p+ 1. Take any j ∈ f(y). Then, we obtain |C0(1j, y)| = p and

I(1j , y) ≥ I(y) ≥ k + 2. Hence, by the induction hypothesis, b
(k+1)
f (1j , y) = 0 and consequently,

∑

j∈f(y) µjb
(k+1)
f (1j, y) = 0. For j ∈ C1(y), we have I(0j , y) ≥ I(y) − 1 ≥ k + 1. Thus, the induction

hypothesis implies b
(k)
f (0j, y) = 0, and consequently,

∑

j∈C1(y) λjb
(k)
f (0j , y) = 0. Hence, by Corollary

8.2, b
(k+1)
f (x) = 1

µ
(

f(x)
)

+β
·
{

∑

j∈f(x) µjb
(k+1)
f (1j, x) +

∑

j∈C1(x) λj{b(k)
f (0j, x)− b(k)

f (x)}
}

= 0.

From Corollary 8.2 and Lemma 8.5 it follows that the leading coefficient b
(I(x))
f (x) can be computed

recursively as follows:

(1) bf(0)(x) = 0 for x = e = (1, 1, . . . , 1).

(2) For all states x with I(x) = 0: b
(I(x))
f (x) = 1

µ
(

f(x)
)

+β
· {1 +

∑

j∈f(x) µjb
(0)
f (1j, x)}.

(3) For all states x with I(x) ≥ 0:

b
(I(x))
f (x) = 1

µ
(

f(x)
)

+β
· {∑j∈f(x) µjb

(I(x))
f (1j, x) +

∑

j∈C1(x) λjb
(I(x)−1))
f (0j , x)}.

Example 8.1 (continued)

m(g) = 1; Bm(g) = {(0, 1, 1)}; I(1) = I(2) = I(3) = I(4) = I(5) = 0, I(6) = I(7) = I(8) = 1.

Since I(6) = I(7) = I(8) = 1, we have b
(0)
f (6) = b

(0)
f (7) = b

(0)
f (8) = 0.

The computation of the leading coefficients is as follows:

b
(I(5)
f (5) = b

(0)
f (5) = 1

3 · {1 + b
(0)
f (8)} = 1

3 .

b
(I(4)
f (4) = b

(0)
f (4) = 1

3 · {1 + b
(0)
f (7) + b

(0)
f (6)} = 1

3 .

b
(I(3)
f (3) = b

(0)
f (3) = 1

4
· {1 + 2b

(0)
f (7) + b

(0)
f (5)} = 1

3
.

b
(I(2)
f (2) = b

(0)
f (2) = 1

4 · {1 + 2b
(0)
f (6) + b

(0)
f (5)} = 1

3 .

b
(I(1)
f (1) = b

(0)
f (1) = 1

4 · {1 + 2b
(0)
f (4) + b

(0)
f (3)} = 1

2 .

b
(I(8)
f (8) = b

(1)
f (8) = 1

1
· {b(0)

f (5) + 2b
(0)
f (6) + b

(0)
f (3)} = 1

3
.

b
(I(7)
f (8) = b

(1)
f (7) = 1

2 · {b
(1)
f (8) + b

(0)
f (3) + 2b

(0)
f (4)} = 2

3 .

b
(I(6)
f (6) = b

(1)
f (6) = 1

2 · {b
(1)
f (8) + b

(0)
f (2) + 3b

(0)
f (4)} = 5

6 .

Remarks

1. A policy f∞∗ ∈ C(D) minimizes the expected total discounted nonfunctioning time of the system for

small values of ρ if and only if b
(I(x))
f∗

(x) = min {b(I(x))
f (x) | f∞ ∈ C(D)}.

2. From the above formulas it follows by induction on I(x) that b
(I(x))
f (x) > 0 for all x.

3. For any x with I(x) = 0 it follows from the formula b
(I(x))
f (x) = 1

µ
(

f(x)
)

+β
· {1+

∑

j∈f(x) µjb
(0)
f (1j , x)},

that b
(I(x))
f (x) is equal to the expected discounted first passage time from state x to state e in the

absence of failures. We have the following partial characterization of an asymptotically optimal policy.

If a policy is asymptotically optimal then it must assign repairmen to failed components in such a way

that the expected discounted time that the system spends in failed states during the first passage time

from any state x ∈ B to state e is minimized.

We now turn to the problem of maximizing the average time the system is functioning. Let Bf denote the

average time that the system spends in bad states, when policy f∞ ∈ C(D) is employed. Since for any

policy f∞ the continuous Markov chain {X(t) =
(

X1(t), X2(t), . . . , Xn(t)
)

} is ergodic, Bf is independent

of the initial state. Similarly, denote by Gf the average time that the system spends in good states,

under policy f∞. Obviously, Bf + Gf = 1 for all f∞ ∈ C(D). It is known (see [236] p. 126) that for

8.2. MAINTENANCE AND REPAIR PROBLEMS 341

any f∞ ∈ C(D) the value Bf , can be obtained as the unique solution of the following system of linear

equations

Hf(x) =
1

µ
(

f(x)
)

+ ρλ(x)
·
{

{1− g(x)}+
∑

j∈f(x)

µjHf(1j , x) + ρ ·
∑

j∈C1(x)

λjHf(0j , x)− Bf

}

, x ∈ S.

Hf(e) = 0. (8.27)

Lemma 8.6

For any x ∈ S, x/not = e and any f∞ ∈ C(D), there exists, for ρ sufficiently small, power series

expansions of Bf and Hf(x) of the form Bf =
∑∞

k=1 ρ
kB

(k)
f and Hf(x) =

∑∞
k=0 ρ

kH
(k)
f (x).

Proof

The system (8.27) can be written as

µ
(

f(x)
)

·Hf(x) = {1− g(x)} +
∑

j∈f(x) µjHf(1j , x) + ρ ·∑j∈C1(x) λj{Hf(0j, x)−Hf(x)} − Bf ,

which provides for all x ∈ S the equation

Hf(x) = 1

µ
(

f(x)
) ·
{

{1− g(x)}+
∑

j∈f(x) µjHf(1j, x) + ρ ·∑j∈C1(x) λj{Hf(0j, x)−Hf(x)} − Bf

}

.

Similarly as in the proof of Lemma 8.3 we obtainHf(x) =
∑∞

k=0 ρ
kH

(k)
f (x) for some H

(k)
f (x), k = 0, 1,

Take x = e. Then, because Hf(e) = 0 and g(e) = 1, we have Bf = ρ ·∑n
j=1 λjHf(0j , e). Since we have

shown Hf(0j , e) =
∑∞

k=0 ρ
kH

(k)
f (0j , e), we obtain Bf =

∑∞
k=1 ρ

kB
(k)
f with B

(k)
f =

∑n
j=1 λjH

(k−1)
f (0j , e).

Corollary 8.3

For any x ∈ S and any f∞ ∈ C(D), the numbers H
(k)
f (x) can be computed recursively by increasing |C0(x)|

by the following equations:

H
(0)
f (e) = 0;

H
(0)
f (x) = 1

µ
(

f(x)
) ·
{

{1− g(x)} +
∑

j∈f(x) µjH
(0)(1j, x)

}

for x ∈ S, x 6= e for increasing |C0(x)|;

B
(k+1)
f =

∑n
j=1 λjH

(k)
f (0j , e);

H
(k+1)
f (e) = 0;

H
(k+1)
f (x) = 1

µ
(

f(x)
) ·
{

− B(k+1)
f +

∑

j∈f(x) µjH
(k+1)
f (1j, x) +

∑

j∈C1(x) λj{H(k)
f (0j , x)−H(k)

f (x)}
}

for

x ∈ S, x 6= e for increasing |C0(x)|.

Proof

The formula for B
(k)
f was derived in the proof of Lemma 8.6. The proof of the formula for H

(k)
f (x) is

similar to the proof of Corollary 8.2.

Example 8.1 (continued)

For the computation of H
(0)
f (x), x ∈ S, and B

(1)
f we obtain:

H
(0)
f (8) = 0;

H
(0)
f (7) = 1

1 · {0 +H
(0)
f (8)} = 0;

H
(0)
f (6) = 1

1 · {0 +H
(0)
f (8)} = 0;

H
(0)
f (5) = 1

2 · {1 + 2H
(0)
f (8)} = 1

2 ;

H
(0)
f (4) = 1

2 · {1 +H
(0)
f (7) +H

(0)
f (6)} = 1

2 ;

H
(0)
f (3) = 1

3 · {1 + 2H
(0)
f (7) +H

(0)
f (5)} = 1

2 ;

H
(0)
f (2) = 1

3
· {1 + 2H

(0)
f (6) +H

(0)
f (5)} = 1

2
;

342 CHAPTER 8. SPECIAL MODELS

H
(0)
f (1) = 1

3 · {1 + 2H
(0)
f (4) +H

(0)
f (3)} = 5

6 ;

B
(1)
f = λ1H

(0)
f (5) + λ2H

(0)
f (6) + λ3H

(0)
f (7) = 1

2 .

The computation of H
(1)
f (x), x ∈ S, and B

(2)
f is as follows:

H
(1)
f (8) = 0;

H
(1)
f (7) = 1

1
·
{

− B(1)
f +H

(1)
f (8) + 1 · {H(0)

f (3)−H(0)
f (7)}+ 2 · {H(0)

f (4)−H(0)
f (7)}

}

= 1.

H
(1)
f (6) = 1

1
·
{

− B(1)
f +H

(1)
f (8) + 1 · {H(0)

f (2)−H(0)
f (6)}+ 3 · {H(0)

f (4)−H(0)
f (6)}

}

= 3
2
.

H
(1)
f (5) = 1

2 ·
{

− B(1)
f + 2H

(1)
f (8) + 2 · {H(0)

f (2)−H(0)
f (5)}+ 3 · {H(0)

f (3) −H(0)
f (5)}

}

= −1
4 .

H
(1)
f (4) = 1

2 ·
{

− B(1)
f +H

(1)
f (7) +H

(1)
f (6) + 1 · {H(0)

f (1)−H(0)
f (4)}

}

= 7
6 .

H
(1)
f (3) = 1

3 ·
{

− B(1)
f + 2H

(1)
f (7) +H

(1)
f (5) + 2 · {H(0)

f (1)−H(0)
f (3)}

}

= 23
36 .

H
(1)
f (2) = 1

3 ·
{

− B(1)
f + 2H

(1)
f (6) +H

(1)
f (5) + 3 · {H(0)

f (1)−H(0)
f (2)}

}

= 13
12 .

H
(1)
f (1) = 1

3 · {−B
(1)
f + 2H

(1)
f (4) +H

(1)
f (3)} = 89

108 .

B
(2)
f = λ1H

(1)
f (5) + λ2H

(1)
f (6) + λ3H

(1)
f (7) = 23

4 .

Similarly as in the discounted case we can show the following results.

Lemma 8.7

For any x ∈ S and any f∞ ∈ C(D), we have H
(k)
f (x) = 0 for k = 0, 1, . . . , I(x) − 1.

We can compute the leading coefficients I(x) recursively as follows:

(1) H
(0)
f (e) = 0.

(2) For all states x with I(x) = 0: H
(I(x))
f (x) = 1

µ
(

f(x)
) · {1 +

∑

j∈f(x) µjH
(0)
f (1j, x)}.

(3) For all states x with I(x) ≥ 1:

B
(I(x))
f =

∑n
j=1 λjH

(I(x)−1)
f (0j, x); H

(I(e))
f (e) = 0;

H
(I(x))
f (x) = 1

µ
(

f(x)
) · {−B(I(x))

f +
∑

j∈f(x) µjH
(I(x))
f (1j , x)}+

∑

j∈C1(x) λjH
(I(x)−1)
f (0j, x)} for x 6= e.

Example 8.1 (continued)

The computation of the leading coefficients is as follows:

By Lemma 8.7: H
(0)
f (6) = H

(0)
f (7) = H

(0)
f (8) = 0.

H
(I(5))
f (5) = H

(0)
f (5) = 1

2 · {1 + 2H
(0)
f (8) = 1

2 .

H
(I(4))
f (4) = H

(0)
f (4) = 1

2 · {1 +H
(0)
f (7) +H

(0)
f (6) = 1

2 .

H
(I(3))
f (3) = H

(0)
f (3) = 1

3 · {1 + 2H
(0)
f (7) +H

(0)
f (5) = 1

2 .

H
(I(2))
f (2) = H

(0)
f (2) = 1

3 · {1 + 2H
(0)
f (6) +H

(0)
f (5) = 1

2 .

H
(I(1))
f (4) = H

(0)
f (1) = 1

3 · {1 + 2H
(0)
f (4) +H

(0)
f (3) = 5

6 .

B
(I(8))
f = B

(1)
f = λ1H

(0)
f (5) + λ2H

(0)
f (6) + λ3H

(0)
f (7) = 1

2 .

H
(I(7))
f (7) = H

(1)
f (7) = 1

1 · {−B
(1)
f +H

(1)
f (8) +H

(0)
f (3) + 2H

(0)
f (4)} = 1

2 .

H
(I(6))
f (6) = H

(1)
f (6) = 1

1
· {−B(1)

f +H
(1)
f (8) +H

(0)
f (2) + 3H

(0)
f (4)} = 3

2
.

Remark

Notice that when the system is in a failed state x, i.e. I(x) = 0, then H
(0)
f (x) satisfies the equation

H
(I(x))
f (x) = 1

µ
(

f(x)
) · {1 +

∑

j∈f(x) µjH
(0)
f (1j, x)}, i.e. the expected time until the system is back in

operation when the initial state is x, policy f∞ is employed and there are no failures. Thus, we obtain

8.2. MAINTENANCE AND REPAIR PROBLEMS 343

the following, intuitively expected, partial characterization of policies that maximize the availability of

the system for small values of ρ: when the system is failed such policies must assign repairmen to failed

components in such a way that the expected time until the system is back in operation, in absence of

failures, is minimized.

In the next theorem we show that in one of the two optimality criteria that have been considered (discounted

operation time and average operation time) asymptotically optimal policies are optimal when all failure

rates are sufficiently small.

Theorem 8.6

Let f∞∗ be asymptotically optimal to one of the two optimality criteria that have been considered. Then,

there exists a ρ∗ > 0 such that f∞∗ is optimal for all ρ ∈ (0, ρ∗).

Proof

We prove the theorem for the problem of maximizing the expected total discounted time that the system

is in good states. The proof for the criterion of maximizing the average time the system is functioning is

similar.

Recall that for any f∞ ∈ C(D) and for any ρ ∈
(

0, 1
‖Q(f)‖

)

, the bf (x)’s possess convergent power series

of the form bf(x) =
∑∞

k=0 ρ
kb

(k)
f (x). Since there are finite many policies in C(D), it follows that the

power series representation of all bf(x)’s are convergent for all f∞ ∈ C(D) and for any ρ ∈ (0, ρ1), where

ρ1 := minf∞∈C(D)
1

‖Q(f)‖ .

Now, for any x ∈ S and any pair f∞1 , f∞2 ∈ C(D), it follows (see [249], p. 177) that bf1(x) − bf2(x) may

change sign a finite number of times. Since b
(I(x))
f∗

(x) = minf∞∈C(D) b
(I(x))
f (x) for all x ∈ S, and there are

finite many policies in C(D) and states in S, the theorem follows.

In the following application we restrict our attention to determining policies which are asymptotically

optimal with respect to the availability criterion.

Application 8.1 Series and parallel systems

Consider first the n component series system maintained by r repairmen. The only functioning state is

state e = (1, 1, . . . , 1). In Section 8.2.2 it was established that when r = 1 the optimal policy always assigns

the repairman to the failed component with the smallest failure rate (SFR policy).

From the above remark we know that an asymptotically optimal policy f∞∗ minimizes the expected

time to state e from any initial state x in the absence of failures. Thus, in the terminology of stochastic

scheduling an asymptotic optimal policy minimizes the expected makespan for allocating |C0(x)| tasks

(repairs) on r identical processors (repairmen), for any state x.

For r = 2, it has been shown (see [35]) that an optimal policy assigns repairmen to failed components

in |C0(x)| according to the LEPT (Longest Expected Processing Time) rule. In the context of the series

system an asymptotic optimal policy assigns repairmen to the failed components with the longest expected

repair times. Notice that this LEPT policy is optimal for sufficiently small failure rates (by Theorem 8.6).

For the parallel system the only failed state is state (0, 0, . . . , 0). Hence, I(x) = |C1(x)|, and con-

sequently H
(k)
f (x) = 0 for k = 0, 1, . . . , |C1(x)| − 1. It is easy to show by induction on |C0(x)| that the

policy which always assigns repairmen to failed components with the smallest repair rates is asymptotically

optimal.

344 CHAPTER 8. SPECIAL MODELS

8.3 Production and inventory control

8.3.1 No backlogging

The basic form of the production control model with no backlogging is as follows. Demand of a single

product occurs during each of T consecutive time periods. The demand that occurs during a given period

can be satisfied by production during that period or during any earlier period, as inventory is carried

forward. This prescribes the case of no backlogging. Inventory at epoch 1 is zero, and inventory at the

end of period T is also required to be zero. The model includes production costs and inventory costs. The

objective is to schedule the production so as to satisfy demand at minimum total cost.

For the data and variables in the periods t = 1, 2, . . . , T we use the following notation.

Dt = the demand in period t

ct(a) = the cost of production a units in period t

ht(i) = inventory cost when the inventory is i at the end of period t

at = decision variable for the production in period t

It = the inventory on hand at the beginning of period t

When the production and demand occur in integer quantities, the problem of meeting demand at minimal

total cost can be formulated as the following integer programming problem.

min

T
∑

t=1

{ct(at) + ht(It)}

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

I1 = IT+1 = 0

It + at = Dt + It+1, t = 1, 2, . . . , T

at ≥ 0 and integer, t = 1, 2, . . . , T

It ≥ 0 and integer, t = 2, 3, . . . , T

. (8.28)

To find an optimal production plan by dynamic programming, note that the cost of operating the system

during periods t through T depends on the inventory It, but not on prior inventories and not on prior

production levels. Therefore, we constitute the states as the pairs (i, t), where i denote the inventory and

t the period. Let

f(i, t) := the minimum cost of satisfying demand during periods t through T if the

inventory at epoch t is i.

The cost of an optimal production plan is f(0, 1). The inventory IT+1 = 0, which constrains inventory

and production during period T . We obtain f(i, T) = hT (i) + cT (DT − i) for i = 0, 1, . . . , DT .

Consider a period t < T , and let at denote the quantity produced during period t. The production at

is feasible if It + at is at least as large as the demand Dt and if It + at is no larger that the total demand

during all remaining periods. Therefore, at is a feasible production if at ∈ A(i, t), where A(i, t) is defined

by A(i, t) := {a ∈ N0 | Dt − i ≤ a ≤
∑T

s=t Ds − i}.
The above observations give rise to the functional equation

{

f(i, T) = hT (i) + cT (DT − i), i = 0, 1, . . . , DT .

f(i, t) = mina∈A(i,t){ht(i)+ct(a)+f(i+a− Dt, t+ 1)}, t=T−1, T−2, . . . , 1, 0 ≤ i≤∑T
s=t Ds

(8.29)

The preceding functional equation can be solved by backward induction.

In many economic situations the cost functions are concave, reflecting decreasing marginal costs. A function

g with domain in Z is called concave if

g(n + 2)− g(n+ 1) ≤ g(n + 1)− g(n) for all n. (8.30)

8.3. PRODUCTION AND INVENTORY CONTROL 345

Let ∆g(n) := g(n+1)−g(n) and ∆2g(n) := ∆g(n+1)−∆g(n) = g(n+2)−2g(n+1)+g(n), n ∈ Z. Then,

concavity is equivalent to ∆2g(n) ≤ 0 for all n. The next theorem shows that for concave production and

inventory functions the optimal production plan has a special structure.

Theorem 8.7

If the production and inventory functions, ct and ht respectively, are concave for all periods t, then there

exists an optimal production plan (a1, a2, . . . , aT) for which It · at = 0 for t = 1, 2, . . . , T .

Proof

Consider an optimal production plan (a1, a2, . . . , aT+1). If there are more optimal plans, take the plan for

which
∑T

t=1 (at + It) is minimal. Aiming for a contradiction, we assume that It > 0 and at > 0 for some

2 ≤ t ≤ T . Since, It > 0 there has been production in at least one of the previous periods and let s the

last period prior than t in which as > 0. Then, as+1 = as+2 = · · · = at−1 = 0.

Consider two other production plans, which are - of course - not cheaper than the optimal production

plan:

a
′

j :=

as + 1 j = s

at − 1 j = t

aj j 6= s, t

and a
′′

j :=

as − 1 j = s

at + 1 j = t

aj j 6= s, t

Note that I
′

k = Ik + 1, s < k ≤ t and I
′′

k = Ik − 1, s < k ≤ t. Therefore,

cs(as) + ct(at) +
∑t

k=s+1 hk(Ik) ≤ cs(as + 1) + ct(at − 1) +
∑t

k=s+1 hk(Ik + 1)

and

cs(as) + ct(at) +
∑t

k=s+1 hk(Ik) ≤ cs(as − 1) + ct(at + 1) +
∑t

k=s+1 hk(Ik − 1).

Add these two inequalities and rearrange the sum as

0 ≤ ∆2cs(as − 1) + ∆2ct(at − 1) +
∑t

k=s+1 ∆2hk(Ik − 1) ≤ 0,

the last inequality by the concaveness of the production and inventory functions. Hence, the three plans

are all optimal. However,
∑T

t=1(a
′′

t + I
′′

t) =
∑T

t=1(at + It)− (t− s) <∑T
t=1(at + It). This contradicts the

supposed minimality of that sum, which completes the proof.

Theorem 8.7 demonstrates that production need only occur in period t if the inventory at the start of that

period is zero. Consequently the quantity produced during period t must equal the total demand of the

periods t, t+ 1, . . . , u− 1 for some t+ 1 ≤ u ≤ T + 1.

Let dtu :=
∑u−1

k=t Dk, t+ 1 ≤ u ≤ T + 1, the demand of the periods t, t+ 1, . . . , u− 1.

This gives rise to a dynamic programming formulation in which state t represents the situation of having

no inventory on hand at the start of period t. Let

f(t) := the minimum cost of satisfying demands during periods t through T if the

inventory at epoch t is 0.

Let ctu denote the total of costs incurred during periods t, t+ 1, . . . , u− 1 if transition occurs from state

t to state u, i.e. the first production after period t is in period u. Inventory at epoch t equals 0, so ctu

includes the holding cost ht(0). Exactly dtu units are produced in period t, so ctu includes the production

cost ct(dtu). Exactly dku units of inventory remain at any epoch k between t+1 and u, so ctu includes the

holding cost hk(dku). This leads to the relation ctu = ht(0)+ ct(dtu)+
∑u−1

k=t+1 hk(dku) and the functional

equation
{

f(T + 1) = 0

f(t) = min{u | t+1≤u≤T+1} {ctu + f(u)}, t = T, T − 1, . . . , 1.
(8.31)

346 CHAPTER 8. SPECIAL MODELS

The tables of {dtu} and {ctu} can be built with work proportional to T 2. The solution of (8.31) with

backward induction is also proportional to T 2. Hence, the overall complexity of this approach is of order

O(T 2).

8.3.2 Backlogging

When backlogging is allowed, demand may accumulate and be satisfied by productions during subsequent

periods. The only effect to program (8.28) is to delete the requirement that the variables I2 through IT be

nonnegative. When It is nonnegative, it still represents an inventory of It units; when It is negative, it now

represents a shortage of −It units of unfilled (backlogged) demand that must be satisfied by production

during periods t through T . Hence, the set of states (i, t) and the set A(i, t) of feasible productions are:

{(i, t) | 1 ≤ t ≤ T ; −∑t−1
s=1 Ds ≤ i ≤

∑T
s=t Ds}; A(i, t) = {a ∈ N0 | 0 ≤ a ≤

∑T
s=t Ds − i}.

In the case of backlogging ht is called the holding/shortage cost function for period t. When It is non-

negative, ht(It) remains equal to the cost of having It units of inventory on hand at the start of period t;

when It is negative, ht(It) becomes the cost of having a shortage of −It units of unfilled demand on hand

at the start of period t. The functional equation of the production model in which backlogging is allowed

becomes:

f(i, T) = hT (i) + cT (DT − i), i = −∑T−1
s=1 Ds, . . . , DT .

f(i, t) = mina∈A(i,t){ht(i) + ct(a) + f(i + a −Dt, t+ 1)},
t = T − 1, T − 2, . . . , 1; −∑t−1

s=1 Ds ≤ i ≤
∑T

s=t Ds

(8.32)

Also in this case we consider concave cost functions. The model has concave shortage cost if, for any t, the

function ht is convave on {0,−1,−2, . . .}, i.e. ht(n+2)−ht(n+1) ≤ ht(n+1)−ht(n) for n = −2,−3,

In other words, the model has concave holding and shortage costs if, for each t, the function ht satisfies

ht(n+ 2) − ht(n+ 1) ≤ ht(n + 1)− ht(n), n ∈ Z\{−1}. (8.33)

When the production and holding/shortage costs are concave, the solution to the production planning

problem has the form given in the following theorem.

Theorem 8.8

If the production and holding/shortage functions, ct and ht respectively, are concave for all periods t, then

there exists an optimal production plan (a1, a2, . . . , aT) having this property: if am > 0 and an > 0 with

m < n, then It = 0 for at least one t ∈ {m+ 1, m+ 2, . . . , n}.

Before we prove Theorem 8.8 we model the problem as a network flow problem.

For t = 1, 2, . . . , T a node arises in the network;

furthermore we add a node 0. There are arcs

(t, t + 1), t = 1, 2, . . . , T − 1; (0, t) and (t, 0) for

t = 1, 2, . . . , T . From node 0, we send a variable flow

at into node t, t = 1, 2, . . . , T ; from node t we send

Dt to node 0 (t = 1, 2, . . . , T) and It+1 to node t+ 1

(t = 1, 2, . . . , T − 1). Flow into node t equals It + at,

where I1 = 0, and flow out of node t equals Dt+It+1,

where IT+1 = 0.

s s s s s s

sQ
Q

Q
Q

Q
Q

Q
Q

Q
Q

QQk

@
@

@
@

@
@

@
@I

A
A

A
A

A
A

A
AK

�
�

�
�

�
�

�
�

�
�

��3

�
�

�
�

�
�

�
��

�
�
�
�
�
�
�
��

- - - -

6 6 6 6 6 6

-

0

0 0 0 0 0 0

D1 D2 D3 DT−2 DT−1 DT

I2 I3 IT−2 IT−1 IT

a1

a2 a3 aT−2 aT−1

aT

1 2 3 T−2 T−1 T

8.3. PRODUCTION AND INVENTORY CONTROL 347

Hence, flow conservation in the nodes t corresponds to the constraints of program (8.28) and flow conser-

vation in node 0 corresponds to a total production of a1 + a2 + · · ·+ aT = D1 +D2 + · · ·+DT .

We shall call a flow (a1, a2, . . . , aT) feasible if at ≥ 0 and integer for t = 1, 2, . . . , T . Consider a feasible

flow. An arc (i, j) is active if flow along is not zero. A loop is said to exist if one can start at a node and

return to it by traversing a sequence of distinct active arcs, not necessarily in the direction of the arcs.

Suppose, for instance, that a2, I3 and a3 are all positive. Then, the node sequence (0, 2, 3, 0) prescribes a

loop; also the node sequence (0, 3, 2, 0) prescribes a loop.

Proof of Theorem 8.8

Consider an optimal production plan (a1, a2, . . . , aT+1). If there are more optimal plans, take the plan for

which
∑T

t=1 (at + It) is minimal. Aiming for a contradiction, we assume that am > 0 and an > 0 with

m < n, and It 6= 0 for t = m + 1, m+ 2, . . . , n. Hence, (0, m,m+ 1, . . . , n, 0) is a loop. A feasible flow

results if we increase am by 1, decrease an by 1, and consequently, increase Ik by 1 for m + 1 ≤ k ≤ n.

Similarly, we may decrease am by 1, increase an by 1, and decrease Ik by 1 for m + 1 ≤ k ≤ n. These

perturbed flows cannot decrease cost below the costs of the optimal plan. So,

cm(am) + cn(an) +
∑n

k=m+1 hk(Ik) ≤ cm(am + 1) + cn(an − 1) +
∑n

k=m+1 hk(Ik + 1)

and

cm(am) + cn(an) +
∑n

k=m+1 hk(Ik) ≤ cm(am − 1) + cn(an + 1) +
∑m

k=m+1 hk(Ik − 1).

Add these two inequalities and rearrange the sum as

0 ≤ ∆2cm(am − 1) + ∆2cn(an − 1) +
∑n

k=m+1 ∆2hk(Ik − 1) ≤ 0,

the last inequality by the concaveness of the production and holding/shortage functions (∆2hk(Ik − 1) is

not necessarily nonnegative if Ik = 0, but notice that Ik 6= 0 for k = m+1, m+2, . . . , n). Hence, the three

plans are all optimal. However,
∑T

t=1(a
′′

t + I
′′

t) =
∑T

t=1(at + It) − (t − s) <∑T
t=1(at + It).

This contradicts the supposed minimality of that sum, which completes the proof.

Let a∗ = (a1, a2, . . . , aT) be an optimal production plan of the type described in Theorem 8.8. Consider

any period t ≤ T such that It = 0 (since I1 = 0 such a t exists). Consider also the lowest-numbered u > t

such that Iu = 0 (since IT+1 = 0 such a u exists). Exactly dtu =
∑u−1

k=t Dk units must be produced during

periods t through u− 1. We argue by contradiction that production of these dtu units is concentrated in

one period k, where t ≤ k ≤ u− 1. Suppose not: that is, that a∗ splits this production between periods k

and l > k. Since ak > 0 and al > 0 with k < l, it follows from Theorem 8.8 that Ip = 0 for some p with

k+ 1 ≤ p ≤ l ≤ u− 1. The minimality of u precludes this. Hence, the production of these dtu units is not

split.

For t ≤ k ≤ u− 1 let ctu(k) denote the total cost incurred during periods t through u− 1 if the total

demand dtu occurring during these periods is satisfied by production in period k, i.e.

ctu(k) = ht(0) + ck(dtu) +

k
∑

s=t+1

hs(−dts) +

u−1
∑

s=k+1

hs(dsu). (8.34)

In a dynamic programming formulation state t again denotes the situation of having no inventory on hand

at the start of period t. Transition occurs from state t to state u if it is decided to produce dtu units during

some intermediate period k. The cheapest transition from state t tot state u costs c∗tu, where

c∗tu := min{k | t≤k≤u−1} ctu(k). (8.35)

348 CHAPTER 8. SPECIAL MODELS

As usual, f(t) is defined, for t = 1, 2, . . . , T , by

f(t) := the minimum cost of satisfying demands during periods t through T if It = 0.

One gets the functional equation

{

f(T + 1) = 0

f(t) = min{u | t+1≤u≤T+1} {c∗tu + f(u)}, t = T, T − 1, . . . , 1.
(8.36)

This functional equation is similar to the functional equation for the concave-cost case without backlogging.

The difference is that c∗tu replaces ctu. Once a table is built, (8.36) can be solved with work proportional

to T 2, just in the case of backlogging. However, the work needed to build a table of c∗tu from (8.35) is

proportional to T 3, not to T 2.

8.3.3 Inventory control and single-critical-number policies

This section concerns an inventory model over a finite horizon of T periods with uncertain demand and

without backlogging. The symbols i and a are used consequently throughout this section, where i denotes

the inventory on hand at the start of a period, just prior to deciding whether to place an order, and

a denotes the inventory on hand at the start of a period, just after deciding whether to place an order

(ordering is instantaneous). So a ≥ i and the number of units ordered is a − i. We assume that stock is

indivisible, so a and i are integers.

Let the states be (i, t), depicting the situation of having i units of inventory on hand at the start of

period t, just before deciding whether and how much to order. Let f(i, t) be the minimum discounted cost

over the remaining periods, given state (i, t). We are interested in f(0, 1) and state (i, T + 1) represents

the situation with inventory of i units at the end of period T . Hence, f(i, T + 1) = −si, i ≥ 0.

The data of the model are as follows:

Dt = the (uncertain) demand during period t.

pt(j) = the probability that the demand in period t is j, j = 0, 1,

R = the (retail) unit sales price (independent of the period).

k = the unit ordering cost (independent of the period).

s = the unit salvage value at the end of period T .

r = the interest rate per period.

α = the discount factor, which equals 1
1+r .

The net cost incurred during period t equals:

- ordering cost: (a− i)k;
- interest charge on inventory: (1− α)ak;

- expected sales in period t: αRE ·
{

min{Dt, a}
}

, where E
{

min{Dt, a}
}

=
∑a−1

j=0 jpt(j) + a
∑

j ≥a pt(j).

Therefore, we obtain the following optimality equation

f(i, T + 1) = −si, i ≥ 0

f(i, t) = inf{a | a≥i}
{

(a− i)k + (1− α)ak − αR · {∑a−1
j=0 jpt(j) + a

∑

j ≥ a pt(j)} +

α · E{f((a −Dt)
+, t+ 1)}

}

= inf{a | a≥i}
{

(a− i)k + (1− α)ak − αR{∑a−1
j=0 jpt(j) + a

∑

j ≥a pt(j)} +

α · {∑a−1
j=0 pt(j)f(a − j, t+ 1) + a

∑

j ≥ a pt(j)f(0, t + 1)}
}

, i ≥ 0, t = T, T − 1, . . . , 1.

(8.37)

8.3. PRODUCTION AND INVENTORY CONTROL 349

Define F (i, t) := f(i, t) + ik for all i and t. Then, f(a − j, t+ 1) = F (a− j, t+ 1)− (a− j)k for all j < a,

and f(0, t+ 1) = F (0, t+ 1). Therefore, the optimality equation (8.37) can be written as

F (i, T + 1) = (k − s)i, i ≥ 0

F (i, t) = inf{a |a≥i}
{

(2− α)ak − αR · {∑a−1
j=0 jpt(j) + a

∑

j ≥ a pt(j)} +

α · {∑a−1
j=0 pt(j)F (a− j, t+ 1) +

∑

j ≥a pt(j)F (0, t+ 1)} − α∑a−1
j=0 pt(j)(a − j)k

}

,

i ≥ 0, t = T, T − 1, . . . , 1.

(8.38)

Since

α
∑a−1

j=0 pt(j)(a − j)k = αka
∑a−1

j=0 pt(j) − αk
∑a−1

j=0 jpt(j) = αka{1−∑j ≥a pt(j)} − αk
∑a−1

j=0 jpt(j)

= αka− αka∑j ≥ a pt(j)} − αk
∑a−1

j=0 jpt(j),

we have the optimality equation

F (i, T + 1) = (k − s)i, i ≥ 0

F (i, t) = inf{a | a≥i}
{

2(1− α)ak − α(R− k) · {∑a−1
j=0 jpt(j) + a

∑

j ≥a pt(j)} +

α · {∑a−1
j=0 pt(j)F (a− j, t+ 1) +

∑

j ≥a pt(j)F (0, t+ 1)}
}

, i ≥ 0, t = T, T − 1, . . . , 1.

(8.39)

Notice that the expression in (8.39) for which the infimum is taken over all a ≥ i is independent of i. Let

{

Lt(a) := 2(1− α)ak − α(R− k) ·
{∑a−1

j=0 jpt(j) + a
∑

j ≥ a pt(j)
}

+

α ·
{∑a−1

j=0 pt(j)F (a − j, t+ 1) +
∑

j ≥ a pt(j)F (0, t+ 1)
}

.

(8.40)

Theorem 8.9

Let s < k < R, k > 0 and E{Dt} <∞ for all t.

(1) The function Lt(a) is convex for all t.

(2) For all t, there exists a nonnegative integer St such that

Lt(St) = min{a≥0} Lt(a) and F (i, t) =

{

Lt(St) for i ≤ St;

Lt(i) for i > St.

Proof

Part (1)

We first prove that 2(1−α)ak−α(R−k){∑a−1
j=0 jpt(j)+a

∑

j ≥ a pt(j)} is convex. Therefore, it is sufficient

to show that Gt(a) =
∑a−1

j=0 jpt(j) + a
∑

j ≥a pt(j) is concave.

∆Gt(a) =
∑a

j=0 jpt(j) + (a + 1)
∑

j ≥ a+1 pt(j) −
∑a−1

j=0 jpt(j) + a
∑

j ≥ a pt(j) =
∑

j ≥ a+1 pt(j).

Hence, ∆2Gt(a) = ∆Gt(a+ 1) −∆Gt(a) = pt(a+ 1) ≥ 0: Gt is concave for all t.

Next, we show that LT is convex. Since LT (a) = GT (a) + α(k − s)∑a−1
j=0 (a − j)pT (j), it is sufficient to

show that gT (a) :=
∑a−1

j=0 (a− j)pT (j) is convex.

∆gT (a) =
∑a

j=0 (a + 1− j)pT (j) −∑a−1
j=0 (a − j)pT (j) =

∑a
j=0 pT (j),

and consequently, ∆2gt(a) = ∆gt(a+ 1) −∆gt(a) = pT (a+ 1) ≥ 0: gT is concave.

We now show that Lt(a)→∞ if a→∞. We have

LT (a) = 2(1− α)ak − α(R− k)
{
∑a−1

j=0 jpT (j) + a
∑

j ≥ a pT (j)
}

+ α(k − s) ∑a−1
j=0 pt(j)(a − j).

Since
∑a−1

j=0 jpT (j) + a
∑

j ≥ a pT (j) ≤ E{DT } and
∑a−1

j=0 pt(j)(a − j) ≥
∑

j≥0 pt(j)(a − j) = a − E{DT },
we obtain LT (a) ≥ a{2(1− α)k + α(k − s)} − α(R− s) E{DT }, implying that LT (a)→∞ if a→∞.

350 CHAPTER 8. SPECIAL MODELS

Finally, we show inductively for t = T, T − 1, . . . , 1 that Lt is convex and that Lt(a) → ∞ if a → ∞.

Assume that Lt+1 is convex and that Lt+1(a) → ∞ if a → ∞. Then, Lt+1 attains its minimum at some

integer St+1 that satisfies Lt+1(St+1) = mina≥0 Lt+1(a) and F (i, t+ 1) =
{ Lt+1(St+1) for i ≤ St+1;

Lt+1(i) for i > St+1.

For the convexity of Lt(a) it is sufficient to show the convexity of

Ht(a) :=
∑a−1

j=0 pt(j)F (a − j, t+ 1) +
∑

j ≥ a pt(j)F (0, t+ 1).

We can write

∆Ht(a) =
∑a

j=0 pt(j)F (a + 1− j, t+ 1) +
∑

j ≥ a+1 pt(j)F (0, t+ 1)

−∑a−1
j=0 pt(j)F (a − j, t+ 1)−∑j ≥ a pt(j)F (0, t+ 1)

=
∑a

j=0 pt(j){F (a + 1− j, t+ 1)− F (a− j, t+ 1)},
implying

∆2Ht(a) =
∑a+1

j=0 pt(j){F (a+ 2− j, t+ 1)− F (a+ 1− j, t+ 1)} −
∑a

j=0 pt(j){F (a + 1− j, t+ 1)− F (a− j, t+ 1)}
= pt(a+ 1){F (1, t+ 1)− F (0, t+ 1)}+

∑a
j=0 pt(j)

{

{F (a+ 2− j, t+ 1) −
F (a+ 1− j, t+ 1)} − {F (a+ 1− j, t+ 1)− F (a− j, t+ 1)}

}

= pt(a+ 1){F (1, t+ 1)− F (0, t+ 1)}+
∑a

j=0 pt(j)∆
2F (a− j, t+ 1).

Notice that

∆2F (a− j, t+ 1) =

∆2Lt+1(a− j) ≥ 0 a− j ≥ St+1

∆Lt+1(a+ 1− j) ≥ 0 a+ 1− j = St+1

0 a+ 2− j ≤ St+1

Since F (1, t+1) = inf{a≥1} Lt+1(a) ≥ inf{a≥0} Lt+1(a) = F (0, t+1), we obtain ∆2Ht(a) ≥ 0 for all a ≥ 0

and consequently Lt is a convex function.

To complete the proof, we must show that Lt(a)→∞ as a→∞.

Pick M large enough that P{Dt ≤M} ≥ 0.5. Then consider a ≥M + St+1.

In the case that Dt ≤ M , we have (a − Dt)
+ = a − Dt ≥ a − M ≥ St+1 , and the fact that Lt+1 is

nondecreasing for i ≥ St+1 assures that F ((a−Dt)
+, t+ 1) ≥ Lt+1(a−M).

In the case Dt > M , the fact that F (i, t+1) is nondecreasing assures that F ((a−Dt)
+, t+1) ≥ F (0, t+1).

Hence,

E{F ((a−Dt)
+, t+ 1)} ≥ 0.5Lt+1(a−M) + 0.5F (0, t+ 1) for a ≥M + St+1.

Therefore, we obtain

Lt(a) = 2(1− α)ak − α(R− k) E{Dt}+ 0.5Lt+1(a−M) + 0.5F (0, t+ 1),

implying that Lt(a)→∞ as a→∞ for all α ∈ [0, 1], even when α equals 0 or 1.

An optimal policy has the following structure: if the inventory at the start of period t is at least St, no

order is placed; if the inventory is i < St then exactly St−i units are ordered. This one-parameter ordering

rule is called a single-critical-number policy.

8.3.4 Inventory control and (s, S)-policies

This section concerns a model of inventory control with also uncertain demand, but with a fixed charge

for placing an order. Ordering is instantaneous and has to be paid at delivery. This model covers both

backlogging and no backlogging. The ordering cost includes a cost per unit ordered and a fixed charge of

setup cost for placing any order. Let Kt ≥ 0 be the setup cost and ht the unit ordering cost in period t.

The cost-minimizing ordering rule for this type of model is often characterized by two numbers per period,

8.3. PRODUCTION AND INVENTORY CONTROL 351

as follows. Each period has an order-up-to-quantity St and a reorder point st ≤ St. If the inventory It at

the start of period t is at least st, no order is placed; if It < it then exactly St− It units are ordered. This

two-parameter ordering rule is called an (s, S)-policy. An (s, S)-policy has the propery that any order in

period t must be for more than St − st units, large enough that the benefit of the added inventory offsets

the setup cost. In addition to the notation mentioned previously, we use the following notation:

Rt = the (retail) unit sales price during period t (customers pay at the end of the

period in which they place their orders, even if their orders are backlogged).

e(i+) = the salvage value of having i+ = max{i, 0} units of inventory at the end of

period T .

ht(a) = the expectation of the inventory cost during period t, given that the inventory

is a at the start of period t, just after deciding whether to place an order.

It(a,Dt) = the inventory on hand at the beginning of period t+ 1, given as a function

of y and Dt.

To describe the ordering cost we employ the function H(z) :=
{ 0 for z ≤ 0;

1 for z > 0.
.

Then, the cost of ordering z units at the start of period t equals KtH(z) + z · kt. Let ct(i, a) denote the

present value at the start of period t of the expected cost incurred during this period, given in terms of

period’s before-ordering inventory i and after-ordering inventory a:

ct(i, a) = KtH(a − i) + (a − i)kt + ht(a) − α
{

a− E{It(a,Dt)}
}

Rt. (8.41)

We have E{It(a,Dt)} =
{ a −∑∞

j=0 pt(j)j if backlogging is allowed;

a −∑a
j=0 pt(j)j − a

∑∞
j=a+1 pt(j) if backlogging is not allowed.

.

The states are (i, t) denoting the situation of having i units of inventory on hand at the start of period t,

just before deciding whether and how much to order. Interpret f(i, t) as the present value at the start of

period t of the cost incurred from then to the end of the planning horizon if state (i, t) is observed and if

an optimal policy is followed. This leads to the following optimality equation

{

f(i, T + 1) = KT+1H(−i) + kT+1(−i)+ − e(i+)

f(i, t) = inf{a | a≥i}
{

ct(i, a) + αE{f(It(a,Dt), t+ 1)}
}

, t = T, T − 1, . . . , 1.
(8.42)

where the first equation accounts for the cost of disposing of excess demand (−i)+ by a special end-of-

planning-horizon order and for the salvage value e(i+), converted to a cost. The term −ikt in (8.41) is

independent of the decision a and can be factored out of (8.42). This motivates a change of variables. Let

F (i, t) := f(i, t) + ikt. Then, with

Gt(a) := ht(a) + (kt − αRt)a+ α(Rt − kt+1) E{It(a,Dt)}, (8.43)

we obtain (the verification is left to the reader)

{

F (i, T + 1) = KT+1H(−i) + kT+1i
+ − e(i+)

F (i, t) = inf{a | a≥i}
{

KtH(a− i) +Gt(a) + αE{F (It(a,Dt), t+ 1)}
}

, t = T, T − 1, . . . , 1.

(8.44)

The quantity Gt(a) is called the operating cost; it accounts for all units of cash flow during perod t except

the setup cost. The first term in Gt(a) is the inventory carrying cost. To interpret the remaining terms, we

imagine that the starting inventory y is purchased from the supplier at unit cost kt, that ending inventory

It(a,Dt) is returned to the supplier at unit price kt+1, and that sales of a− It(a,Dt) units occur at unit

price Rt.

352 CHAPTER 8. SPECIAL MODELS

Next, we write the optimality equation as

F (i, t) = inf
{a | a≥i}

{

KtH(a− i) + Lt(a)}, where Lt(a) = Gt(a) + αE{F (It(a,Dt), t+ 1)}. (8.45)

Up to this point, the development has followed

the same pattern as in the previous section, where

we showed the convexity of Lt. In the case of

fixed setup cost the function Lt is not convec,

in general. It may have the structure shown in

the picture, which has two local minima. The

point identified in the figure as St is the point

where the function Lt attains its global minimum.

The point identified as st is the smallest value of

a for which Lt(a) ≤ Lt(St) + Kt. Since Kt is

nonnegative, one has st ≤ St. So St and st satisfy

Lt(St) = infa {Lt(a)}
st = inf{a | LT (a) ≤ Lt(St) +Kt}

(8.46)

r r r r
r r

r r
r r r r r r

r r r r r r r

Stst a

Lt(a)

Lt(St)

Lt(St)+Kt

6

?

Kt

It is now argued that an (s, S)-policy is optimal for the strange shaped function of the figure. Consider

state (i, t) with i ≥ st. Note that it is optimal to set a = i, because in that case Kt +Lt(a) ≥ Lt(i) for all

a ≥ i, i.e. the setup cost cannot be recouped by an a ≥ i. Now consider a state (i, t) with i < st. Then,

Kt + Lt(St) ≤ Lt(i) and Kt + Lt(St) ≤ Kt + Lt(a) for any a. The next theorem gives conditions under

which an (s, S)-policy is optimal.

Theorem 8.10

Suppose that the following five conditions hold.

(1) For t = 1, 2, . . . , T , the function Gt(·), defined in (8.43), is convex.

(2) For t = 1, 2, . . . , T , the setup costs Kt satisfies Kt ≥ αKt+1.

(3) For t = 1, 2, . . . , T and for each value of Dt, the function It(·, Dt) is convex and nondecreasing

(4) The function kT+1i
+ − e(i+) is convex and nondecreasing in i.

(5) All expectations are finite and infa Lt(a) is attained for all t = 1, 2, . . . , T .

Then, for t = 1, 2, . . . , T , there exists St and st that satisfy Lt(St) = infa {Lt(a)} and

st = inf{a | Lt(a) ≤ Lt(St) +Kt}. Moreover, F (i, t) =
{ Lt(St) +Kt if i < st;

Lt(i) if i ≥ st.

Before we prove the theorem we make some preparations.

With K ≥ 0 a function f : Z→ R is called K-convex if any triple a < b < c satisfies

f(c) +K ≥ f(b) + (c− b)
(f(b) − f(a)

b− a
)

.

Hence, the straight line passing through the points (a, f(a)) and (b, f(b)) has in c a value of at most

f(c) +K. Since b is between a and c we can write b = αa+ (1− α)c for some α ∈ (0, 1), and getting the

following equivalent form of K-convexity.

8.3. PRODUCTION AND INVENTORY CONTROL 353

f(c) +K ≥ f{αa + (1− α)c}+ α(c− a) · f{αa+(1−α)c}−f(a)
(1−α)(c−a) ⇔

(1− α){f(c) +K} ≥ (1 − α)f{αa+ (1− α)c}+ α ·
{

f{αa+ (1− α)c} − f(a)
}

⇔
(1− α){f(c) +K} ≥ f{αa + (1− α)c} − αf(a).

Notice that this inequality is also valid if a = c and/or α ∈ {0, 1}. Hence, K-convexity is equivalent to

αf(a) + (1− α){f(c) +K} ≥ f{αa+ (1− α)c} for all a ≤ c and all α ∈ [0, 1].

A function f : Z→ R is K-quasi-convex if any triple a < b < c with f(a) < f(b) satisfies f(c) +K ≥ f(b).
Notice that an increase in a K-quasi-convex function cannot be followed by a decrease that exceeds K.

Lemma 8.8

A function f : Z→ R that is K-convex is also K-quasi-convex.

Proof

Suppose that a < b < c and f(a) < f(b). Since f is K-convex, we obtain

f(c) +K ≥ f(b) + (c− b)
(

f(b)−f(a)
b−a

)

> f(b).

Lemma 8.9

Let f : Z → Z be convex and nondecreasing and let g : Z → R be K-convex. Furthermore, we have

g(a) ≤ g(c) +K for all a < c. Then, g{f(x)} is K-convex.

Proof

Take any a < c and α ∈ (0, 1), and let b = αa+ (1− α)c. Then, we have to show that

αg{f(a)} + (1− α)
{

g{f(c)} +K
}

≥ g{f(b)}.
Since f is convex and nondecreasing, we have f(a) ≤ f(b) ≤ αf(a) + (1 − α)f(c) ≤ f(c). Hence, there

exists a number β ∈ [0, 1] such that f(b) = βf(a) + (1− β)f(c), implying

βf(a) + (1− β)f(c) = f(b) ≤ αf(a) + (1− α)f(c), or equivalently, (β − α){f(a) − f(b)} ≤ 0.

Since f is nondecreasing, we obtain β ≥ α. Because g is K-convex on Y , f(a) ≤ f(b) ≤ f(c) yields

βg{f(a)} + (1− β)
{

g{f(c)} +K
}

≥ g{f(b)}. Therefore,

αg{f(a)} + (1− α)
{

g{f(c)} +K
}

− g{f(b)} ≥
αg{f(a)} + (1− α)

{

g{f(c)} +K
}

− βg{f(a)} − (1− β)
{

g{f(c)} +K
}

=

(α− β)
{

g{f(a)} − g{f(c)} −K
}

≥ 0,

because β ≥ α and g{f(a)} ≤ g{f(c)} + K, the last inequality since the property of g given in the

formulation of the lemma.

Lemma 8.10

Let the function L : Z → R be K-quasi-convex. Suppose that S such that L(S) = infa {L(a)} exists.

Furthermore, let F (i) = inf{a≥i} {KH(a− i) + L(a)}.

Then, F (i) =
{ L(S) +K if i < s

L(i) if i ≥ s
, where s; = inf{a | L(a) ≤ L(S) +K}.

Proof

Since L(S) ≤ L(S) +K, the definition of s assures that s ≤ S, possibly s = −∞. We will show the result

in 4 cases, depending on the position of i with respect to s and S.

Case 1: i < s.

The definition of s assures that L(i) > L(S) +K. Since i < S, we have F (i) = L(S) +K.

354 CHAPTER 8. SPECIAL MODELS

Case 2: i = s > −∞.

By the definition of s we have L(i) ≤ L(S) +K, and consequently, F (i) = L(i) in this case.

Case 3: s < i ≤ S.

Suppose that L(i) > L(S) + K. Then, i 6= s. So, s < i < S and L(s) ≤ L(S) + K < L(i). Hence, by

the K-quasi-convexity of L, L(S) +K ≥ L(i), implying a contradiction. Hence, L(i) ≤ L(S) +K, and we

obtain F (i) = L(i) in this case.

Case 4: i > S.

Suppose that F (i) < L(i). Then, the definition of F assures that there exists a c that satisfies c > i

with L(c) + K < L(i). Then, S < i < c and L(S) < L(i). Hence, by the K-quasi-convexity of L,

L(c) +K ≥ L(i), implying a contradiction. So, F (i) = L(i) in this case.

The next lemma provides conditions under which F : Z→ R is a K-convex function that satiesfies

F (b) ≤ F (c) +K if b < c.

Lemma 8.11

Let L : Z → R be a K-convex function. Then, F is K-convex, and for all elements b < c we have

F (b) ≤ F (c) +K.

Proof

Take any b < c. Since F (i) = inf{a |a≥i} {KH(a−i)+L(a)}, we obtain F (b) ≤ K+L(c). Lemma 8.8 shows

that L is K-quasi-convex. Hence, Lemma 8.10 applies, and F satisfies F (i) =
{ L(S) +K if i < s

L(i) if i ≥ s
,

where s := inf{a | L(a) ≤ L(S) +K}.
Consider elements a < b < c. We have to show F (b) ≤ F (c) +K + c−b

b−a
· {F (a)− F (b)}.

If F (a) ≥ F (b) this follows immediately from F (b) ≤ F (c) +K.

If a ≤ s, Lemma 8.10 assures that F (a) = L(a), F (b) = L(b) and F (c) = L(c), and the result is

immediate from the K-convexity of L. In the remaining case, a < s and F (a) < F (b), Lemma 8.10 shows

F (a) = L(S) +K ≥ F (s). Hence, F (b) = L(b) and s < b, implying

c−b
b−a
· {F (a)− F (b)} > c−b

b−s
· {F (a)− F (b)} ≥ c−b

b−s
· {F (s)− F (b)} ≥ F (b)− F (c)−K,

the last inequality follows from the case a = s.

The preceding Lemmas are now molded into a proof of Theorem 8.10.

Proof of Theorem 8.10

Condition (4) shows that F (·, T + 1) is a KT+1-convex function that satisfies, for all elements b < c,

F (b, T + 1) ≤ F (c, T + 1) +KT+1 . This initializes the following inductive hypothesis:

F (·, t+ 1) is a Kt+1-convex function that satisfies F (b, t+ 1) ≤ F (c, t+ 1) +Kt+1 for all

elements b < c.

This hypothesis and condition (3) let us supply Lemma 8.9 with g(·) = F (·, t+1) and with f(·) = It(·, Dt).

Lemma 8.9 shows that F {It(·, Dt), t+1} is Kt+1-convex. Since condition (2) gives Kt ≥ αKt+1, this shows

that αF {It(·, Dt), t + 1} is Kt-convex. Since K-convexity is preserved under convex combinations, (5)

suffices for the Kt-convexity of αE
{

F {It(·, Dt), t+ 1}
}

. So, condition (1) shows that Lt(·) is Kt-convex.

Lemma 8.8 shows that Lt(·) is Kt-quasi convex, and condition (5) implies that Lt(St) = infa {Lt(a)}.

Hence, Lemma 8.10 shows that F (·, t) satisfies F (i, t) =
{ Lt(St) +Kt if i < st;

Lt(i) if i ≥ st.
.

Lemma 8.11 shows that F (·, t) is a Kt-convex function that satisfies F (b, t) ≤ F (c, t)+Kt for all elements

b < c. This completes the proof.

8.4. OPTIMAL CONTROL OF QUEUES 355

8.4 Optimal control of queues

A queueing system includes servers, customers and queues for the customers awaiting service. The queues

are also called buffers. We will discuss several types of queueing models.

8.4.1 The single-server queue

Customers enter the queue, wait their turn, are served by the single server, and depart the system. We

might place a controller at the entrance to the queue to decide which customers to admit to the queues

(admission control). Or we could impose a control on the server that could adjust the rate at which

customers are served (service rate control). Both methods of control can be imposed simultaneously.

1. Admission control for batch arrivals

The state of the system is the number of customers in the buffer at the beginning of a time slot, and thus

S = {0, 1, . . .}. At the beginning of each slot a batch of customers arrives and pj is the probability that j

customers arrive (j = 0, 1, . . .). In every state there are two actions available:

1 = accept the incoming batch or 0 = reject the incoming batch.

Case a: The action must be chosen before the size of the batch is observed.

There is a nonnegative holding cost h(i) incurred when there are i customers in the buffer (assume h(0) =

0). There is a positive rejection cost r incurred whenever a batch is rejected. Hence, the immediate cost

c(i, a) =
{ h(i) + r if a = 0, i ∈ S;

h(i) if a = 1, i ∈ S.
Service occurs according to a geometric distribution with fixed rate µ, where 0 < µ < 1. This means that

the probability of a successful service in any slot is µ. If the service is unsuccessful, then another try

is made with the same probability of success, and this continues until the customer has been successful

served. If a batch arrives to an empty buffer and is accepted, then its customers are available for service

at the beginning of the following slot.

Hence, the transition probabilities are:

i = 0 : p00(0) = 1; i ≥ 1 : pi,i−1(0) = µ; pi,i−1(1) = µp0;

p0j(1) = pj, j ≥ 0; pi,i(0) = 1− µ; pi,i+j(1) = µpj+1 + (1− µ)pj , j ≥ 0.

Consider value iteration with α = 1, i.e.

vn
0 = min{r +

∑

j p0j(0)vn−1
j ,

∑

j p0j(1)vn−1
j } = min{r + vn−1

0 ,
∑

j pjv
n−1
j }.

vn
i = min{h(i) + r +

∑

j pij(0)vn−1
j , h(i) +

∑

j pij(1)vn−1
j }

= h(i) +min{r + µvn−1
i−1 + (1− µ)vn−1

i , µ
∑

j pjv
n−1
i−1+j + (1− µ)

∑

j pjv
n−1
i+j }, i ≥ 1.

Lemma 8.12

Assume that h(i) is nondecreasing in i and consider value iteration with v0
i = 0, i ∈ S. Then, vn

i is

nondecreasing in i for all n ≥ 0.

Proof

The lemma is shown by induction on n. We first show that vn
i is finite for all n and i by showing that

vn
i ≤ nr + (n + 1)h(i), i ∈ S. For n = 0 we have 0 = v0

i ≤ 0 · r + 1 · (h(i) = h(i), i ∈ S. Assume that

vn
i ≤ nr + (n+ 1)h(i), i ∈ S. Then,

356 CHAPTER 8. SPECIAL MODELS

vn+1
i ≤ h(i) + r + µvn

i−1 + (1− µ)vn
i

≤ h(i) + r + µ{nr+ (n+ 1)h(i− 1)}+ (1− µ){nr + (n+ 1)h(i)}
≤ h(i) + r + µ{nr+ (n+ 1)h(i)}+ (1− µ){nr + (n+ 1)h(i)}
= h(i) + r + nr + (n+ 1)h(i) = (n+ 1)r + (n+ 2)h(i), i ∈ S.

v0 ≡ 0 is nondecreasing in i. Assume that vn
i is nondecreasing in i. Since

h(1) + r + µvn
0 + (1− µ)vn

1 ≥ r + µvn
0 + (1− µ)vn

0 = r + vn
0

and

h(1) + µ
∑

j pjv
n
j + (1− µ)

∑

j pjv
n
j+1 ≥ µ

∑

j pjv
n
j + (1− µ)

∑

j pjv
n
j =

∑

j pjv
n
j ,

each term in the minimum of vn+1
0 is bounded above by the corresponding term in vn+1

1 , and hence

vn+1
0 ≤ vn+1

1 . Suppose that the minimum in vn+1
i (i ≥ 1) is obtained by the rejection action. By the

induction hypothesis vn
i−1 and vn

i are nondecreasing in i and consequently is h(i) + r + µvn
i−1 + (1− µ)vn

i

nondecreasing in i. Now suppose that the minimum in vn+1
i (i ≥ 1) is obtained by the accepting action.

For each fixed j, by the induction hypothesis, vn
i−1+j and vn

i+j are nondecreasing in i. Since
∑

j pjv
n
i−1+j

and
∑

j pjv
n
i+j are convex combinations of vn

i−1+j and vn
i+j ,

∑

j pjv
n
i−1+j and

∑

j pjv
n
i+j are nondecreasing

in i. Hence, h(i) + µ
∑

j pjv
n
i−1+j + (1 − µ)

∑

j pjv
n
i+j is nondecreasing in i. Thus both terms in the

minimum are nondecreasing in i, and consequently vn+1
i is nondecreasing in i.

Case b: The size of the incoming batch may be observed before the action is chosen.

In this case we take as states the pairs (i, k), where i denotes the number of customers in the buffer and

k the size of the incoming batch: S = {(i, k) | i = 0, 1, . . . ; k = 0, 1, . . .}. The holding cost is as in Case a

and there is a positive rejection cost r(k) incurred whenever a batch of size k is rejected (r(0) = 0). Hence,

the cost structure is as follows: c{(i, k), a) =

{ h(i) , i ∈ S, k = 0;

h(i) + r , i ∈ S, k ≥ 1, a = 0;

h(i) , i ∈ S, k ≥ 1, a = 1.

For the transition probabilities we obtain for all k ≥ 0 and j ≥ 0:

i = 0 : p(0,k)(0,j)(0) = pj ; i ≥ 1 : p(i,k)(i−1,j)(0) = µpj ; p(i,k)(i+k−1,j)(1) = µpj;

p(0,k)(k,j)(1) = pj ; p(i,k)(i,j) (0) = (1− µ)pj; p(i,k)(i+k,j) (1) = (1− µ)pj.

2. Admission control for an M/M/1 queue

Assume that customers arrive according to a Poisson process with parameter λ, and assume that the

service time is exponentially distributed with parameter µ. We observe the system at each arrival and

departure (semi-Markov model). As state space we use S = {0, 1, 2, . . .} × {0, 1}. The system is in state

(i, 0) if there are i customers in the system and there is a departure; then, the only action a = 0 is to

continue. The state (i, 1) occurs when there are i jobs in the system and a new customer arrives; in state

(i, 1) the controller may admit (a = 1) or refuse (a = 0) service to the arrival.

In state (0, 0) the only action is to continue: with probability 1 the next state is state (0, 1) and

the time until the next transition is exponentially distributed with rate λ. In state (0, 1) there are two

actions: if a = 0 (refuse) the next state is with probability 1 again state (0, 1) and the time until the next

transition is exponentially distributed with rate λ; if a = 1 (admission) the time until the next transition

is exponentially distributed with rate λ + µ, and the next state is with probability λ
λ+µ

state (1, 1) and

with probability µ
λ+µ state (0, 0).

In the states (i, 0), with i ≥ 1, the only action a = 0 is to continue. Then, the next state is with

probability λ
λ+µ state (i, 1) and with probability µ

λ+µ state (i− 1, 0); the time until the next transition is

exponentially distributed with rate λ + µ.

8.4. OPTIMAL CONTROL OF QUEUES 357

In the states (i, 1), with i ≥ 1, there are two actions. If a = 0 (refuse) the next state is with probability
λ

λ+µ again state (i, 1) and with probability µ
λ+µ state (i − 1, 0). If a = 1 (admission) the next state is

with probability λ
λ+µ

again state (i+ 1, 1) and with probability µ
λ+µ

state (i, 0). The time until the next

transition is exponentially distributed with rate λ+ µ.

Let ν(i,b)(a) be the parameter of the exponential distribution of the time until the next observation and

let p(i,b)(j,c)(a) be the probability that the next state is state (j, c), given the current state (i, b) and the

action a. Then, we have

ν(i,b)(a) =

{

λ if i = 0, b = 0 or 1, a = 0;

λ+ µ if i = 0, b = 1, a = 1 or i ≥ 1.

p(i,b)(j,c)(a)

1 if (i, b) = (0, 0), a = 0, (j, c) = (0, 1) or (s, b) = (0, 1), a = 0, (j, c) = (0, 1);

λ
λ+µ if i ≥ 1, b = 1, a = 0, (j, b) = (i, 1) or i ≥ 0, b = 1, a = 1, (j, b) = (i+ 1, 1);

µ
λ+µ if i ≥ 0, b = 1, a = 1, (j, b) = (i, 0) or i ≥ 1, b = 1, a = 0, (j, b) = (i− 1, 0)

or i ≥ 1, b = 0, a = 0, (j, b) = (i− 1, 0);

0 otherwise

With the exception of the states (0, 0) and (0, 1) all transitions occur at rate λ + µ. To uniformize the

system we alter the transition structure in only these states:

p′(0,0)(0,0)(0) = µ
λ+µ ; p′(0,0)(0,1)(0) = λ

λ+µ ;

p′(0,1)(0,0)(0) = µ
λ+µ ; p′(0,1)(0,1)(0) = λ

λ+µ ;

p′(i,b)(j,c)(a) = p(i,b)(j,c)(a) if i = 0, b = 1, a = 1 or i ≥ 1.

In the uniformized system, we observe the system more often when it is empty than in the untransformed

system, so that this transformation increases the probability that it occupies (0, 0) and (0, 1) for a = 0.

We may also interpret this transformation as adding ”fictitious” service completions at these states.

Furthermore, we assume that each arriving customer contributes r units of revenue and the system

incurs a holding cost at rate h(i) per unit time whenever there are i jobs in the system, where h(0) = 0.

As utility function we consider the discounted model, in which we assume continuous-time discounting

at rate α > 0. This means that the present value of one unit received t units in the future equals e−αt. For

(i, b) ∈ S and a = 0 or 1, let r′(i,b)(a) denote the expected total discounted reward between two decision

epochs in the uniformized system, given that the system occupies state (i, b) and the decision maker chooses

action a. The expected discounted holding cost during one epoch, given that the system occupies state

(i, b) and the decision maker chooses action a, is per unit:

E
a
(i,b) {

∫ τ

0
e−αtdt} = 1

α
E

a
(i,b) {1− e−ατ} = 1

α

∫∞
0
{1− e−αt} t f(t) dt,

where f(t) is the density of the exponential distribution with parameter λ+ µ, i.e. f(t) = (λ+ µ)e−(λ+µ)t

for all t ≥ 0. Hence,

E
a
(i,b) {

∫ τ

0
e−αtdt} = λ+µ

α

∫∞
0
{1− e−αt}e−(λ+µ)t t dt

= λ+µ
α

{ ∫∞
0

e−(λ+µ)t t dt−
∫∞
0

e−(α+λ+µ)t t dt
}

= λ+µ
α

{

1
λ+µ
− 1

α+λ+µ

}

= λ+µ
α

{

α
(λ+µ)(α+λ+µ)

}

= 1
α+λ+µ

.

Now it follows that the rewards in the uniformized system satisfy

r′(0,0)(0) = 0; r′(i,0)(0) = −h(i)
α+λ+µ , i ≥ 1; r′(i,1)(1) = r + −h(i)

α+λ+µ , i ≥ 0.

r′(0,1)(0) = 0; r′(i,1)(0) = −h(i)
α+λ+µ , i ≥ 1;

358 CHAPTER 8. SPECIAL MODELS

The optimality equation for this model becomes (cf. Kallenberg [148], Chapter 7):

v(i,b) = maxa

{

r′(i,b)(a) + {
∫∞
0

e−αt f(t) dt}∑(j,c) p
′
(i,b)(j,c)(a)v(j,c)

}

= maxa

{

r′(i,b)(a) + λ+µ
α+λ+µ

∑

(j,c) p
′
(i,b)(j,c)(a)v(j,c)

}

, (i, b) ∈ S.
Hence, more explicitly,

v(0,0) = λ+µ
α+λ+µ

{ µ
λ+µ

v(0,0) + λ
λ+µ

v(0,1)}.

v(0,1) = max
{

r − h(1)
α+λ+µ

+ λ+µ
α+λ+µ

{ µ
λ+µ

v(0,0) + λ
λ+µ

v(1,1)}, λ+µ
α+λ+µ

{ µ
λ+µ

v(0,0) + λ
λ+µ

v(0,1)}
}

.

v(i,0) = − h(1)
α+λ+µ

+ λ+µ
α+λ+µ

{ µ
λ+µ

v(i−1,0) + λ
λ+µ

v(i,1)}, i ≥ 0.

v(i,1) = max
{

r − h(i+1)
α+λ+µ

+ λ+µ
α+λ+µ

{ µ
λ+µ

v(i,0) + λ
λ+µ

v(i+1,1)},

− h(i)
α+λ+µ

+ λ+µ
α+λ+µ

{ µ
λ+µ

v(i−1,0) + λ
λ+µ

v(i,1)}
}

= max{r + v(i+1,0), v(i,1)}, i ≥ 1.

It can be shown that, if h(i) is nondecreasing and convex, there exists an optimal control limit policy.

3. Service rate control

As state space we have again S = {0, 1, . . .}. In state 0 there is no control action available since there are

no customers to serve. We may think of the action 0 = take no service action. In state i ≥ 1 actions consist

of the allowable service rate 0 < a1 < a2 < · · · < am < 1. This means that the server must serve if the

buffer is nonempty (a1 > 0) and that perfect service is unavailable (am < 1). The holding cost is the same

as in arrival control. There is a nonnegative cost c(k) of choosing to serve at rate ak during a particular

slot (the cost in state 0 is 0). Hence, the immediate cost c(i, k) =
{ 0 if i = 0;

h(i) + c(k) if i ≥ 1, 1 ≤ k ≤ m.
The transition probabilities are:

i = 0 : p0j(0) = pj, j ≥ 0; i ≥ 1 : pi,i−1(k) = akp0 1 ≤ k ≤ m;

pi,i+j(k) = akpj+1 + (1 − ak)pj 1 ≤ k ≤ m, j ≥ 0.

8.4.2 Parallel queues

In parallel queues are a number of K servers with individual queues. Customers arrive at the router

and are send to one of these servers. It is assumed that once the routing has taken place, the customer

cannot switch from one queue to another. We assume that the service rates of the servers are constant.

The control mechanism is involved through the routing decision for an arriving customer. An appropriate

state description is the vector i = (i1, i2, . . . , iK), where ik is the number of customers in queue k (k =

1, 2, . . . , K). The cost is then a function of the pair (i, k), where k is the action chosen, i.e. the server to

which the customer is routed. This cost consists of a holding cost reflecting the number of customers in

each queue and a cost of routing to queue k.

Suppose that the customers that arrived in slot t were routed to queue k but that at the beginning

of slot t + 1 the controller wishes to route the newly arriving customers to queue l 6= k. We allow that

this switch causes a switching cost. To handle this situation, we would enlarge the state description to be

(i, k), where the current buffer content vector i is augmented with the previous routing decision. The cost

is then a function of the state-action pair {(i, k), l}.
Let us assume that we have batch arrivals. The problem concerns the routing of an incoming batch to

one of the K parallel servers. Each server maintains its own queue, and server k serves its customers at

geometric rate µk, where 0 < µk < 1, k = 1, 2, . . . , K. We also assume that the routing decision is made

before the size of the incoming batch is observed.

8.5. STOCHASTIC SCHEDULING 359

There is a nonnegative holding cost hk(ik) associated with the content of queue k. The total holding

cost is h(i) =
∑K

k=1 hk(ik). In addition there is a nonnegative cost c(k, l) for changing the routing from

server k to server l, where c(k, k) = 0 for each k. The cost structure is: c{(i, k), l)} = h(i) + c(k, l).

Some thoughtful notation can facilitate the writing of the transition probabilities. Let j(l) be the

K-dimensional vector with j in the l-th place and 0 elsewhere. Then,

p(0,k)(j(l),l)(l) = pj, 1 ≤ k ≤ K, 1 ≤ l ≤ K, j ≥ 0.

Now let i 6= 0 be a state vector and let F (i) = {j | ij > 0}. Let E(i) ⊆ F (i) be the subset of F (i) (possibly

empty) representing those servers who complete service during the current slot. The probability of this

event is

P{E(i)} =
∏

k∈E(i) µk

∏

k∈F (i)\E(i) (1− µk).

Finally let e(E(i)) be a vector with 1 in every coordinate of E(i) and 0 elsewhere. If the system is in state

(i, k) there is a probability pj that the next batch contains j customers and there is a probability P{E(i)}
that the servers of E(i) complete their services. Hence, we have the following transition probabilities in

case the router assigns the next batch to server l:

p(i,k)(i+j(l)−e(E(i)),l)(l) = pj P{E(i)}, i 6= 0, E(i) ⊆ F (i), 1 ≤ k ≤ K, 1 ≤ l ≤ K, j ≥ 0.

8.5 Stochastic scheduling

In a scheduling problem, jobs have to be processed on a number of machines. Each machine can only process

one job at a time. Each job i has a given processing time Tij on machine j. In stochastic scheduling, these

processing times are random variables. At certain time points decisions have to be made, e.g. which job is

assigned to which machine. There is a utility function by which different policies can be measured, and we

want to find a policy that optimizes the utility function. We will illustrate this in a number of examples.

8.5.1 Maximizing finite-time returns on a single processor

Suppose there are n jobs to be performed sequentially within a fixed time T . The ith job takes an

exponentially amount of time with rate µi and, if completed within time T , earns the decision maker an

amount ri. At the start and whenever a job is completed the decision maker must decide which of the

remaining jobs to process, with his objective being to maximize the total expected earnings.

It follows from the lack-of-memory property of the exponential distribution that, if job i is attempted

for a time dt, then it will be completed with probability µidt + o(dt), thus the expected gain will be

µiridt + o(dt). Hence, it seems as if the expected return is the same as if we earned µiri per unit time

that job i is being performed. To show this formally, suppose that t units of time remain when job i is

initiated. If Xi is the time needed to perform this job, then the expected return from job i is

E{return from job i} = ri · P{Xi < t} = ri(1− e−µit) = µiri · 1−e−µit

µi
.

Since for any nonnegative stochastic variable Y with density function f(y) we have

E{Y } =
∫∞
0

yf(y)dy =
∫∞
0
{
∫ y

0
dx}f(y)dy =

∫∞
0
{
∫∞

x
f(y)dy}dx =

∫∞
0

P{Y > x}dx,
and hence,

E{min(Xi, t)} =
∫∞
0

P{min(Xi, t) > x}dx =
∫ t

0
e−µixdx = 1−e−µit

µi
.

Therefore, we obtain

E{Y } = µiri E{min(Xi, t)} = µiri E{length of time job i is worked on}.

360 CHAPTER 8. SPECIAL MODELS

Hence, it follows that, for any policy R,

ER{total return} =

n
∑

i=1

µiri ER{length of time job i is worked on}. (8.47)

That is, the total expected return is the same as it would be if we earned money at a rate µiri whenever

job i is worked on. From this we see that the expected amount earned by time T is maximized by working

on jobs in decreasing order of µiri. So at any decision time point the decision maker chooses job k where

µkrk = maxi {µiri | job i is not completed}.

8.5.2 Optimality of the µc-rule

1. One server allocation to parallel queues with preemption

Customers arrive at a system of m parallel queues and one server. The system operates at discrete time

points, i.e. arrival times and service times take values in the set {1, 2, . . .}. Furthermore, the arrival times

are arbitrary and the service time Ti, for a customer in queue i, is geometrically distributed with rate µi,

P{Ti = n} = (1− µi)
n−1 · µi, n ∈ N, with µi ∈ (0, 1), 1 ≤ i ≤ m, and E{Ti} = µ−1

i .

At any time point t = 1, 2, . . . the server chooses a customer from one of the queues; this is an example

of a server assignment model. Services may be interrupted and resumed later on (preemption). For each

customer in queue i, a cost ci is charged per unit of time that this customer is in the system. A policy is a

rule to assign each server to one of the queues. Which policy minimizes the total cost in T periods? This

model is more interesting than the nonpreemptive model, which is a rather trivial example (cf. Exercise

1.8).

Let N t
i (R) be the number of customers in period t in queue i, if policy R is used. Then, the performance

measure is minR E
{
∑T

t=1

∑m
i=1 ci · N t

i (R)
}

. The next theorem indicates that the so-called µc-rule is

an optimal policy. This rule assigns the server to queue k, where k is a nonempty queue satisfying

µkck = maxi{µici | queue i is nonempty}. Note that µici is the expected cost per unit of service for a

customer in queue i, and by using the µc-rule, the largest reduction of the expected cost in the next period

is obtained.

Theorem 8.11

The µc-rule is optimal for the preemptive allocation of a single server to parallel queues.

Proof

Assume that the µc-rule is optimal after some time t ≤ T (any rule is optimal after time T , because we

consider a finite horizon of T periods). It will be shown that this rule is also optimal at time t. Then, by

backward induction, it is clear that the µc-rule is optimal over the whole horizon.

For any sample path of the states and actions of the stochastic process we make the following observation.

Consider a policy that serves a customer in queue j at time t while there is a customer in queue i at time

t, where i and j are such that ciµi > cjµj . Denote by τ the first time after time t that this policy services

a customer in queue i (let τ = T + 1 if the policy does not serve a customer in queue i during the times

t+ 1, t+ 2, . . . , T).

Modify the policy by serving a customer in queue i at time t and a customer in queue j at time τ , i.e.

interchange the actions at times t and τ . The effect of this modification can be calculated as follows. With

probability µi the service of the customer in queue i will be completed in epoch t in the modified policy.

Thus with probability µi the cost of the customer in queue i is reduced by
∑τ

s=t+1 ci. Similarly, with

8.5. STOCHASTIC SCHEDULING 361

probability µj the cost of the customer in queue j is increased by
∑τ

s=t+1 cj. Thus, the the expected

reduction in cost is (ciµi − cjµj)(τ − t) > 0. This shows that the µc-rule is an optimal policy.

2. Serving Poisson arrivals nonpreemptively with a single server

Jobs of different classes arrive as independent Poisson arrivals. The jobs of class i go to queue i for

i = 1, 2, . . . , m. A job in queue i has a mean service time equal to 1
µi

and a waiting cost of ci per unit

of time. All the service times are independent. The problem is to find a nonpreemptive server allocation

policy that minimizes the long-term average waiting cost per unit of time, i.e. minR E
{
∑m

i=1 ci ·Ni(R)
}

,

where Ni(R) denotes the long-term average number of customers in queue i in the system, given policy R,

i.e. Ni(R) = limT→∞
1
T

∑T
t=1 N

t
i (R) with N t

i (R) be the number of customers in period t in queue i, if

policy R is used.

Theorem 8.12

The µc-rule is optimal for serving Poisson arrivals nonpreemptively with a single server.

Proof

The proof is based on a working-conserving property.

First one observes that it suffices to consider nonidling policies, i.e. policies under which the server is

never idle when there is a customer to serve. Indeed, one can always consider that an idling policy is in

fact serving a class m+ 1 of customers with cm+1 = 0. If the result is true for nonidling policies, the fact

that µm+1cm+1 = 0 implies that the class m+ 1 shouls be served last, i.e. that an optimal policy will be

nonidling.

Second, consider
∑m

i=1
1
µi
· Ni(R). The term 1

µi
· Ni(R) is the expected time the server has to work in

queue i in the steady state situation, given policy R. So,
∑m

i=1
1
µi
·Ni(R) is the expected service time for

the whole system in the steady state situation, i.e. the average workload of the system. Using an argument

as in Little’s formula, this workload is independent of the policy. So, we write W =
∑m

i=1
1
µi
·Ni(R), from

which we obtain N1(R) = µ1{W −
∑m

i=2
1
µi
·Ni(R)}.

Third, assume that c1µ1 ≥ c2µ2 ≥ · · · ≥ cmµm. Then, we have
∑m

i=1 ci ·Ni(R) = c1 ·N1(R) +
∑m

i=2 ci ·Ni(R)

= µ1c1W +
∑m

i=2 {ci − µ1c1

µi
} ·Ni(R)

= µ1c1W +
∑m

i=2
1
µi

(µici − µ1c1) ·Ni(R).

The coefficients of Ni(R), i = 2, 3, . . . , m in the above expression are nonnegative. Hence,
∑m

i=1 ci ·Ni(R)

is minimized by the policy that makes Ni(R) as large as possible (i = 2, 3, . . . , m). Such a policy must

necessarily serve a customer of queue 1 whenever it can.

Fourth, consider all the nonidling policies that serve queue 1 whenever it can. The set of times available

for those policies to serve the other queues is the same for all these policies. One can check that all these

policies have the same value of
∑m

i=2
1
µi
·Ni(R) (by Little’s formula again). Repeating the above argument

shows that among these policies, the ones that minimizes
∑m

i=1 ci · Ni(R) must serve queue 2 whenever

that can. Continuing in this way concludes the proof.

8.5.3 Optimality of threshold policies

Waiting for a fast server or using a slow one

Customers arrive at a service facility that has two servers. The arrival times form a Poisson process with

rate λ. The service times are assumed to be exponentially distributed with the respective rates µ1 (for

362 CHAPTER 8. SPECIAL MODELS

server 1) and µ2 (for server 2), where µ1 ≥ µ2. Service is nonpreemptive. When one of the servers becomes

available, the decision has to be taken whether or not to send a customer to this server.

This is a customer assignment model. The model is not discrete, but continuous in time. Let N t(R)

be the number of customers in the system at time t. As performance measure the total discounted costs

are used, i.e. minR E
{ ∫∞

0
e−αtN t(R)dt

}

, where α > 0, which is the continuous analogy of the total

discounted costs in the discrete case.

The trade-off is between waiting for the fast server to become available and committing a customer to

the slow queue. The next theorem shows that for this model an optimal threshold policy exists, namely

server 1 will always be used when it becomes available, and the slower server, server 2, is only used when

the total number of customers in the queue exceeds some threshold number N .

Theorem 8.13

There is some number N such that the optimal policy is to use the fast server all time and to send a

customer to the slow server (when this slow server is available) if and only if the number of customers in

the system at that time is at least N .

Proof

We give an outline of the proof. Decision times are services completion times and arrival times when at

least one server is idle. We will rely on the fact that there is a stationary deterministic optimal policy.

Consider a stationary deterministic policy. The policy cannot be optimal unless it uses the fast server

whenever possible. If the policy uses the fast server whenever possible, then it is specified by a subset A

of {1, 2, 3, . . .} with the interpretation that a customer is sent to the slower server at decision times when

that server is idle and when the queue length belongs to A. It then remains to show that the set A must

be of the form A = {N,N + 1, N + 2, . . .}. This is done by contradiction.

Assume that the set A contains a ”gap”. That is, assume that A = {. . . ,M,N, . . . , . . .} with N ≥M + 2.

Say that at t = 0 the fast server is busy, the slow server is idle and there are M + 1 customers waiting to

be allocated to a server. The policy will then wait until the queue length reaches either M or N before

sending a customer to the slow server. It is sufficient to show that the policy can be improved by sending

a customer at time t = 0 to the slow server.

To see this, denote by σ the service time of that customer sent at time 0 to the slower server. This service

time is known at time σ. Pretend that the policy corresponding to A was in fact used, by doing as if the

customer had not been sent at time 0 but had been sent only when the queue length hits either M or

N , at time τ , say, and by pretending that the slow server is busy during [τ, τ + σ]. This shows that the

modified policy behaves as the one corresponding A, except that one customer leaves the queue at time σ

instead of time τ + σ.

It remains only to show that for all M ≥ 1 there is some N > M such that N ∈ A. Again, this can be

shown by contradiction (the intuition is that if the que length is very large, than it is very likely that a

customer at the end of the queue would be served by the slow sever before the fast server could become

available).

8.5.4 Optimality of join-the-shortest-queue policies

Customer allocation to parallel queues

Customers arrive at arbitrary known times at a system consisting of m identical M/M/1 queues in parallel.

That is, the service times in all queues are independent and exponentially distributed with the same rate

8.5. STOCHASTIC SCHEDULING 363

µ. The problem is to choose, at each arrival time, which queue the arriving customer should join so as to

minimize

minR E

{

∫ ∞

0

e−αt
m
∑

i=1

N t
i (R) dt

}

, (8.48)

where α > 0 is the discount rate and N t
i (R) is the number of customers at time t in queue i, given

policy R. The information available when the decision is made is the evaluation of the vector of queue

length up to that time and the set of arrival times. It is assumed that the arrival times are such that

E{
∫∞
0 e−αt

∑m
i=1 N

t
i (R) dt} is finite for at least one policy R.

An SQP (shortest queue policy) is a policy that sends each arriving customer to the shortest queue.

In Theorem 8.14 it will be shown that an optimal SQP exists. It should be noted that an SQP is

clearly individually optimal for each customer for arbitrary decisions of the customers who arrived before

him. However, this does not imply that the policy is optimal socially, i.e. in the sense of minimizing

E
{∫∞

0
e−αt

∑m
i=1 N

t
i (R) dt

}

. Indeed, it is often the case that individuals have to accept sacrifices for the

benefit of society at large. Mathematically, each customer should take into account not only the personnel

cost of that customer (here, the discounted waiting time), but also the impact of the decision on the other

customers (here, on those who will arrive behind him).

For the proof of this result we use the forward induction method. This method can be described as

follows. Denote by Xt the state process corresponding to a policy and by Yt the process corresponding

to another policy. Suppose that there exists a partial ordering B on the set of possible states with the

following two properties:

(1) it should be such that it is possible to prove that Xt BYt implies that Xs BYs for all s ≥ t.
(2) the ordering should imply that the cost corresponding to Xt is not larger than the cost

corresponding to Yt.

Then it follows that the policy corresponding to Xt is an optimal policy.

Theorem 8.14

The customer allocation to parallel queues model has an optimal ”join-the-shortest-queue” policy.

Proof

For two random variables V and W taking values in {0, 1, 2, . . .}m we write V BW if there exists two

random variables V ∗ and W ∗ such that:

(a) V ∗ has the same distribution as V .

(b) W ∗ has the same distribution as W .

(c) P{Si(W
∗) ≥ Si(V

∗), 1 ≤ i ≤ m} = 1

where Si(V
∗) denotes the sum of the i largest components of V ∗ and similarly for Si(W

∗).

Denote byXt the vector of queue lengths at time t corresponding to the SQP , and by Yt the vector of queue

lengths at time t corresponding to an arbitrary policy R. Assume that we have shown Xt BYt, t ≥ 0.

Using the well known and easily verified fact that any {0, 1, 2, . . .}-valued random variable X satisfies

E{X} =
∑∞

k=0 P{X ≥ k}, we obtain

E
{∑m

i=1 N
t
i (R)

}

= E
{∑m

i=1 {Yt}i
}

=
∑∞

k=0 P{∑m
i=1 {Yt}i ≥ k

}

=
∑∞

k=0 P{∑m
i=1 {Y ∗

t }i ≥ k
}

=
∑∞

k=0 P{Sm(Y ∗
t) ≥ k

}

≥ ∑∞
k=0 P{Sm(X∗

t) ≥ k
}

=
∑∞

k=0 P{∑m
i=1 {X∗

t }i ≥ k
}

=
∑∞

k=0 P{∑m
i=1 {Xt}i ≥ k

}

= E
{∑m

i=1 {Xt}i
}

= E
{
∑m

i=1 N
t
i (SQP)

}

.

364 CHAPTER 8. SPECIAL MODELS

Hence, the cost (at any time t) in (8.48) corresponding to the SQP is not larger than the cost corresponding

to policy R. Thus the partial order B has the second desired property mentioned in the description of the

forward induction method.

To prove that Xt BYt t ≥ 0, let 0 = t0 ≤ t1 < t2 < t3 < · · · be the values of the arrival and potential

service completion times. Assume that Xt BYt for some t ≥ 0 (for t = 0 Xt BYt holds since X0 = Y0),

where tn−1 ≤ t < tn for some n ≥ 1. It then suffices to show that Xtn
BYtn

.

First consider the case when tn is an arrival time. Let X∗
t and Y ∗

t be such that the properties (a), (b) and

(c), mentioned in the begin of the proof, hold. Notice that Sm(X∗
tn

) = Sm(Xt)+1, whileSi(Y
∗
tn

) = Si(Yt)+1

for all i ≥ k if policy R sends the arriving customer to the kth largest queue. This shows Xtn
BYtn

for

this case.

Next consider the case when the event tn is a potential completion time. Define X∗
tn

and Y ∗
tn

by deciding

that if the potential service completion time occurs in the kth longest queue of X∗
t , then the same is true

for Y ∗
t . This modifies the joint distribution but not the marginals (here one uses the memoryless property

of the exponential distribution, implying that the probability that a completion occurs in the kth longest

queue is independent of k and the same is true for Y ∗
t), so that (a) and (b) will hold for V ∗ = X∗

tn
and

W ∗ = Y ∗
tn

.

To verify (c) one uses the fact that if the potential service completion occurs in the kth longest

queue of X∗
t , then Si(X

∗
tn

) =

{

Si(X
∗
t) if i < k

Si(X
∗
t)− 1 if i ≥ k

and Si(Y
∗

tn
) =

{

Si(Y
∗

t) if i < k

Si(Y
∗
t) − 1 if i ≥ k

Hence, we conclude that Si(Y
∗
tn

) ≥ Si(X
∗
tn

) for i = 1, 2, . . . , m.

8.5.5 Optimality of LEPT and SEPT policies

Many results can be shown by the principle of dynamic programming. In this section we present several

examples using the optimality equation of dynamic programming.

1. Guessing a diamond

A deck of 52 cards is to be turned over one at a time. Before each card is turned we are given the

opportunity to say whether or not it will be a diamond. We are allowed to say that a card is a diamond

only once. The objective is to maximize the probability of being correct.

Theorem 8.15

All the decisions rules that select at least one card before all the diamonds are turned over are optimal.

Proof

Denote by vn(m) the maximum probability when there are n cards left to be turned and when m cards of

those n cards are diamonds. Obviously, vm(m) = 1, 1 ≤ m ≤ 13 and vn(0) = 0, n ≥ 1. The first claim is

that

vn(m) = max
{m

n
,
m

n
vn−1(m− 1) +

n−m
n

vn−1(m)
}

, n ≥ 2, 1 ≤m ≤ min{n, 13}. (8.49)

To prove this, notice that the first term in the maximization is the probability of being correct if the

decision is to declare that the next card is a diamond. We will show that the second term gives the

maximum probability of being correct if the decision is not to declare that the next card is a diamond.

Indeed, in the latter case there are two possibilities. With probability m
n , the next card is a diamond, so

there are n − 1 cards left with m − 1 diamonds, with a maximum probability of being correct equal to

8.5. STOCHASTIC SCHEDULING 365

vn−1(m − 1). With probability n−m
n , the next card is not a diamond, and there n − 1 cards left with m

diamonds, with a maximum probability of being correct equal to vn−1(m).

The second claim is all the decisions rules that select at least one card before all the diamonds are turned

over are optimal. It is sufficient to show that vn(m) = m
n , n ≥ 2, 1 ≤ m ≤ min{n, 13}.

We apply induction on n (n = 2 is trivial). Assume that vn−1(m) = m
n−1 for all 1 ≤ m ≤ min{n − 1, 13}.

Then, m
n vn−1(m− 1) + n−m

n vn−1(m) = m(m−1)
n(n−1) + (n−m)m

n(n−1) = m
n .

2. Processing a set exponential jobs on parallel machines

A set of n jobs has to be processed, each by one of m identical processors. The jobs have independent

and exponentially distributed service times with rates µ1 ≤ µ2 ≤ · · · ≤ µn. The n jobs are ready to

be processed at tome 0, thus there are no arrivals. Two objectives will be considered: the expected

makespan MS := E
{

max{T1, T2, . . . , Tn}
}

and the expected flowtime FT := E
{
∑n

j=1 Tj

}

where Tj is

the completion time of job j, j = 1, 2, . . . , n.

A LEPT policy is a policy that, at time 0 and at each service completion allocates the jobs to available

servers in the order 1, 2, . . . , n, i.e. largest expected processing times first (LEPT). A SEPT policy is a

policy that, at time 0 and at each service completion allocates the jobs to available servers in the order

n, n− 1, . . . , 1, i.e. shortest expected processing times first (SEPT).

It can we shown that a LEPT policy is optimal for MS, the expected makespan, and that a SEPT policy

is optimal for FT , the expected flowtime. We will sketch these results, using the optimality equation of

dynamic programming, for the case of two processors (m = 2). Furthermore, we present an alternative

proof for the optimality of the LEFT policy.

Theorem 8.16

Consider a stochastic scheduling problem in which n jobs with exponential processing times are scheduled

on two identical machines. Then, the expected makespan is minimized by the LEPT policy.

Proof (outline)

Assume that the LEPT policy is optimal when there are at most n− 1 jobs to process (this assumption

is verified for n = 2). It will be shown to be optimal for n jobs. Let MS(i) be the minimum makespan for

the jobs {1, 2, . . . , n}\{i}, 1 ≤ i ≤ n. By the hypothesis, this makespan MS(i) is achieved by the LEPT

policy. We will conditioning on the first of the two jobs initially processed, say the jobs i and j. Notice

that the minimum of the exponential distribution for the jobs i and j is also an exponential distribution

with parameter µi + µj , and that the fractions µi

µi+µj
and

µj

µi+µj
are the probabilities that job i and job j,

respectively, is first completed job. At that completion time, the remaining service time for the other job

is also an exponential distribution with the same parameter. Hence, we obtain

MS = mini<j

{ 1

µi + µj
+

µi

µi + µj
MS(i) +

µj

µi + µj
MS(j)

}

, (8.50)

or equivalently,

0 = mini<j

{

1 + µi{MS(i) −MS} + µj{MS(j) −MS}
}

, (8.51)

and the minimum in (8.51) is achieved by the same pair (i, j) as in (8.50). To show that LEPT is also

optimal when there are n jobs to process, one has to show that the minimum in (8.51) is achieved by

(i, j) = (1, 2). Let Dij = µi{MS(i)−MS}−µj{MS(j)−MS}, i < j. Then, it can be shown by induction

on n that Dij ≤ 0 if i < j, implying the result.

366 CHAPTER 8. SPECIAL MODELS

Theorem 8.17

Consider a stochastic scheduling problem in which n jobs with exponential processing times are scheduled

on two identical machines. Then, the expected flowtime is minimized by the SEPT policy.

Proof (outline)

The proof has the same structure as the proof of Theorem 8.16. Assume that the SEPT policy is optimal

when there are at most n − 1 jobs to process (this assumption is verified for n = 2). It will be shown to

be optimal for n jobs. Let FT (i) be the minimum flowtime for the jobs {1, 2, . . . , n}\{i}, 1 ≤ i ≤ n. By

the hypothesis, this flowtime FT (i) is achieved by the SEPT policy. We will conditioning on the first of

the two jobs initially processed, say the jobs i and j. The completion time of the first completed job has

expectation 1
µi+µj

, which will be part of each completion time Tj , j = 1, 2, . . . , n. After that time the

remaining n− 1 jobs have exponential distributions with the original rates. Hence, we obtain

FT = mini<j

{ n

µi + µj
+

µi

µi + µj
FT (i) +

µj

µi + µj
FT (j)

}

, (8.52)

or equivalently,

0 = mini<j

{

n + µi{FT (i)− FT}+ µj{FT (j)− FT}
}

, (8.53)

and the minimum in (8.53) is achieved by the same pair (i, j) as in (8.52). To show that SEPT is also

optimal when there are n jobs to process, one has to show that the minimum in (8.51) is achieved by

(i, j) = (n, n− 1). This can be done in a similar way as in Theorem 8.16.

Alternative proof for the optimality of the LEFT policy

It will help our analysis to assume that at time 0 one of the two processors is occupied on a job 0 and will

remain accupied for a time X0, where X0 is assumed to have an arbitrary distribution and is independent

of the other jobs. For any permutation i1, i2, . . . , in of 1, 2, . . . , n, putting the jobs on the processors in

that order defines a schedule. Hence, is policy is a schedule (0, i1, i2, . . . , in). Let Xj be the stochastic

duration of job j, j = 0, 1, 2, . . . , n and let D be the amount of time that only one of the processors is

busy. That is, at time MS − D one of the processors completes work on a job and finds no other jobs

available. As the total amount of work processed is M + (M − D) =
∑n

j=0 Xj , Hence, minimizing the

expected difference of the times at which the procesosrs become idle also leads to minimizing the expected

makespan. The following lemma will be used to show that the LEPT policy is optimal.

Lemma 8.13

Consider the policies R = (0, 2, 1, 3, 4, . . . , n) and R∗ = (0, 1, 2, . . . , n). Then, ER∗
{D} ≤ ER{D}.

Proof

Let p(j) and p∗(j), j = 0, 1, . . . , n be the probabilities that the last job to be completed is job j, under

policies R and R∗, respectively. Clearly, p(0) = p∗(0) = P{X0 >
∑n

j=1 Xj}. We shall prove by induction

on n that

p∗(1) ≤ p(1) and p∗(j) ≥ p(j), j = 2, 3, . . . , n. (8.54)

This is obvious if n = 1 (p∗(1) = p(1) = P{X0 ≤ X1). Assume (8.54) is true whenever there are only n− 1

jobs (in addition to job 0) to be scheduled, and let q∗(j) and q(j) be the probabilities that job j is the last

of jobs 0, 1, 2, . . . , n− 1 under policies R∗ and R, respectively. Then, by the induction hypothesis

q∗(1) ≤ q(1) and q∗(j) ≥ q(j), j = 2, 3, . . . , n− 1. (8.55)

Now consider the n-job case. However, using the lack of memory of the exponential distribution and the

fact that job n is the last to begin processing under both policies, we have

8.5. STOCHASTIC SCHEDULING 367

p(j) = q(j) · µn

µn+µj
, p∗(j) = q∗(j) · µn

µn+µj
, j = 1, 2, . . . , n− 1.

Hence, from (8.55), we obtain p∗(1) ≤ p(1) and p∗(j) ≥ p(j), j = 2, 3, . . . , n− 1. Finally, using

p(n) = 1−∑n−1
j=0 p(j) = 1−∑n−1

j=0 q(j) ·
{

1− µj

µn+µj

}

=
∑n−1

j=0 q(j) · µj

µn+µj

and similarly p∗(n) =
∑n−1

j=0 q∗(j) · µj

µn+µj
, one can write

p∗(n) − p(n) =
∑n−1

j=0 {p∗(j) − p(j)} =
∑n−1

j=0 {q∗(j) − q(j)} ·
µj

µn+µj

= {q∗(1)− q(1)} · µ1

µn+µ1
+
∑n−1

j=2 {q∗(j) − q(j)} ·
µj

µn+µj

≥ µ1

µn+µ1

∑n−1
j=1 {q∗(j) − q(j)} = 0,

where the inequality follows because µj ≥ µ1 implies that
µj

µn+µj
≥ µ1

µn+µ1
.

Consider any policy π = (0, i1, i2, . . . , in) and assume that job j, j ≥ 1, is the last job to be completed.

Since at time M −D job j is the last job to be completed, the remaining processing time is exponential

distributed with rate µj , so we have Eπ{D | job j is the last job to be completed} = 1
µj
, j = 1, 2, . . . , n.

Furthermore, Eπ{D | job 0 is the last job to be completed} = Eπ{X0 −
∑n

j=1 Xj | X0 >
∑n

j=1 Xj}.
Therefore, one can write

Eπ{D} =
∑n

j=0 p(j) · Eπ{D | job j is the last job to be completed}
=

∑n
j=1

p(j)
µj

+ p(0) · Eπ{X0 −
∑n

j=1 Xj | X0 >
∑n

j=1 Xj}
Hence, we have

ER∗
{D} − ER{D} =

∑n
j=1

1
µj
{p∗(j) − p(j)} = 1

µ1
{p∗(1)− p(1)}+

∑n
j=2

1
µj
{p∗(j) − p(j)}

≤ 1
µ1
{p∗(1) − p(1)}+

∑n
j=2

1
µ1
{p∗(j) − p(j)} = 1

µ1

∑n
j=1 {p∗(j) − p(j)}

= 1
µ1
{
(

1− p∗(0)
)

−
(

1− p(0)
)

} = 0.

Note

From the proof of Lemma 8.13 it follows that the lemma is true for any order of the jobs in which

µ1 = min1≤j≤n µj.

Theorem 8.18

The LEFT policy is optimal.

Proof

Consider an arbitrary policy that does not initially process 1, say policy (0, i1, i2, . . . , ik, ik+1, 1, . . .). By

considering this at the time at which only one of the jobs 0, i1, i2, . . . , ik have not yet finished its processing,

we see, using Lemma 8.13, that the schedule (0, i1, i2, . . . , ik, 1, ik+1, . . .) has a smaller expected makespan.

Continuing in this way we see that (0, 1, i1, i2, . . . , ik, ik+1, . . .) is better. If i2 6= 2 then, repeating this

argument, we show that (0, 1, 2, i1, i2, . . . , ik, ik+1, . . .) is better. Continuing in this matter shows that the

policy (0, 1, 2, . . . , n) is optimal. Since we may use for job 0 a job with processing time X0 = 0, we have

shown that the LEPT policy is optimal.

Remark

Whereas Theorem 8.18 only proved that scheduling tasks in increasing order of their exponential service

rates is optimal among the n! policies that determine their ordering in advance, it is also optimal among

all policies. That is, it remains optimal even when the choice of tasks to begin processing is allowed to

depend on what has occurred up to that time. This is shown by induction as follows. It is immediate

when n = 1, so assume it to be true whenever there are n − 1 tasks to be processed. Now, whichever of

the n tasks is initially processed (alongside task 0), at the moment one of the two processors becomes free,

368 CHAPTER 8. SPECIAL MODELS

it follows by the induction hypothesis that the remaining tasks should be scheduled in increasing order of

their rates. Hence, the only policies we need consider are those n policies for which task i (i = 1, 2, . . . , n)

is scheduled first, and the remaining tasks are scheduled in increasing order of their rates. But Theorem

8.18 shows that the optimal policy of this type is the one that schedules the n tasks in increasing order of

their rates. This completes the induction.

Stochastic ordering

We say that the random variable X ≥st Y if P{X > a} ≥ P{Y > a} for all a.

Lemma 8.14

If X ≥st Y , then E{X} ≥ E{Y }.

Proof

Assume first that X and Y are nonnegative random variables. Then,

E{X} =
∫∞
0 P{X > x}dx ≥

∫∞
0 P{Y > x}dx = E{X}.

In general, we can write any random variable Z as the difference of two nonnegative random variables as

Z = Z+ − Z−, where Z+ :=
{ Z if Z ≥ 0

0 if Z < 0
and Z− :=

{ 0 if Z ≥ 0;

−Z if Z < 0.

We leave it as an exercise (see Exercise 8.6) to show that X ≥st Y implies X+ ≥st Y
+ and X− ≤st Y

−.

Hence, E{X} = E{X+} − E{X−} ≥ E{Y +} − E{Y −} = E{Y }.

Lemma 8.15

X ≥st Y ⇔ E{f(X)} ≥ E{f(Y)} for all nondecreasing functions f.

Proof

Suppose first that X ≥st Y and let f be an nondecreasing function. Then it is, by Lemma 8.14, sufficient

to show that f(X) ≥st f(Y). Letting f−1(a) = inf{x | f(x) > a}, we have

P{f(X) > a} = P{X > f−1(a)} ≥ P{Y > f−1(a)} = P{f(Y) > a}.

Now suppose that E{f(X)} ≥ E{f(X)} for all nondecreasing functions f . For any a, let fa be the

nondecreasing function fa(x) :=
{ 1 if x > a;

0 if x ≤ a.
Then, because E{fa(X)} = P{X > a} and E{fa(Y)} = P{Y > a}, we see from E{fa(X)} ≥ E{fa(Y)}
that P{X > a} ≥ P{Y > a}, i.e. X ≥st Y .

Remark

It can be shown that the policy given in Theorem 8.18 has the property that it stochastically minimizes

the makespan. That is, that for any a, the probability that the makespan exceeds a is minimized by this

policy. This is a stronger result than that in Theorem 8.18, which states only that the policy minimizes

the expected makespan. In addition, it can also be shown that the stated policy stochastically maximizes

the time until one of the processors becomes idle. That is, in the notation of this section, it maximizes the

probability that M −D exceeds a for each a.

8.5. STOCHASTIC SCHEDULING 369

8.5.6 Maximizing finite-time returns on two processors

Consider the same model as in section 8.5.1, but now there are two servers. It follows as in (8.47) that the

total expected return under any policy R can be expressed as

ER{total return} =

n
∑

i=1

µiri ER{length of time job i is worked on}. (8.56)

Thus, at first glance, it might seem that an optimal policy would be to sequence the tasks in decreasing

order of µiri, as in the case when there is only a single server. To see that this need not be the case, suppose

that µiri = 1, i = 1, 2, . . . , n. Then, the conjecture would imply that all orderings are optimal. Further,

assume that µ1 < µ2 < · · · < µn. The expected return by time T for any policy is equal to the expected

total processing time on all tasks by T . Because the LEPT policy uniquely stochastically maximizes the

time until one of the processors becomes idle (uniquely because the rate are strictly increasing, see the

proof of Theorem 8.13), it also uniquely stochastically maximizes the total processing time by T and is

thus uniquely optimal under our new objective function. However, this contradicts the conjecture that it

is optimal to process tasks in decreasing order of µiri, for, in the case µiri = 1 for all i, this conjecture

implies that all orderings are optimal. We can, however, prove that the policy that works on the jobs

in decreasing order of µiri is optimal in a special case. In order to prove this special case we need the

following lemma.

Lemma 8.16

Let T1, T2, . . . , Tn, S1, S2, . . . , Sn and c1, c2, . . . , cn be nonnegative numbers such that
∑j

i=1 Ti ≥
∑j

i=1 Si,

for j = 1, 2, . . . , n and c1 ≥ c2 · · · ≥ cn ≥ 0. Then,
∑n

i=1 ciTi ≥
∑n

i=1 ciSi.

Proof

Let Tn+1 = 0, T =
∑n+1

i=1 Ti, Sn+1 = T −∑n
i=1 Si ≥ 0. Also, let X and Y be random variables such that

P{X = i} = Ti

T , P{Y = i} = Si

T , i = 1, 2, . . . , n+ 1. Now the hypothesis of the lemma states that

P{X ≤ j} = 1
T

∑j
i=1 Ti ≥ 1

T

∑j
i=1 Si = P{X ≤ j} for j = 1, 2, . . . , n+ 1, i.e. X ≤st Y .

Let cn+1 = 0, then c is a nonincreasing function. Hence, it follows from Lemma 8.15 that E{cX} ≥ E{cY },
implying

∑n
i=1 ciTi ≥

∑n
i=1 ciSi.

Theorem 8.19

If µ1 ≤ µ2 ≤ · · · ≤ µn and µ1r1 ≥ µ2r2 ≥ · · · ≥ µnrn ≥ 0, then sequencing the tasks in the order 1, 2, . . . , n

maximizes the expected return by T for each T > 0.

Proof

Fix T and let Tj denote the expected total processing time of task j by time T . Now, because the

policy that sequences according to 1, 2, . . . , n stochastically maximizes the time until one of the processors

becomes idle, it follows that it also stochastically maximizes the total processing time by T . Because this

remains true even when the set of tasks is 1, 2, . . . , j, it follows that
∑j

i=1 Ti is, for each j maximized by

the plicy under consoderation. The result follows now from Lemma 8.16 with ci = µiri for all i.

8.5.7 Tandem queues

Each of n jobs needs to be processed on two machines, say A and B. After receiving service on machine

A, a job moves to machine B, and upon completion time of service at B it leaves the system. Let Aj and

370 CHAPTER 8. SPECIAL MODELS

Bj be the service time of job j on machine A and B respectively. The objective is to determine the order

in which to process jobs at machine A to minimize the expected time until all jobs have been processed on

both machines. For the deterministic case, Johnson ([144]) shows that the makespan is minimized if jobs

are arranged in the following transitive order on both machines:

job i precedes job j ⇔ min{Ai, Bj} ≤min{Aj , Bi}.

Here we assume that Aj and Bj are exponentially distributed with rates λj and µj respectively. Then,

E
{

min{Ai, Bj}
}

= 1
λi+µj

and E
{

min{Aj , Bi}
}

= 1
λj+µi

.

Taking expectations on both sides of Johnson’s rule one obtains the rule

job i precedes job j ⇔ λi − µi ≥ λj − µj .

We will show that Johnson’s rule is also optimal for exponential processing times.

First, to gain some insight, let us consider the case in n = 2. If job 1 is processed first on machine A, then

the expected completion time, denoted by E{C1,2} is given by

E{C1,2} =
1

λ1
+

1

µ1 + λ2
+

µ1

µ1 + λ2
·
{ 1

λ2
+

1

µ1

}

+
λ2

µ1 + λ2
·
{ 1

µ1
+

1

µ2

}

.

This follows because 1
λ1

is the expected time until job 1 is completed on machine A, at which time job 1

goes to machine B and job 2 goes to A. Then 1
µ1+λ2

is the expected time either job 2 is completed at A

(with probability λ2

µ1+λ2
) either job 1 is completed at B (with probability µ1

µ1+λ2
). The other two terms

are then obtained by conditioning on whichever occurs first.

Similarly, by reversing the order we have that E{C2,1} is given by

E{C2,1} =
1

λ2
+

1

µ2 + λ1
+

µ2

µ2 + λ1
·
{ 1

λ1
+

1

µ2

}

+
λ1

µ2 + λ1
·
{ 1

µ2
+

1

µ1

}

.

With some algebra, left to the reader (see Exercise 8.7) one can show that

E{C1,2} ≤ E{C2,1} ⇔ λ1 − µ1 ≥ λ2 − µ2,

i.e. Johnson’s rule is true. We now show that this remains true when there are more than two jobs. With

Aj the processing time for job j on machine A and C the time until all jobs have been processed on both

machines, then R := C −∑n
j=1 Aj is the remainder time, that is, it represents the amount of work that

remains at machine B when machine A has completed its processing.

Hence, E{R} = E{C} −∑n
j=1

1
λj

, so minimizing E{C} is equivalent to minimizing E{R}. We shall prove

that the policy that schedules jobs at machine A in decreasing order of λj − µj minimizes E{R}. In fact,

we shall use an interchange argument to show that this ordering stochastically minimizes R, and thus

minimizes E{R}.
Consider first the case n = 2, and suppose that, initially at time t = 0, machine B is occupied with the

amount work w. That is, B must spend w units working on prior work before it can start processing either

job 1 or job 2. Let R1,2(w) the remainder, i.e. R1,2(w) = C − A1 −B1 , when job 1 is scheduled first, and

similarly for R2,1(w). The following lemma shows that the suggested ordering stochastically minimizes

R(w) for any w.

Lemma 8.17

If λ1 − µ1 ≥ λ2 − µ2, then for any w, R1,2(w) ≤st R2,1(w).

Proof

We have to compare P{R1,2(w) > a} with P{R2,1(w) > a}. When w ≥ A1 + A2, then there probabilities

are equal, because in either cases R = w + B1 + B2 − A1 − A2, with Bj the processing time for job j

8.5. STOCHASTIC SCHEDULING 371

on machine B, j = 1, 2. Hence, we need only look at P{R1,2(w) > a | A1 + A2 > w}. Now, statingthat

A1 + A2 > w is equivalent to stating that at some time job 1 will be in machine B and job 2 in machine

A. Hence, using the lack of memory of the exponential distribution, and conditioning on which machine

finishes first, we see that

P{R1,2(w) > a | A1 +A2 > w} = µ1

µ1+λ2
e−µ2a + λ2

µ1+λ2
P{eµ1 + eµ2 > a}

= µ1

µ1+λ2
e−µ2a + λ2

µ1+λ2

{

e−µ1a +
∫ a

0
µ1e

−µ1xe−µ2(a−x dx
}

= µ1

µ1+λ2
e−µ2a + λ2

µ1+λ2

{

e−µ1a + µ1e
−µ2a

∫ a

0
e−(µ1−µ2)x dx

}

= µ1

µ1+λ2
e−µ2a + λ2

µ1+λ2

{

e−µ1a + µ1

µ1−µ2
e−µ2a · {1− e−(µ1−µ2)a}

}

= µ1

µ1+λ2
e−µ2a + λ2

µ1+λ2
· 1

µ1−µ2

{

µ1e
−µ2a + µ2e

−µ1a
}

=
µ1(µ1−µ2+λ2)e−µ2a−µ2λ2e−µ1a

(µ1+λ2)((µ1−µ2) .

Because the expression P{R2,1(w) > a | A1 + A2 > w} is similar, we have

P{R2,1(w) > a | A1 + A2 > w} = µ2(µ2−µ1+λ1)e
−µ1a−µ1λ1e−µ2a

(µ2+λ1)((µ2−µ1)
.

Hence, we see that

P{R2,1(w) > a | A1 + A2 > w} − P{R1,2(w) > a | A1 +A2 > w}

= µ1µ2

(µ1+λ2)(µ2+λ1)
· e−µ1a−e−µ2a

µ2−µ2
· {(λ1 − µ1) − (λ2 − µ2)} ≥ 0,

which completes the proof of this lemma.

Theorem 8.20

For any initial workload of machine B, R is stochastically minimized, and thus E{C} is minizized, by

scheduling jobs to be processed on A in decreasing order of λj − µj .

Proof

Consider first any of the n! policies in which the ordering is fixed at time 0. Furthermore, suppose that

λ1 − µ1 = maxj {λj − µj} and that the ordering calls for job j on A immediately before job 1. Then at

the moment at which machine A is to begin on job j, no matter what the remaining work is at machine B

at that moment, it follows from Lemma 8.17 that, if we interchange the jobs 1 and j, then the remaining

work at machine B when both 1 and j have been processed at A will be stochastically reduced. But it is

obvious that, for a given set of jobs to be processed in both machines, the remainder time is a stochastically

increasing function of the initial workload of machine B.

Hence, the remainder time is stochastically reduced by the interchange. Repeated use of this interchange

argument shows that the suggested policy stochastically minimizes the remainder time among all the n!

policies whose ordering is fixed at time 0. Hence, it minimizes the expexted completion time among all

such policies.

To show that it is optimal amomg all policies follows by induction (it is immediate for n = 1). Assume

it whenever there are n − 1 jobs to be processed on the two machines no matter the initial workload of

machine B. Now no matter which job is initially processed at machine A, at the moment its processing at

A is completed, it follows by the induction hypothesis that the remaining jobs are processed in decreasing

order of the difference of their rates at machines A and B. Hence, we need only consider fixed-order

policies, and thus this policy is optimal.

372 CHAPTER 8. SPECIAL MODELS

8.6 Multi-armed bandit problems

8.6.1 Introduction

The multi-armed bandit problem was introduced in Section 1.3.9. The state space S is the Cartesian

product S = S1 × S2 × · · · × Sn. Each state i = (i1, i2, . . . , in) has the same action set A = {1, 2, . . . , n},
where action k means that project k is chosen, k = 1, 2, . . . , n. So, at each stage one can be working on

exactly one of the projects. When project k is chosen in state i - the chosen project is called the active

project - the immediate reward and the transition probabilities only depend on the active project, whereas

the states of the remaining projects are frozen. Let rik
and pikj , j ∈ Sk, denote these quantities when

action k is chosen. As a utility function the total discounted reward is chosen.

Example 8.2

Consider three sequences of nonnegative numbers, denoted by {x1
n, n = 1, 2, 3, . . .}, {x2

n, n = 1, 2, 3, . . .}
and {x3

n, n = 1, 2, 3, . . .}, respectively. At each time one selects one of the sequences and xk
n is the reward

obtained the n-th time that sequence k is chosen. Denote by Rt the reward at time t. The problem is

to find the optimal order in which the sequences are chosen so as to maximize R =
∑∞

t=1 α
t−1Rt, where

α ∈ (0, 1) is a discount factor such that
∑∞

n=1 α
t−1xk

n <∞ for k = 1, 2, 3.

This is a deterministic version of the multi-armed bandit problem with state space S = S1 × S2 × S3,

where Si := {0, 1, 2, . . .}. The state (i1, i2, i3) means that sequence k was chosen ik times, k = 1, 2, 3;

ri(k) := xk
i+1 and pij(k) := 1 for j = i+ 1 (the other transition probabilities are 0).

Consider sequence k and assume that it has been selected nk − 1 times, so that the next reward from this

sequence is xk
nk

. Define Gk(nk) by

Gk(nk) := sup
τ≥nk

∑τ
t=nk

αt−1xk
t

∑τ
t=nk

αt−1
, k = 1, 2, 3. (8.57)

The interpretation is that Gk(nk) is the maximum discounted reward per unit of discounted time that can

be obtained from the remainder of sequence k. The numbers Gk(nk) are called the Gittins indices. We

shall show that the policy that selects in state (i1 = n1− 1, i2 = n2− 1, i3 = n3− 1) the sequence with the

largest of the indices G1(n1), G2(n2), G3(n3) is optimal. Such policy is called an index policy. Notice that

the calculation of the indices is done sequence by sequence. This result is a decomposition of the original

problem.

8.6.2 A single project with a terminal reward

Consider the one-armed bandit problem with stopping option, i.e. in each state there are two options:

action 1 is the stopping option and then one earns a terminal reward M and by action 2 the process

continue with in state i an immediate reward ri and transition probabilities pij . Let vα(M) be the value

vector of this optimal stopping problem. Then, vα(M) is the unique solution of the optimality equation

(cf. section 4.12.2)

vα
i (M) = max{M, ri + α

∑

j

pijv
α
j (M)}, i ∈ S (8.58)

and of the linear program

min

∑

j

vj

∣

∣

∣

∣

∣

∑

j {δij − αpij}vj ≥ ri, i ∈ S
vi ≥ M, i ∈ S

. (8.59)

Furthermore, we have shown in section 4.12.2 the following result.

8.6. MULTI-ARMED BANDIT PROBLEMS 373

Theorem 8.21

Let (x, y) be an extreme optimal solution of the dual program of (8.59), i.e.

max

∑

j

rixi +M ·
∑

j

yi

∣

∣

∣

∣

∣

∑

i {δij − αpij}xi + yj = 1, i ∈ S
xi, yi ≥ 0, i ∈ S

. (8.60)

Then, the policy f∞ such that f(i) :=
{ 2 if xi > 0

1 if xi = 0
is an optimal policy.

Lemma 8.18

vα
i (M)−M is a nonnegative continuous nonincreasing function in M , for all i ∈ S.

Proof

The nonnegativity of vα
i (M)−M is directly from (8.58). By the method of value iteration vα(M) can be

approximated, arbitrary close, by

v1
i (M) := M, i ∈ S; vn+1

i (M) := max{M, ri + α
∑

j pijv
n
j (M)}, i ∈ S, n = 1, 2,

Hence, vα(M)−M · e can be approximated, arbitrary close, by

w1
i (M) := 0, i ∈ S; wn+1

i (M) := max{0, ri + α
∑

j pijw
n
j (M)− (1− α)M}, i ∈ S, n = 1, 2,

By induction on n it is easy to see that wn
i (M) is continuous and nonincreasing in M . Hence, for all i ∈ S,

the limit vα
i (M)−M is also a continuous and nonincreasing function in M .

Define the Gittins indices Gi, i ∈ S, by

Gi := min{M | vα
i (M) = M}. (8.61)

Hence, vα
i (Gi) = Gi and, by Lemma 8.18, vα

i (M) = M for all M ≥ Gi.

Theorem 8.22

For any M , the policy f∞ ∈ C(D) which chooses the stopping action in state i if and only if M ≥ Gi is

optimal.

Proof

Take anyM and let (x, y) be an extreme optimal solution of the dual linear program (8.60). From Theorem

8.21 we see that if yi = 0 (and consequently xi > 0), then the action ’continue’ is optimal; when yi > 0

(and consequently xi = 0), then it is optimal to stop in state i.

First, letM < Gi, i.e. vα
i (M) > M . Then, by the complementary slackness property of linear programming

yi = 0 and it is optimal to continue in state i.

Next, let M ≥ Gi, implying that vα
i (M) = M . Suppose that the stopping action is not optimal. Then,

vα
i (M) = ri +α

∑

j pijv
α
j (M) > M , which yields a contradiction. Therefore, it is optimal to stop in state

i.

For M = Gi both actions (stop or continue) are optimal. Hence, an interpretion of the Gittins index Gi

is that it is the terminal reward under which in state i both actions are optimal. Therefore, this number

is also called the indifference value.

374 CHAPTER 8. SPECIAL MODELS

8.6.3 Multi-armed bandits

Consider the multi-armed bandit model with an additional option (action 0) in each state. Action 0 is a

stopping option and then one earns a terminal reward M . For each state i = (i1, i2, . . . , in) we denote i-th

component of the value vector by vα
i (M).

Lemma 8.19

vα
i (M) is a nondecreasing, convex function in M , for all i ∈ S.

Proof

Choose a fixed state i. It is obvious that vα
i (M) is a nondecreasing function in M . Consider an arbitrary

policy f∞ ∈ C(D), and let τ (f) be the corresponding stopping time, i.e. the stochastic number of steps

before stopping. Then, one can write

vα
i (f∞ ,M) = Ei,f

{

discounted reward until time τ (f) +M · ατ(f)
}

= Ei,f

{

discounted reward until time τ (f)
}

+M · Ei,f

{

ατ(f)
}

.

Hence,

vα
i (M) = maxf∞∈C(D)

{

Ei,f

{

discounted reward until time τ (f)
}

+M · Ei,f

{

ατ(f)
}

}

(8.62)

Since vα
i (M) is the maximum of a finite number of terms, each of which is linear in M , vα

i (M) is a convex

function in M .

Technical remark:

Since vα
i (M) is the maximum of a finite number of linear functions, ∂

∂M
vα

i (M) exists at almost all values

of M .

Lemma 8.20

Let i be a fixed initial state and let τ (M) be the stopping time under the optimal policy f∞(M), where M

is the terminal reward. Then ∂
∂M

vα
i (M) = Ei,f(M){alphaτ(M)}.

Proof

Choose any ε > 0. If we employ f∞(M) for a problem having terminal reward M + ε, we receive

Ei,f(M)

{

discounted reward until time τ (M)
}

+ (M + ε) · Ei,f(M)

{

ατ(M)
}

.

From (8.62) it follows that

vα
i (M + ε) ≥ Ei,f(M)

{

discounted reward until time τ (M)
}

+ (M + ε) · Ei,f(M)

{

ατ(M)
}

= vα
i (M) + ε · Ei,f(M)

{

ατ(M)
}

.

Similarly, we can derive that vα
i (M − ε) ≥ vα

i (M)− ε · Ei,f(M)

{

ατ(M)
}

.

Hence,
vα

i (M+ε)−vα
i (M)

ε ≥ Ei,f(M)

{

ατ(M)
}

≥ vα
i (M)−vα

i (M−ε)
ε , implying ∂

∂M vα
i (M) = Ei,f(M){aτ(M)}.

Let vα
i (M) denote the optimal value and let Gi be the indifference value when only a single project is avail-

able and its state is i. Now, consider the multiproject case and suppose the state is i = (i1 , i2, . . . , ij, . . . , in)

and let us speculate about whether or not we would ever again operate project j.

If Gij
> M then, because it would not be optimal to stop even if project j were the only project

available, it is clear that we would never stop before operating project j. On the other hand, what if

Gij
≤ M? Would we ever want to operate project j under this circumstance? Whereas it is not obvious

that we would never operate project j when Gij
≤ M , it does seem somewhat intuitive, so let us accept

8.6. MULTI-ARMED BANDIT PROBLEMS 375

this as a working hypothesis and see where it leads. That is, let us suppose that once a project reaches a

state under which it would be optimal to stop if it were the sole project available, then the optimal policy

never again operates that project. From this it follows that the optimal policy will stop in state i when

Gij
≤M for all j = 1, 2, . . . , n.

Our speculations lead to the hypothesis that:

(1) project j would never be operated if state i is such that Gij
≤M ;

(2) stop should occur if and only if Gij
≤M for all j = 1, 2, . . . , n.

For a given initial state i = (i1, i2, . . . , ij, . . . , in), let τj(M) denote the optimal time before we stop

when only project j is available, j = 1, 2, . . . , n. That is, τj(M) is the time project j has to be operated

upon, when its initial state is ij , until it reaches a state for which M is at least the indifference value.

Also, let τ (M) denote the optimal stopping time for the multiproject case. Because the changes of state

of individual projects are in no way affected by what occurs in other projects, it follows that, under our

working hypothesis, τ (M) =
∑n

j=1 τj(M). In addition, because τj(M), j = 1, 2, . . . , n are independent

random variables, we have E{ατ(M)} = E{α
Pn

j=1 τj(M)} =
∏n

j=1 E{ατj(M)}.
Hence, we obtain by Lemma 8.20

∂

∂M
vα

i (M) = Ei,f(M){ατ(M)} =

n
∏

j=1

Ei,f(M){ατj(M)} =

n
∏

j=1

∂

∂M
vα

ij
(M) (8.63)

Let (1 − α)C be an upper bound of all one-period rewards. Then, C is an upper bound of the total dis-

counted reward (without the terminal reward). Hence, if M ≥ C, then the stopping action is optimal in all

states, i.e. vα
i (M) = M for M ≥ C. Integrating (8.63) yields

∫ C

M
∂

∂mv
α
i (m)dm =

∫ C

M

∏n
j=1

∂
∂mv

α
ij

(m)dm,

implying

vα
i (M) = C −

∫ C

M

n
∏

j=1

∂

∂m
vα

ij
(m)dm. (8.64)

We now prove that (8.64) is indeed valid by showing that C−
∫ C

M

∏n
j=1

∂
∂m
vα

ij
(m)dm satisfies the optimality

equation. Furthermore, the proof gives also the structure of the optimal policy.

Theorem 8.23

For any state i = (11, i2, . . . , in) and any terminal reward M , we have

(1) vα
i (M) = C −

∫ C

M

∏n
j=1

∂
∂mv

α
ij

(m)dm, M ≤ C.
(2) The optimal policy takes the stopping action if M ≥Mα

ij
for all j = 1, 2, . . . , n and continues

with project k if Mα
ik

= maxj M
α
ij
> M .

Proof

Let xi(M) = C−
∫ C

M

∏n
j=1

∂
∂mv

α
ij

(m)dm. We shall show that xi(M) satisfies the optimality equation. Let

yi(k,M) =
∏

j 6=k
∂

∂M vα
ij

(M). Because, from Lemma 8.19, vα
ij

(m) is a nondecreasing and convex function

of m, it follows that ∂
∂mv

α
ij

(m) is a nonnegative (from nondecreasing) and nondecreasing (from convexity)

function of m. Hence, yi(k,M) is also a nonnegative and nondecreasing function of M . Since xi(M) can

be written as xi(M) = C −
∫ C

M yi(k,m) ∂
∂mv

α
ik

(m)dm, we see, by integration by parts, that

xi(M) = C − yi(k,m)vα
ik

(m)
∣

∣
m=C
m=M +

∫ C

M
vα

ik
(m)dyi(k,m).

Since vα
ij

(M) = M for M ≥ C, we have ∂
∂M vα

ij
(M) = 1 for M ≥ C. Therefore, yi(k,M) = 1 for M ≥ C.

Hence, using that yi(k, C) = 1 and vα
ik

(C) = C,

xi(M) = yi(k,M)vα
ik

(M) +

∫ C

M

vα
ik

(m)dyi(k,m). (8.65)

376 CHAPTER 8. SPECIAL MODELS

Similarly, we have

rik
+α

∑

j∈Sk
pikjx(i1,i2,...,is−1,j,is+1,...,in)(M) = rik

+α
∑

j∈Sk
pikj

{

yi(k,M)vα
j (M)+

∫ C

M
vα

j (m)dyi(k,m)
}

.

Hence,

xi(M)−
{

rik
+ α

∑

j∈Sk
pikjx(i1,i2,...,is−1,j,is+1,...,in)(M)

}

=

yi(k,M)vα
ik

(M) +
∫ C

M
vα

ik
(m)dyi(k,m)−

{

rik
+α

∑

j∈Sk
pikj{yi(k,M)vα

j (M) +
∫ C

M
vα

j (m)dyi(k,m)}
}

.

We can also write rik
= rik

{yi(k,M) + yi(k, C)− yi(k,M)} = rik
yi(k,M) + rik

∫ C

M
dyi(k,m).

Therefore,

xi(M) −
{

rik
+ α

∑

j∈Sk
pikjx(i1,i2,...,is−1,j,is+1,...,in)(M)

}

=

yi(k,M)
{

vα
ik

(M)− rik
− α

∑

j∈Sk

pikjv
α
j (M)

}

+

∫ C

M

{

vα
ik

(m) − rik
− α

∑

j∈Sk

pikjv
α
j (m)

}

dyi(k,m). (8.66)

Since

vα
ik

(M) ≥ rik
+ α

∑

j∈Sk

pikjv
α
j (M) for all actions k, (8.67)

we obtain

xi(M) ≥ rik
+ α

∑

j∈Sk

pikjx(i1,i2,...,is−1,j,is+1,...,in)(M) for all actions k = 1, 2, . . . , n. (8.68)

Let us see under what conditions equality occurs in (8.68). First, note that (8.67) holds with equality if

continuation is optimal when only project k is available, i.e. when M ≤ Gik
. In that case we have from

(8.66)

xi(M)−
{

rik
+ α

∑

j∈Sk
pikjx(i1,i2,...,is−1,j,is+1,...,in)(M)

}

=

∫ C

Gik

{

vα
ik

(m) − rik
− α

∑

j∈Sk

pikjv
α
j (m)

}

dyi(k,m) if M ≤ Gik
. (8.69)

Since vα
ij

(m) = m for m ≥ Gij
, we have yi(k,m) =

∏

j 6=k
∂

∂mv
α
ij

(m) = 1 for m ≥ maxj 6=k Gij
. So,

dyi(k,m) = 0 for m ≥ maxj 6=k Gij
. Hence, using this we see from (8.69) that for M ≤ Gik

= maxj Gij
,

we obtain

xi(M) = rik
+ α

∑

j∈Sk

pikjx(i1,i2,...,is−1,j,is+1,...,in)(M). (8.70)

For M ≥ maxj Gij
, we have vα

ij
(m) = m for j = 1, 2, . . . , n, and thus yi(k,m) = 1, implying that

dyi(k,m) = 0 for m ≥M . Hence, from (8.65) we see that

xi(M) = vα
ik

(M) = M if M ≥ maxj Gij
. (8.71)

In addition, also using (8.65) and the monotonicity of vk(m) in m, we have for all M

xi(M) ≥ yi(k,M)vα
ik

(M) + vα
ik

(M){yi(k, C)− yi(k,M)} = vα
ik

(M) ≥M. (8.72)

Hence, we have from (8.68) and (8.72)
{

xi(M) ≥ rik
+ α

∑

j∈Sk
pikjx(i1,i2,...,is−1,j,is+1,...,in)(M), i ∈ S, k = 1, 2, . . . , n

xi(M) ≥ M, i ∈ S
Furthermore, we have from (8.70) and (8.71)

{

xi(M) = rik
+ α

∑

j∈Sk
pikjx(i1,i2,...,is−1,j,is+1,...,in)(M), i ∈ S if M ≤ maxj Gij

= Gik

xi(M) = M, i ∈ S if M ≥ maxj Gij
= Gik

8.6. MULTI-ARMED BANDIT PROBLEMS 377

Hence, x(M) satisfies the optimality equation

xi(M) = max
{

M,max1≤k≤n{rik
+ α

∑

j∈Sk

pikjx(i1,i2,...,is−1,j,is+1,...,in)(M)}
}

, i ∈ S, (8.73)

and the optimal policy is as stated.

Remark

The preceding theorem shows that the optimal policy in the multi-project case can be determined by an

analysis of the n single-project problems, with the optimal decision in state i = (i1, i2, . . . , in) being to

operate on that project k having the largest indifference value Gik
if this value is greater than M and to

stop otherwise.

Alternative interpretation of the Gittins index

Consider the one-armed bandit problem having initial state i. Because when M = Gi the optimal policy

is indifferent between stopping and continuing, so that for any stopping random stopping time τ , Gi ≥
E{discounted reward before τ}+Gi · E{ατ}, with equality for the optimal policy. Hence,

(1− α)Gi = maxτ≥1
E{discounted reward before τ}

{1−E{ατ}}/(1−α)

= maxτ≥1
E{discounted reward before τ}

E{1+α+···+ατ−1}

= maxτ≥1
E{discounted reward before τ}

E{discounted time before τ} ,

where the expectations are conditional on the initial state i. Hence, another way of describing the optimal

policy in the multi-armed bandit problem is as follows. For each individual project look for the stopping

time τ whose ratio of expected discounted reward and expected discounted time prior to τ is maximal.

Then work on the project with the largest ratio. In the case there also is the additional option of stopping,

one should stop if all ratios are smaller than (1− α)M .

8.6.4 Methods for the computation of the Gittins indices

1. The parametric linear programming method

We have already seen that for a single project with terminal reward M the solution can be obtained

from a linear programming problem, namely program (8.60). For M big enough, e.g. for M ≥ C, where

C := (1 − α)−1 ·maxi ri, we know that vα
i (M) = M for all states i. Furthermore, we have seen that the

Gittins index Gi = min{M | vα
i (M) = M} (cf. (8.61)).

One can solve program (8.60) as a parametric linear programming problem with parameter M . Starting

with M = C one can decrease M and find for each state i the largest M for which it is optimal to keep

working on the project, which is in fact min{M | vα
i (M) = M} = Gi, in the order of decreasing M -values.

One can start with the simplex tableau in which all y-variables are in the basis and in which the x-variables

are the nonbasic variables. This tableau is optimal for M ≥ C. Decrease M until we meet a basis change,

say the basic variable yi will be exchanged with the nonbasic variable xi. Then, we know the M -value

which is equal to Gi. In this way we continue and repeat the procedure N times, where N is the number

of states in the current project. The used pivoting row and column do not influence any further pivoting

step, so we can delete these row and column from the simplex tableau.

378 CHAPTER 8. SPECIAL MODELS

Example 8.3

Consider a project with the following data.

S = {1, 2, 3}; α = 1
2
; r1 = 8, r2 = 6, r3 = 4.

p11 = 0, p12 = 1, p13 = 0; p21 = 0, p22 = 0, p23 = 1; p31 = 1, p32 = 0, p33 = 0.

The linear program becomes (the objective function is splitted up into two rows, one for the x-part and

one for parametric y-part; the y-variables have to be expressed in the nonbasic x-variables, i.e. we obtain

for the last row y1 + y2 + y3 = 3− 1
2x1 − 1

2x2 − 1
2x3).

max{8x1 + 6x2 + 4x3 +My1 +My2 +My3}
subject to

x1 − 1
2x3 + y1 = 1; x1, y1 ≥ 0;

− 1
2
x1 + x2 + y2 = 1; x2, y2 ≥ 0;

− 1
2x2 + x3 + y3 = 1; x3, y3 ≥ 0.

The first tableau becomes:

x1 x2 x3

y1 1 ∗1 0 −1
2

y2 1 −1
2 1 0

y3 1 0 −1
2

1

x0 0 -8 -6 -4

M 3 1
2

1
2

1
2

The objective function is 3M + (8− 1
2M)x1 + (6− 1

2M)x2 + (4− 1
2M)x3.

Hence, this tableau is optimal for x1 = x2 = x3 = 0 if 8− 1
2M ≤ 0,

6− 1
2M ≤ 0 and 4− 1

2M ≤ 0, i.e. if M ≥ 16.

For M = 16 there is indifference in state 1: G1 = 16.

Then, we exchange x1 and y1 and obtain a new simplex tableau

in which the row of y1 and the column of x1 can be deleted.

The second tableau is:

x2 x3

y2
3
2

∗1 −1
4

y3 1 −1
2 1

x0 8 -6 -8

M 5
2

1
2

3
4

This tableau is optimal for x2 = x3 = 0 if 6− 1
2
M ≤ 0

and 8− 3
4M ≤ 0, i.e. if M ≥ 12.

For M = 12 there is indifference in state 2: G2 = 12.

Then, we exchange x2 and y2 and obtain a new simplex tableau

in which the row of y2 and the column of x2 can be deleted.

The final tableau is:

x3

y3
7
4

7
8

x0 17 −19
2

M 7
4

7
8

This tableau is optimal for x3 = 0 if 19
2 − 7

8M ≤ 0,

i.e. if M ≥ 76
7

. Hence, G3 = 76
7

.

Computational complexity

We can easily determine the computational complexity. Each update of an element in a simplex tableau

needs at most two arithmetic operations (multiplication and divisions as well as additions and subtractions):

for instance, the value 17 in the last tableau of Example 8.3 is computed by 8 − (−6) · 3
2 = 17. Hence,

the total number of arithmetic operations in this method is at most 2 ·∑N
k=1 k

2 = 1
3N(N + 1)(2N + 1) =

2
3
N3 +O(N2) = O(N3).

2. The restart-in-k method

We will derive another interpretation for the Gittins index Gk in a fixed state k. The optimality equation

for a single project with terminal reward M is, cf. (8.58),

vα
i (M) = max

{

M, ri + α
∑

j

pijv
α
j (M)

}

, i ∈ S. (8.74)

8.6. MULTI-ARMED BANDIT PROBLEMS 379

We have seen that Gk is the indifference value, i.e. for M = Gk we have

vα
k (Gk) = Gk = rk + α

∑

j

pkjv
α
j (Gk). (8.75)

Using (8.74) and (8.75) yields

vα
i (Gk) = max

{

rk + α
∑

j

pkjv
α
j (Gk) = Gk, ri + α

∑

j

pijv
α
j (Mk)

}

, i ∈ S. (8.76)

With the abbreviation vk
i := vα

i (Gk), i ∈ S, we get the following expression

vk
i = max

{

ri + α
∑

j

pijv
k
j , rk + α

∑

j

pkjv
k
j

}

, i ∈ S. (8.77)

Hence, Gk is the k-th component of the value vector of the MDP where there are in each state two actions.

This problem can be interpreted as follows: in each state there are two options, either to continue working

on the project in the given state i, or to restart working in state k, where the total expected discounted

reward must be maximized. This gives the problem the name restart-in-k problem. By solving this MDP

we find Gk = vk
k . Notice that we now have a characterization of the Gittins index without using a terminal

reward.

We define Ck for the restart-in-k problem as the set of states i for which it is optimal to continue in

that state. If the MDP is solved we find Gk and vα
i (Gk), i ∈ S. The next theorem shows that Ck contains

exactly those states j for which Gj ≥ Gk. When we are in state (i1, i2, . . . , in) and decide to work on

project k because Gik
≥ Gil

for all 1 ≤ l ≤ n, and when we also move in project k from state ik to a state

j ∈ Ck, then we know that the largest Gittins index is still the index of the state j of project k, without

knowing the value of Gj. So, the theorem tell us that we only have to calculate a new index when we enter

a state which is not in Ck.

Theorem 8.24

Ck = {j | Gj ≥ Gk} with Ck := {j | for the restart-in-k problem it is optimal to continue in state j}.

Proof

j /∈ Ck if and only if it is not optimal to continue in state j for the restart-in k problem or, equivalently, for

the optimal stopping problem with terminal reward M = Gk. Since Gj is the indifference value in state j, it

is not optimal to continue in state j if and only if M > Gj. Therefore, Gk > Gj. So, j /∈ Ck ⇔ Gk > Gj,

i.e. Ck = {j | Gj ≥ Gk}.

We can solve the restart-in-k problem by any method for discounted MDPs. If we use the linear program-

ming method the program becomes

min

∑

j

vj

∣

∣

∣

∣

∣

∣

∑

j {δij − αpij}vj ≥ ri, i ∈ S
∑

j {δij − αpkj}vj ≥ rk, i ∈ S, i 6= k

. (8.78)

Example 8.3 (continued)

The linear program for G1 is:

min

{

v1 + v2 + v3

∣

∣

∣

∣

∣

v1 ≥ 8 + 1
2
v2; v2 ≥ 6 + 1

2
v3; v3 ≥ 4 + 1

2
v1

v2 ≥ 8 + 1
2
v2; v3 ≥ 8 + 1

2
v2

}

.

The optimal solution is: v1 = v2 = v3 = 16 → G1 = v1 = 16 and C1 = {1}.

380 CHAPTER 8. SPECIAL MODELS

The linear program for G2 is:

min

{

v1 + v2 + v3

∣

∣

∣

∣

∣

v1 ≥ 8 + 1
2v2; v2 ≥ 6 + 1

2v3; v3 ≥ 4 + 1
2v1

v1 ≥ 6 + 1
2v3; v3 ≥ 6 + 1

2v3

}

.

The optimal solution is: v1 = 14; v2 = v3 = 12 → G2 = v2 = 12 and C2 = {1, 2}.
The linear program for G3 is:

min

{

v1 + v2 + v3

∣

∣

∣

∣

∣

v1 ≥ 8 + 1
2v2; v2 ≥ 6 + 1

2v3; v3 ≥ 4 + 1
2v1

v1 ≥ 4 + 1
2v1; v2 ≥ 4 + 1

2v1

}

.

The optimal solution is: v1 = 96
7 ; v2 = 80

7 ; v3 = 76
7 ; → G3 = v3 = 76

7 and C3 = {1, 2, 3}.

Computation on-line

It is interesting to ask what indices must be computed and when this must be done. In the first period, it

is necessary to compute the n initial indices, one for each project. Subsequently, it suffices to compute at

most one index in each period. In particular, one computes the index of a project k in a period only when

its state ik leaves the optimal continuation set Cik
. Thus, by Theorem 8.24, if the indices are computed

on-line only as needed, the indices computed for each project will decrease strictly over time.

An alternative linear program

Since the v-variables are unrestricted in sign, one may substitute vj by yj + z, where z is unrestricted and

yj ≥ 0 for all j. Then, program (8.24) can be written as

min

∑

j

yj +N · z

∣

∣

∣

∣

∣

∣

∣

∣

(1− α)z +
∑

j {δij − αpij}yj ≥ ri, i ∈ S, i 6= k

(1− α)z +
∑

j {δij − αpkj}yj ≥ rk, i ∈ S
z unrestricted, yj ≥ 0, j ∈ S

. (8.79)

Consider the second part of the constraints: (1 − α)z + yi ≥ rk + α
∑

j pkjvj ≥ rk, i ∈ S, which is

equivalent with (1− α)z +mini yi ≥ rk + α
∑

j pkjvj ≥ rk. If the yj becomes ε smaller for each j and z

becomes ε bigger, then the objective function keeps its value and the constraints remain satisfied. So we

can take mini yi = 0 and the linear program becomes

min

∑

j

yj +N · z

∣

∣

∣

∣

∣

∣

∣

∣

(1− α)z +
∑

j {δij − αpij}yj ≥ ri, i ∈ S, i 6= k

(1− α)z − α∑j pkjyj ≥ rk, i ∈ S
z unrestricted, yj ≥ 0, j ∈ S

. (8.80)

For the optimal solution v∗ of (8.24) we have v∗i ≥ rk +α
∑

j pkjv
∗
j = v∗k, i ∈ S. Hence, y∗k = mini y

∗
i = 0,

and consequently, Gk = v∗k = mini y
∗
i + z∗ = z∗, where (y∗, z∗) is the optimal solution of program (8.79).

Example 8.3 (continued)

The linear program for G1 is:

min{y1 + y2 + y3 + 3z | 1
2z + y2 ≥ 6 + 1

2y3;
1
2z + y3 ≥ 4 + 1

2y1;
1
2z ≥ 8 + 1

2y2; y1, y2, y3 ≥ 0}.
The optimal solution is: y1 = y2 = y3 = 0; z = 16 → G1 = z = 16.

The linear program for G2 is:

min{y1 + y2 + y3 + 3z | 1
2z + y1 ≥ 8 + 1

2y2;
1
2z + y3 ≥ 4 + 1

2y1;
1
2z ≥ 6 + 1

2y3; y1, y2, y3 ≥ 0}.
The optimal solution is: y1 = 2, y2 = y3 = 0; z = 12 → G2 = z = 12.

The linear program for G3 is:

min{y1 + y2 + y3 + 3z | 1
2
z + y1 ≥ 8 + 1

2
y2;

1
2
z + y2 ≥ 6 + 1

2
y3;

1
2
z ≥ 4 + 1

2
y1; y1, y2, y3 ≥ 0}.

The optimal solution is: y1 = 20
7 , y2 = 4

7 , y3 = 0; z = 76
7 → G3 = z = 76

7 .

8.6. MULTI-ARMED BANDIT PROBLEMS 381

3. The largest-remaining-index method

Theorem 8.25

Suppose that G1 ≥ G2 ≥ · · · ≥ Gk for some k, and Gk ≥ Gi for i = k + 1, k + 2, . . . , n.

Let lk be such that Mlk be such that Glk = maxi>k Gi. Then, we have

(1− α)Glk = maxi>k
{
(

I − αP (k)
)−1

r}i
{
(

I − αP (k)
)−1

e}i
, where {P (k)}ij :=

{ pij , j ≤ k;
0 , j > k.

Proof

Since vα
i (Glk) ≥ ri + α

∑

j pijv
α
j (Glk) and vα

i (M) = M for M ≥ Gi, i ∈ S, we can write

vα
i (Glk) ≥ ri + α

∑

j≤k pijv
α
j (Glk) + α

∑

j>k pijv
α
j (Glk)

= ri + α
∑

j≤k pijv
α
j (Glk) + αGlk{1−

∑

j≤k pij}.
In vector notation, with v = vα(Glk), this becomes

v ≥ r + αP (k)v + αGlke− αGlkP (k)e = r + αP (k)v − (1 − α)Glke+Glk{I − αP (k)}e.
So, {I−αP (k)}v ≥ r−(1−α)Glke+Glk{I−αP (k)}e. Since {I−αP (k)} is nonsingular with nonnegative

inverse, we can write

v ≥ {I − αP (k)}−1r − (1− α)Glk{I − αP (k)}−1e+ Glke.

Componentwise, for all i ≥ k,
Glk = vα

i (Glk) ≥ {
(

I − αP (k)
)−1

r}i − (1− α)Glk{
(

I − αP (k)
)−1

e}i +Glk ,

with equality for i = k. From this it follows that (1−α)Glk ≥
{(

I−αP(k)
)−1

r
}

i
{(

I−αP(k)
)−1

e
}

i

for all i ≥ k with equality

for i = k. Therefore,

(1− α)Glk = maxi>k

{(

I−αP(k)
)−1

r
}

i
{(

I−αP(k)
)−1

e
}

i

.

To compute Glk , we have to invert the matrix {I−αP (k)}, which can be written as

(

Ak 0

Bk I

)

. It can now

easily be checked that {I−αP (k)}−1 =

(

A−1
k 0

−BkA
−1
k I

)

. The inversion of a matrix of order k can be done

in O(k3) steps. Hence the computation of the Gittins indices of a project with N states has complexity

O(N4). Fortunately, since subsequent matrices P (k) are similar, this can be done efficiently in a recursive

way. In this way time can be saved and the computation can be done in O(N3) steps, as we will see.

Write Ak+1 =

(

Ak p

q x

)

, so the inverse A−1
k+1 =

(

N t

s y

)

, where p := (p1,k+1, p2,k+1, . . . , pk,k+1)
T ,

q := (pk+1,1, pk+1, 2, . . . , pk+1,k)
T and x := pk+1,k+1. Since Ak+1A

−1
k+1 = I, we get

AkN + ps = I; (8.81)

qN + xs = 0; (8.82)

Akt+ py = 0; (8.83)

qt+ xy = 1. (8.84)

From (8.83) and (8.84), we obtain

t = −yA−1
k p, −yqA−1

k p + xy = 1 → y =
1

x− qA−1
k p

, (8.85)

382 CHAPTER 8. SPECIAL MODELS

and from (8.81)

N = A−1
k (I − ps) = A−1

k − A−1
k ps. (8.86)

Insertion into (8.82) gives 0 = qA−1
k − {qA−1

k p + x}s = qA−1
k + 1

y s → s = −yqA−1
k . With (8.85) and

(8.86), we obtain N = A−1
k + 1

y
ts. Therefore, we have shown that

A−1
k+1 =

(

A−1
k + 1

y ts t

s y

)

, where y := 1
x−qA−1

k
p
, t := −yA−1

k p and s := −yqA−1
k .

All these calculations can be done in O(k2) steps, because at most a vector of k components and a (k×k)-
matrix have to be multiplied. The calculation of the matrix Bk+1A

−1
k+1 costs using the standard method

O(k3) steps, but on this number can also be saved if BkA
−1
k is known.

Write Bk =

(

fT

Fk

)

and Bk+1 =
(

Fk g
)

, where fT is the top row of Bk. Then, we obtain

BkA
−1
k =

(

fTA−1
k

FkA
−1
k

)

and Bk+1A
−1
k+1 =

(

Fk g
)

(

A−1
k + 1

y ts t

s y

)

=
(

FkA
−1
k + 1

y
Fkts+ gs Fkt+ gy

)

.

Because BkA
−1
k is known, the matrix Bk+1A

−1
k+1 can also be calculated in O(k2) steps, so the complexity

of this method for the computation of the Gittins indices of one project with N states is
∑N

k=1 O(k2)

which is O(N3).

Example 8.3 (continued)

For the largest Gittins index we have: (1− α)Gl0 = maxi ri = 8 for i = 1 → Gl0 = G1 = 16.

Since the transition matrix P =

0 1 0

0 0 1

1 0 0

and the first index is G1, we have for P (1) the

matrix

0 0 0

0 0 0

1 0 0

. Hence, I − αP (1) =

1 0 0

0 1 0
1
2

0 1

and {I − αP (1)}−1 =

1 0 0

0 1 0
1
2

0 1

.

Therefore, {I − αP (1)}−1r = (8, 6, 8) and {I − αP (1)}−1e = (1, 1, 3
2).

Hence, (1− α)Gl1 = max
{

6
1
, 8

3/2

}

= 6 for i = 2 → Gl1 = G2 = 12.

Since G1 ≥ G2 are the two largest Gittins indices, we have P (2) =

0 1 0

0 0 0

1 0 0

.

Hence, I − αP (2) =

1 −1
2 0

0 1 0

−1
2

0 1

and {I − αP (2)}−1 =

1 1
2 0

0 1 0
1
2

1
4

1

.

Therefore, {I − αP (2)}−1r = (11, 6, 19
2) and {I − αP (2)}−1e = (3

2 , 1,
7
4).

Hence, (1− α)Gl2 = 19/2
7/4

= 38
7
→ Gl2 = G3 = 76

7
.

4. The bisection/successive approximation method

In this section an iterative method, combining bisection and successive approximations, is proposed for

computing intervals containing the Gittins indices. The final intervals could be of a specific maximum

length, or merely disjoint. In the first case we have approximations of the Gittins indices; in the second

case we have a ranking of the Gittins indices, which in many applications is sufficient. The initial intervals

are [Li, Ui], i ∈ S, satisfying Li ≤ Gi ≤ Ui, i ∈ S. We start with M ∈ [Lk, Uk] for some state k. We will

8.6. MULTI-ARMED BANDIT PROBLEMS 383

show that it is possible to obtain in a bounded number of iterations a smaller interval, also containing Gk,

with M as one of its end points, i.e. the next interval is either [M,Uk] or [Lk,M]. This new interval is

again denoted as [Lk, Uk] and the next M is computed by bisection: M := 1
2
[Lk, Uk].

Since the policy that never takes the stopping action has at most (1 − α)−1 · maxj rj as expected

discounted return, for any M ≥ (1−α)−1 ·maxj rj it is in any state optimal to stop with terminal reward

M , i.e. vα
i (M) = M, i ∈ S, for any M ≥ (1 − α)−1 · maxj rj . Hence, (1 − α)−1 ·maxj rj is an upper

bound for all Gittins indices Gi, i ∈ S. The next lemma provides stronger initial bounds of the Gittins

indices; these bounds also depend on the state.

Lemma 8.21

ri + α
1−α ·mink rk ≤ Gi ≤ ri + α

1−α ·maxk rk, i ∈ S.

Proof

Because for any M , vα
j (M) is the value of an optimal stopping problem, for any j ∈ S, vα

j (M) is at

least the value of the policy that continues always, which in turn is at least (1 − α)−1 · mink rk. Since

Gi is the indifference value of the optimal stopping problem with terminal reward M = Gi, we also have

Gi = ri + α
∑

j pijv
α
j (Gi). Therefore,

Gi = ri + α
∑

j pijv
α
j (Gi) ≥ ri + α

∑

j pij{(1− α)−1 ·mink rk} = ri + α
1−α
·mink rk.

Because vα
j (M) is nondecreasing in M and vα

j (R) = R, where R := (1−α)−1 ·maxk rk, and also R ≥ Gi,

we obtain

Gi = ri + α
∑

j pijv
α
j (Gi) ≤ ri + α

∑

j pijv
α
j (R) = ri + α

1−α ·maxk rk.

Since vα
j (M) ≥M, j ∈ S, we also have vα

i (Gi) = max{Gi, ri + α
∑

j pijv
α
j (Gi)} ≥ max{Gi, ri +αGi} for

all i ∈ S. Thus, Gi = vα
i (Gi) ≥ ri + αGi, i.e. Gi ≥ (1 − α)−1 · ri. Hence, we have the following initial

lower and upper bound of Gi, denoted by Li and Ui, respectively:

Li := max{ri +
α

1− α ·mink rk, (1− α)−1 · ri}; Ui := ri +
α

1− α ·maxk rk. (8.87)

If these bounds are equal, obviously Gi = Li = Ui. Notice that this is that case for i∗, where i∗ is such

that ri∗ = maxk rk; namely, in that case we have Ui∗ = ri∗ + α
(1−α)

ri∗ = (1− α)−1ri∗ ≤ Li∗ . Hence

Li∗ = Gi∗ = Ui∗ = (1− α)−1 ·maxk rk, where i∗ satisfies ri∗ = maxk rk. (8.88)

Given a fixed M ∈ [Lk, Uk], we first approximate vα(M) by successive approximations. The maximal

expected discounted return vα(M) satisfies the optimality equation

vα
i (M) = max{M, ri + α

∑

j

pijv
α
j (M)}, i ∈ S (8.89)

and can be computed by the following value iteration scheme

{

v0
i (M) := M, i ∈ S
vn

i (M) := max{M, ri + α
∑

j pijv
n−1
j (M)}, i ∈ S, n = 1, 2, . . .

(8.90)

We know that vα
i (M) = limn→∞ vn

i (M), i ∈ S. By induction on n it is easy to verify that vn
i (M) is

nondecreasing in n for all i ∈ S. Since Gk = min{M | M = vα
k (M)} and by the property that vα

k (M)−M
is a nonincreasing function of M (see Lemma 8.18) it follows that M < Gk is equivalent to vα

k (M) > M ,

which in turn is equivalent to vn
k (M) > M for some n, i.e. rk + α

∑

j pkjv
n−1
j (M) > M for some n. The

next lemma gives a lower bound of such n.

384 CHAPTER 8. SPECIAL MODELS

Lemma 8.22

Given k ∈ S and M satisfying Gk > M , then vn
k (M) > M for all n > n1, where the number n1 is defined

by n1 :=
log
{

vα
k

(M)−M

(1−α)−1 ·maxj rj−M

}

log α .

Proof

From the theory of contracting mappings it follows that

‖vα(M)− vn(M)‖∞ ≤ αn · ‖vα(M) − v0(M)‖∞ = αn ·maxj {vα
j (M)−M}.

Note that n > n1 is equivalent to αn · {(1 − α)−1 · maxj rj −M} < vα
k (M) −M . Since M < Gk, we

have vα
k (M) −M > 0. Furthermore, with R := (1 − α)−1 · maxj rj, we also have vn

j (M) < R, j ∈ S
for all n ∈ N (by induction on n this follows directly from the value iteration scheme). Hence, we obtain

vα
j (M) = limn→∞ vn

j (M) ≤ R, j ∈ S. Now, we can write for n > n1,

vα
k (M)− vn

k (M) ≤ ‖vα(M) − vn(M)‖∞ ≤ αn ·maxj {vα
j (M) −M}

≤ αn · (R −M) < vα
k (M)−M,

i.e. vn
k (M) > M .

The operational meaning of Lemma 8.22 is that for any k ∈ S and any M ∈ [Lk, Uk] at most n1 iterations

are needed to decide whether Gk ≤M :

if vn
k (M) ≤M for some n > n1, then Gk ≤M. (8.91)

Unfortunately, since we do not know the value vα
k (M), we do not know the number n1. However, we

can use another known number n2 instead of n2, provided that n2 ≥ n1. Such a number is for instance

n2 :=
log
{

ε

(1−α)−1 ·maxj rj−M

}

log α , where ε > 0 is a lower bound of the quantity vα
k (M)−M .

In actual computations n2 turns out to be rather small. For example, if we denote A := log{(1−α)−1 ·
maxj rj −M , and if the tolerance ε = 10−2, then

n2 =

6.6 + 3.3A if α = 0.5

12.9 + 6.4A if α = 0.7

43.7 + 21.8A if α = 0.9

We show in the next lemma that the conclusion Gk ≤ M may be made also if for any n the value

rk +α
∑

j pkjv
n−1
j (M) is sufficiently below M . The result of this lemma may be viewed as a suboptimality

test.

Lemma 8.23

If for some n, rk + α
∑

j pkjv
n−1
j (M) ≤M − αn · {(1− α)−1 ·maxj rj −M}, then Gk ≤M .

Proof

Suppose that Gk > M . Then, we have vα
k (M) = rk + α

∑

j pkjv
α
j (M) > M .

Assuming rk + α
∑

j pkjv
n−1
j (M) ≤M − αn · {(1− α)−1 ·maxj rj −M}, we obtain

α
∑

j pkj{vα
j (M)− vn−1

j (M)} > (M − rk) − (M − rk − αn · {(1− α)−1 ·maxj rj −M})
= αn · {(1− α)−1 ·maxj rj −M}.

Using the inequality vα
j (M) ≤ (1 − α)−1 ·maxk rk, j ∈ S (see the proof of Lemma 8.22), we have on the

other side,

α
∑

j pkj{vα
j (M)− vn−1

j (M)} ≤ α · ‖vα(M)− vn−1(M)‖∞
≤ αn · ‖vα(M)− v0(M)‖∞ ≤ αn · {(1− α)−1 ·maxj rj −M},

which provides a contradiction.

8.6. MULTI-ARMED BANDIT PROBLEMS 385

The bisection/successive approximation method contains a number of bisections until a stopping criterion

is satisfied. A bisection is executed after a number of successive approximations, a number which is

determined by an approximation criterion.

Possible stopping criteria are:

(1) the intervals [Li, Ui], i ∈ S, are disjoint; this criterion is appropriate for ranking the Gittins indices.

(2) Ui − Li ≤ δ for all i ∈ S, where δ is a specified tolerance; this criterion is appropriate for approxi-

mating all Gittins indices.

(3) Ui − Li ≤ δ for some i ∈ S, where δ is a specified tolerance; this criterion is appropriate for approxi-

mating some Gittins index.

Possible approximation criterion are:

(1) When n ≥ n2, where n2 :=
log
{

ε

(1−α)−1 ·maxj rj−M

}

log α , with ε > 0 is a specified lower bound of the

quantity vα
i (M)−M .

(2) If rk + α
1−α
·minj rj ≤ Gk ≤ rk + α

1−α
·maxj rj .

Below we present the bisection/successive approximation algorithm.

Algorithm 8.3 The bisection/successive approximation method.

Input: A multi-armed bandit problem, an approximation criterion and a stopping criterion.

Output: Ranking or approximation of the Gittins indices (depending on the chosen stopping criterion).

1. for all i ∈ S do

begin Li := max{ri + α
1−α ·mink rk, (1− α)−1 · ri}; Ui := ri + α

1−α ·maxk rk;

if Li = Ui then Gi := Li (the Gittins index in this state is computed).

end

2. Select a state k for which the Gittins index has to be approximated; M := 1
2
(Lk + Uk).

3. n := 0; for all j ∈ S do vj := M ;

4. for all i ∈ S do

(a) si := ri + α
∑

j pijvj.

(b) if si > M then Li := max{Li,M}.
(c) if si ≤M − αn · {(1− α)−1 ·maxj rj −M} then Ui := min{Ui,M}.

5. if the approximation criterion is not satisfied then

begin n := n + 1; for all i ∈ S do vi := max{M, si}; go to step 4 end

else go to step 6.

6. if the stopping criterion is not satisfied then go to step 2.

else STOP.

The selection of state k in step 2 is indicated by the stopping criterion. For example, under criterion (2),

select k such that Uk − Lk = maxi (Ui − Li).

One successive approximation requires O(|S2|) operations. Therefore, the total computational effort

is about |S2| times the number of successive approximations. To approximate with tolerance δ one Gittins

index Gk, at most log2 {Uk−Lk

δ
} midpoints M need to be considered, where [Lk, Uk] is the initial interval.

386 CHAPTER 8. SPECIAL MODELS

Example 8.3 (continued)

As selection of state k in step 2, we select k such that Uk − Lk = maxi (Ui − Li).

We will execute 3 approximations of Algorithm 8.3.

For the initial bounds [Li, Ui], we obtain L1 = 16, U1 = 16; L2 = 12, U2 = 14; L3 = 8, U3 = 12. Notice

that the intervals [Li, Ui] are already disjoint and G1 = 16. We select k = 3 and for the first M we take

the midpoint of the largest interval [L3, U3], i.e. M = 1
2
(8 + 12) = 10.

Approximation 1:

n = 0 : v1 = v2 = v3 = 10; M − αn · {(1− α)−1 ·maxj rj −M = 4.

i = 1 : s1 = 8 + 1
2 · 10 = 13; L1 = max(16, 10) = 16.

i = 2 : s2 = 6 + 1
2
· 10 = 11; L2 = max(12, 10) = 12.

i = 3 : s3 = 4 + 1
2 · 10 = 9. Approximation 2:

n = 1 : v1 = 13, v2 = 11, v3 = 10; M − αn · {(1− α)−1 ·maxj rj −M = 7.

i = 1 : s1 = 8 + 1
2 · 11 = 27

2 ; L1 = max(16, 10) = 16.

i = 2 : s2 = 6 + 1
2
· 10 = 11; L2 = max(12, 10) = 12.

i = 3 : s3 = 4 + 1
2 · 13 = 21

2 . Approximation 3:

n = 2 : v1 = 27
2 , v2 = 11, v3 = 21

2 ; M − αn · {(1− α)−1 ·maxj rj −M = 17
2 .

i = 1 : s1 = 8 + 1
2 · 11 = 27

2 ; L1 = max(16, 10) = 16.

i = 2 : s2 = 6 + 1
2
· 21

2
= 45

4
; L2 = max(12, 10) = 12.

i = 3 : s3 = 4 + 1
2 · 27

2 = 43
4 .

After these three approximations we have the intervals [L1, U1] = [16, 16], [L2, U2] = [12, 14], [L3, U3] =

[43
4
, 12].

8.7 Separable problems

8.7.1 Introduction

Separable MDPs have the property that for certain pairs (i, a) ∈ S ×A:

(1) the immediate reward is the sum of tow terms, one depends only on the current state and the

the other depends only on the chosen action: ri(a) = si + ta.

(2) the transition probabilities depend only on the action and not on the state from which the

transition occurs: pij(a) = pj(a), j ∈ S.

Let S1 ×A1 be the subset of S ×A for which the pairs (i, a) satisfy (1) and (2). We also assume that the

action sets of A1 are nested: let S1 = {1, 2, . . . , m}, then A1(1) ⊇ A1(2) ⊇ · · · ⊇ A1(m) 6= ∅.
Let S2 := S\S1, A2(i) := A(i)\A1(i), 1 ≤ i ≤ m and A2(i) := A(i), m+ 1 ≤ i ≤ N . We also introduce

the notations B(i) := A1(i)−Ai+1(i), 1 ≤ i ≤ m− 1 and B(m) := A1(m). Then, A1(i) =
⋃m

j=i B(j) and

the sets B(j) are disjunct. We allow that S2, A2 or B(i) is an empty set.

If the system is observed in state i ∈ S1 and the decision maker will choose an action from A1(i), then,

the decision process can be considered as follows. First, a reward si is earned and the system makes a

zero-time transition to an additional state N + i. In this additional state there are two options: either to

take an action a ∈ B(i) or to take an action a ∈ A1(i)\B(i) = A1(i + 1). In the first case the reward ta

is earned and the process moves to state j with probability pj(a), j ∈ S; in the second case we are in the

same situation as in state N + i+1, i.e. a zero-time transition is made from state N + i to state N + i+1.

8.7. SEPARABLE PROBLEMS 387

8.7.2 Examples (part 1)

1. Automobile replacement problem

We own a car of a certain age. Our decision problem is to keep it or sell it and, if we sell, what age car

to replace it with. Let us agree to review the number of states down, we assume that every car breaks

down irreparably as soon as it becomes 10 years old. Number the states from 0 to 40. For i ≤ 39, state

i refers to a car that is 3i months old: we say this car is ”of age i”. State 40 indicates a car that has

just become 10 years and, therefore, has just broken down irreparably. At state i ≤ 39 we can make

decision r (for retain) to keep our current car for at least one more time period, or we can trade it in on

a car of age k with 0 ≤ k ≤ 39. Since there are 41 possible decisions for states 0 through 39, namely

A(i) = {r, 0, 1, . . . , 39}, and 40 possible decisions for state 40, namely A(40) = {0, 1, . . . , 39}, there are

nearly 4141 different policies.

Consider the following relevant data:

cj = the cost of buying a car of age j, 0 ≤ j ≤ 39;

ti = the trade-in value of a car of age i, 0 ≤ i ≤ 40;

ei = the expected cost of operating a car of age i for one time period, 0 ≤ i ≤ 39;

pi = the probability that a car of age i will last at least one more time period, 0 ≤ i ≤ 39;

To simplify things, assume that if a car fails to survive a time period, it ages at the end of that period

to 10 years, causing a transfer to state 40. Trade-ins take place at the beginning of time periods. If the

retain decision r is selected in state i, the rewards and transition probabilities are:

ri(r) = −ei; pij(r) =

pi if j = i+ 1;

1− pi if j = 40;

0 if j 6= i+ 1, 40.

with p39,40(r) = 1.

Similarly, if a trade-in decision a is selected in state i, the replacement car of age a must be kept for at

least one time period and the rewards and transition probabilities are:

ri(a) = ti − ca − ea; pij(a) =

pa if j = a+ 1;

1− pa if j = 40;

0 if j 6= i+ 1, 40.

with pi,40(39) = 1.

For a replacement decision a 6= r in state 0 ≤ i ≤ 39, the transition probabilities depend only on a and

not on i and the expected reward ri(a) = si + ta with si = ti and ta = −(ca + ea). Since we also have

A1(i) = {0, 1, . . . , 40} for i = 0, 1, . . . , 40, the problem is separable with S1 = S = {0, 1, . . . , 40} and

A1(i) = {0, 1, . . . , 39}, 0 ≤ i ≤ 40; A2(i) = {r}, 0 ≤ i ≤ 39, A2(40) = ∅; B(i) = ∅, 0, 1, . . . , 39 and

B(40) = {0, 1, . . . , 39}. Ignoring those i’s for which B(i) = ∅, we require a single extra state. Call it

state 41. In economic terms, state 41 corresponds to having no car and needing to buy one immediately.

Instantaneous transition to state 41 is available from states 0 through 40 by trading in one’s current car

and this transition is mandatory from state 40.

Hence, we may consider the model as an MDP with state space S∗ = {0, 1, . . . , 41}, action sets

A∗(i) =

{r, t} i = 0, 1, . . . , 39

{t} i = 40

{0, 1, . . . , 39} i = 41

with decision t can be interpreted as the trade-in with

in state i reward ti and an immediate transition to the no-car state 41. Purchase decision a from state 41

has expected reward −(ca + ea) and transition probability pa to state a + 1 and 1 − pa to state 40. The

transformed problem affords a reduction in the number of policies from 4141 to 40 · 240 and a reduction in

the total number of decisions from 1680 (40 · 41 + 40) to 121 (40 · 2 + 1 + 40), while increasing the number

of states from 41 to 42.

388 CHAPTER 8. SPECIAL MODELS

The reduction in problem size is so drastic that we can be assured of substantial computational savings in

the policy iteration, linear programming and value iteration methods for both discounted and averaging

versions of the probem. Note finally that every sequence of two transitions gives rise to at least one change

in epoch, a fact that we shall find useful in the analysis.

2. Inventory problem

For a prototype of a variety of inventory models that are separable, consider the model with integer on-

hand quantities, instantaneous replenishment, linear ordering cost, a set-up charge if any units are ordered,

excess sales lost and a storage capacity of N items. State i denotes i units on hand at the beginning of the

period, and a set A(i) of available decisions from state i is given by A(i) = {i, i+ 1, . . . , N} with a ∈ A(i)

denoting either an order of a − i items if a > i or no order if a = i. The ordering cost is 0 if a = i and

K + k(a − i) if a > i, where K and k are, respectively, the set-up and per item ordering cost. Let pj

be the probability that j sales opportunities appear during the time period, and let ha be the expected

one-period holding and sales cost given a items on hand at the beginning of the period, immediately after

delivery of the order.

If no order is placed, i.e. a = i, the expexted one-period reward ri(i) = −hi and the transition

probabilities are given by pij(i) =

pi−j if 1 ≤ j ≤ i;
∑

k≥i pk if j = 0;

0 if j > i.

Similarly, if a > i, the expected one-period reward and the transition probabilities are,

respectively, given by ri(a) = −K − k(a− i) − ha and pij(a) =

pa−j if 1 ≤ j ≤ a;
∑

k≥a pk if j = 0;

0 if j > a.

In the case that a > i, the transition probabilities pij(a), j ∈ S are independent of i and the expected

reward ri(a) = si + ta with si = −K+k · i and ta = −k ·a−ha Then, with A1(i) = {i+1, i+2, . . . , N} for

0 ≤ i ≤ N − 1 and A2(i) = {i} for 0 ≤ i ≤ N − 1, the problem satisfies the conditions of separability with

B(i) = {i+ 1} for i = 0, 1, . . . , N − 1. The reduction in this problem is less dramatic as in the automobile

replacement problem: the state space increases from N + 1 to 2N + 1 and the total number of decisions

is reduced from
∑N

i=0 (N − i+ 1) = 1
2(N + 1)(N + 2) to 4N + 1 (two options in the states 0, 1, . . . , N − 1,

two options in the N additional states and one option in state N).

8.7.3 Discounted rewards

The description in section 8.7.1 as a problem with zero-time and one-time transitions gives rise to consider

the transformed model with N +m states and to the following linear program for the computation of the

value vector vα.

min

N
∑

i=1

vi +

m
∑

i=1

yi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

vi ≥ ri(a) + α
∑N

j=1 pij(a)vj 1 ≤ i ≤ N, a ∈ A2(i)

vi ≥ si + yi 1 ≤ i ≤ m
yi ≥ ta + α

∑N
j=1 pj(a)vj 1 ≤ i ≤ m, a ∈ B(i)

yi ≥ yi+1 1 ≤ i ≤ m− 1

. (8.92)

The first set of inequalities corresponds to the non-separable set S×A2 with one-time transitions; the

second set inequalities to the zero-time transitions from the state i to N + i, 1 ≤ i ≤ m; the third set of

inequalities to the set S1 × B with one-time transitions and the last set inequalities corresponds to the

zero-time transitions from the state N + i to N + i+ 1, 1 ≤ i ≤ m− 1.

8.7. SEPARABLE PROBLEMS 389

The dual of program (8.92), where the dual variables xi(a), λi, wi(a), ρi correspond to the four sets

of constraints in (8.92), is:

max

N
∑

i=1

∑

a∈A2(i)

ri(a)xi(a) +

m
∑

i=1

siλi +

m
∑

i=1

∑

a∈B(i)

wi(a) (8.93)

subject to the constraints

∑N
i=1

∑

a∈A2(i){δij − αpij(a)}xi(a) +
∑m

i=1 δijλi −
∑m

i=1

∑

a∈B(i) pj(a)wi(a) = 1, 1 ≤ j ≤ N
ρj − ρj−1 − λj +

∑

a∈B(j) wj(a) = 1, 1 ≤ j ≤ m− 1

−ρm−1 − λm +
∑

a∈B(m) wm(a) = 1

xi(a) ≥ 0, 1 ≤ i ≤ N, a ∈ A2(i); λi ≥ 0, 1 ≤ i ≤ m; wi(a) ≥ 0, 1 ≤ i ≤ m, a ∈ B(i);

ρi ≥ 0, 1 ≤ i ≤ m− 1.

Without using the transformed problem, the linear program to compute the value vector vα is:

min
{

N
∑

i=1

vi

∣

∣

∣ vi ≥ ri(a) + α

N
∑

j=1

pij(a)vj , 1 ≤ i ≤ N, a ∈ A(i)
}

. (8.94)

Lemma 8.24

Let v feasible for (8.94) and define y by yi = maxa∈A1(i) {ta + α
∑N

j=1 pj(a)vj}, 1 ≤ i ≤ m. Then,

(1) (v, y) is a feasible solution of (8.92).

(2)
∑N

i=1 vi +
∑m

i=1 yi ≥
∑N

i=1 v
α
i +

∑m
i=1 maxa∈A1(i) {ta + α

∑N
j=1 pj(a)v

α
j }.

Proof

First we have to show that (v, y) satisfies the four parts of the constraints of (8.92). The first and third

part are obviously satisfied. For the second part, notice that for all 1 ≤ i ≤ m and a ∈ A1(i) we have

vi ≥ si + ta + α
∑N

j=1 pj(a)vj → vi ≥ si +maxa∈A1(i){ta + α
∑N

j=1 pj(a)vj} = si + yi.

For the fourth part, we write for i = 1, 2, . . . , m− 1

yi − yi+1 = maxa∈A1(i) {ta + α
∑N

j=1 pj(a)vj} −maxa∈A1(i+1) {ta + α
∑N

j=1 pj(a)vj} ≥ 0,

the last inequality because A1(i+ 1) ⊆ A1(i).

Finally, because vα is the componentwise smallest solution of (8.94), cf. Theorem 3.16, we have

vi ≥ vα
i , 1 ≤ i ≤ N , and consequently,
∑N

i=1 vi +
∑m

i=1 yi =
∑N

i=1 vi +
∑m

i=1 maxa∈A1(i) {ta + α
∑N

j=1 pj(a)vj}
≥ ∑N

i=1 v
α
i +

∑m
i=1 maxa∈A1(i) {ta + α

∑N
j=1 pj(a)v

α
j }.

Corollary 8.4

Since vα is the unique optimal solution of (8.94), we have shown that (vα, yα) is the unique optimal

solution of (8.92), where yα
i = maxa∈A1(i) {ta + α

∑N
j=1 pj(a)v

α
j }, 1 ≤ i ≤ m.

Theorem 8.26

Let (x, λ, w, ρ) be an optimal solution of linear program (8.93). Define Sx := {j | ∑a∈A2(j) xj(a) > 0} and

kj := min{k ≥ j | ∑a∈B(k) wk(a) > 0}, j ∈ S\Sx. Take any policy f∞ ∈ C(D) such that xj

(

f(j)
)

> 0 if

j ∈ Sx and wkj

(

f(j)
)

> 0 if j ∈ S\Sx. Then, f∞ is well-defined and an α-discounted optimal policy.

390 CHAPTER 8. SPECIAL MODELS

Proof

From the definition of Sx it follows that f(j) is well-defined if j ∈ Sx. From the first set of the constraints

of (8.93) it follows that for j = 1, 2, . . . , N , we have
∑

a∈A2(j) xj(a) +
∑m

i=1 δijλi ≥ 1 + α
∑N

i=1

∑

a∈A2(i) pij(a)xi(a) +
∑m

i=1

∑

a∈B(i) pj(a)wi(a) ≥ 1.

Therefore, if j /∈ S∗, then 1 ≤ j ≤ m and λj > 0. Then, by adding the corresponding last constraints of

(8.93), we obtain
∑m

k=j

∑

a∈B(k) wk(a) =
∑m−1

k=j {1 + λk + (ρk−1 − ρk)} + {1 + λm + ρm−1}

=
∑m

k=j{1 + λk}+ ρj−1 > 0.

Hence, kj is well-defined, and therefore the policy f∞ is well-defined.

For the proof of the optimality of f∞ we first consider a state i ∈ Sx = {j | ∑a∈A2(j)
xj(a) > 0}. In

such state i, we have xi

(

f(i)
)

> 0 and, by the complementary slackness property of linear programming,

vα
i = ri(f) + α

∑N
j=1 pij(f)v

α
j .

Then, we show that in a state i ∈ S\Sx we also have vα
i = ri(f) + α

∑N
j=1 pij(f)v

α
j . Consider a state

i ∈ S\Sx, i.e. 1 ≤ i ≤ m,
∑

a∈A2(j) xj(a) = 0 and λi > 0. Let wk

(

f(i)
)

> 0, i.e.
∑

a∈B(j) wj(a) = 0

for j = i, i + 1, . . . , k − 1 and
∑

a∈B(k wk(a) > 0. By the complementary slackness property of linear

programming, we have

λi > 0 → vα
i = si + yα

i
∑

a∈B(j) wj(a) = 0, j = i, i+ 1, . . . , k − 1 → yα
i = yα

i+1 = · · · = yα
k

wk

(

f(i)
)

> 0 → yα
k = tf(i) + α

∑N
j=1 pj(f)v

α
j

Hence,

vα
i = si + yα

i = vα
i = si + yα

k = si + tf(i) + α
∑N

j=1 pj(f)v
α
j = ri

(

f(i)
)

+ α
∑N

j=1 pij(f)v
α
j .

Therefore, we have shown that vα
i = ri(f) + α

∑N
j=1 pij(f)v

α
j , i ∈ S, in vector notation

vα = r(f) + αP (f)vα → {I − P (f)}vα = r(f) → vα = {I − P (f)}−1r(f) = vα(f∞),

i.e. f∞ is an α-discounted optimal policy.

8.7.4 Average rewards - unichain case

Consider the problem again in the transformed model with N +m states and with zero-time and one-time

transitions. This interpretation gives rise to the following linear program for the computation of the value

vector φ.

min

x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x + yi ≥ ri(a) +
∑N

j=1 pij(a)yj 1 ≤ i ≤ N, a ∈ A2(i)

yi ≥ si + zi 1 ≤ i ≤ m
x + zi ≥ ta +

∑N
j=1 pj(a)yj 1 ≤ i ≤ m, a ∈ B(i)

zi ≥ zi+1 1 ≤ i ≤ m− 1

. (8.95)

The dual of program (8.95), where the dual variables xi(a), λi, wi(a), ρi correspond to the four sets of

constraints in (8.95), is:

max

N
∑

i=1

∑

a∈A2(i)

ri(a)xi(a) +

m
∑

i=1

siλi +

m
∑

i=1

∑

a∈B(i)

wi(a) (8.96)

subject to the constraints

8.7. SEPARABLE PROBLEMS 391

∑N
i=1

∑

a∈A2(i){δij − pij(a)}xi(a) +
∑m

i=1 δijλi −
∑m

i=1

∑

a∈B(i) pj(a)wi(a) = 0, 1 ≤ j ≤ N
ρj − ρj−1 − λj +

∑

a∈B(j) wj(a) = 0, 1 ≤ j ≤ m− 1

−ρm−1 − λm +
∑

a∈B(m) wm(a) = 0
∑N

i=1

∑

a∈A2(i) xi(a) +
∑m

i=1

∑

a∈B(i) wi(a) = 1

xi(a) ≥ 0, 1 ≤ i ≤ N, a ∈ A2(i); λi ≥ 0, 1 ≤ i ≤ m; wi(a) ≥ 0, 1 ≤ i ≤ m, a ∈ B(i);

ρ0 = 0; ρi ≥ 0, 1 ≤ i ≤ m− 1.

Without using the transformed problem, the linear program to compute the value φ is:

min
{

x
∣

∣

∣ x+ yi ≥ ri(a) +

N
∑

j=1

pij(a)yj , 1 ≤ i ≤ N, a ∈ A(i)
}

. (8.97)

Lemma 8.25

Let (x, y) feasible for (8.97) and define z by zi = maxa∈A1(i) {ta +
∑N

j=1 pj(a)yj} − x, 1 ≤ i ≤ m. Then,

(x, y, z) is a feasible solution of (8.95) and x ≥ φ.

Proof

First we have to show that (x, y, z) satisfies the four parts of the constraints of (8.95). The first and third

part are obviously satisfied. For the second part, notice that for all i = 1, 2, . . . , m and a ∈ A1(i) we have

x+ yi ≥ si + ta +
∑N

j=1 pj(a)yj → yi ≥ si +maxa∈A1(i){ta +
∑N

j=1 pj(a)yj} − x = si + zi.

For the fourth part, we write for i = 1, 2, . . . , m− 1

zi − zi+1 = maxa∈A1(i) {ta +
∑N

j=1 pj(a)yj} −maxa∈A1(i+1) {ta +
∑N

j=1 pj(a)yj} ≥ 0,

the last inequality because A1(i+ 1) ⊆ A1(i). Finally, because φ is the optimal solution of (8.97), we have

x ≥ φ.

Corollary 8.5

Since any optimal solution (x∗, y∗) of linear program (8.97) satisfies x∗ = φ, the optimum value of (8.95)

is also φ. Furthermore, (x∗ = φ, y∗, z∗) is an optimal solution of program (8.95), where z∗ is defined by

z∗i := maxa∈A1(i) {ta +
∑N

j=1 pj(a)y
∗
j } − φ, 1 ≤ i ≤ m.

Theorem 8.27

Let (x, λ, w, ρ) be an optimal solution of linear program (8.96). Define Sx := {j | ∑a∈A2(j) xj(a) > 0} and

kj := min{k ≥ j | ∑a∈B(k) wk(a) > 0}, j ∈ Sw, where Sw := {j ∈ S\Sx |
∑

a∈A1(j)wj(a) > 0}. Take

any policy f∞ ∈ C(D) such that xj

(

f(j)
)

> 0 if j ∈ Sx, wkj

(

f(j)
)

> 0 if j ∈ Sw and f(j) arbitrarily

chosen if j /∈ Sx ∪ Sw. Then, f∞ is an average optimal policy.

Proof

Let (φ, y, z) be an optimal solution of (8.96). Then, by the complementary slackness property of linear

programming, we have

xi(a) · {φ+ yi − ri(a) −
N
∑

j=1

pij(a)yj} = 0, 1 ≤ i ≤ N ; a ∈ A2(i) (8.98)

λi · {yi − si − zi} = 0, 1 ≤ i ≤ m (8.99)

wi(a) · {φ+ zi − ta −
N
∑

j=1

pj(a)yj} = 0, 1 ≤ i ≤ m; a ∈ B(i) (8.100)

ρi · {zi − zi+1} = 0, 1 ≤ i ≤ m− 1 (8.101)

392 CHAPTER 8. SPECIAL MODELS

Let S+ := {j ∈ S | ∑a∈A2(j)
xj(a) + λj > 0} and take any i ∈ S+.

If
∑

a∈A2(i) xi(a) > 0, then from equation (8.98), we obtain

φ = ri(f) − yi +
N
∑

j=1

pij(f)yj , i ∈ Sx. (8.102)

If
∑

a∈A2(i) xi(a) = 0, then 1 ≤ i ≤ m, λi > 0, and equation (8.99) gives yi = si + zi.

Furthermore, we have
∑

a∈A1(i)wi(a) > 0, namely: adding the corresponding constraints of (8.96) yields
∑

a∈A1(i)
wi(a) =

∑m
j=i

∑

a∈B(j) wj(a) =
∑m

j=i λj + ρi−1 ≥ λi > 0. The definition of ki implies, denoting

ki by k, that
∑

a∈B(j) wj(a) = 0 for j = i, i+ 1, . . . , k − 1.

Hence, by the constraints of program (8.96), we obtain ρj = λj + ρj−1 for j = i, i+ 1, . . . , k− 1, implying

ρi = λi + ρi−1 ≥ λi > 0, ρi+1 = λi+1 + ρi ≥ ρi > 0, . . . , ρk−1 = λk−1 + ρk−2 ≥ ρk−2 > 0. Then, it follows

from (8.101) that zi = zi+1 = · · ·= zk = 0. Since wk

(

f(i)
)

> 0, by (8.100), we can write

φ = tf(i) +
∑N

j=1 pj(f(i))yj − zk = tf(i) +
∑N

j=1 pj(f(i))yj − zi = si + tf(i) +
∑N

j=1 pj(f(i))yj − yi,

implying

φ = ri(f) − yi +

N
∑

j=1

pij(f)yj , i ∈ S+\Sx. (8.103)

Combining (8.102) and (8.103) yields

φ = ri(f) − yi +

N
∑

j=1

pij(f)yj , i ∈ S+. (8.104)

Next, we show that S+ is closed under P (f), i.e. pij(f) = 0, i ∈ S+, j /∈ S+. Suppose that pij(f) > 0 for

some i ∈ S+ and j /∈ S+. Since j /∈ S+,
∑

a∈A2(j) xj(a) +
∑m

i=1 δijλi = 0.

If i ∈ Sx, then, from the constraints of program (8.96) it follows that,

0 =
∑

a∈A2(j) xj(a) +
∑m

i=1 δijλi

=
∑N

i=1

∑

a∈A2(i)
pij(a)}xi(a) +

∑m
i=1

∑

a∈B(i) pj(a)wi(a) ≥ pij(f)xi(f(i)) > 0,

implying a contradiction.

If i ∈ S+\Sx, then, from the constraints of program (8.96) it follows that,

0 =
∑

a∈A2(j) xj(a) +
∑m

i=1 δijλi

=
∑N

i=1

∑

a∈A2(i)
pij(a)}xi(a) +

∑m
i=1

∑

a∈B(i) pj(a)wi(a) ≥ pj(f(i))wki
(f(i)) > 0,

which also implies a contradiction.

Since P (f) is a unichain Markov chain and S+ is closed, the states of S\S+ are transient. Let π(f) be the

stationary distribution of the unichain Markov chain P (f), then it follows from (8.104) that

φ · e = φ · {π(f)T e} · e = π(f)T {r(f) − y + P (f)y} · e = φ(f∞) · e,
i.e. f∞ is an average optimal policy.

8.7.5 Average rewards - general case

Again, the interpretation of the transformed model gives rise to consider the following linear program in

order to compute the value vector φ.

8.7. SEPARABLE PROBLEMS 393

min

N
∑

j=1

xj +

m
∑

j=1

wj

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

xi ≥ ∑N
j=1 pij(a)xj 1 ≤ i ≤ N, a ∈ A2(i)

xi ≥ wi 1 ≤ i ≤ m
wi ≥ ∑N

j=1 pj(a)xj 1 ≤ i ≤ m, a ∈ B(i)

wi ≥ wi+1 1 ≤ i ≤ m− 1

xi + yi ≥ ri(a) +
∑N

j=1 pij(a)yj 1 ≤ i ≤ N, a ∈ A2(i)

yi ≥ si + zi 1 ≤ i ≤ m
wi + zi ≥ ta +

∑N
j=1 pj(a)yj 1 ≤ i ≤ m, a ∈ B(i)

zi ≥ zi+1 1 ≤ i ≤ m− 1

.

(8.105)

The dual of program (8.105), where the dual variables yi(a), µi, zi(a), σi, xi(a), λi, wi(a), ρi correspond

to the eight sets of constraints in (8.105), is:

max

N
∑

i=1

∑

a∈A2(i)

ri(a)xi(a) +

m
∑

i=1

siλi +

m
∑

i=1

∑

a∈B(i)

tawi(a) (8.106)

subject to the constraints
PN

i=1

P

a∈A2(i)
{δij − pij(a)}yi(a) +

Pm

i=1 δijµi −
Pm

i=1

P

a∈B(i) pj(a)zi(a) +
P

a∈A2(i) xj(a) = 1, 1 ≤ j ≤ N

σj − σj−1 − µj +
P

a∈B(j) wj(a) +
P

a∈B(j) zj(a) = 1, 1 ≤ j ≤ m
PN

i=1

P

a∈A2(i)
{δij − pij(a)}xi(a) +

Pm

i=1 δijλi −
Pm

i=1

P

a∈B(i) pj(a)wi(a) = 0, 1 ≤ j ≤ N

ρj − ρj−1 − λj +
P

a∈B(j) wj(a) = 0, 1 ≤ j ≤ m

ρ0 = ρm = σ0 = σm = 0; xi(a), yi(a), zi(a), wi(a), λi, µi, ρi, σi ≥ 0 for all i and a.

Without using the transformed problem, the linear program to compute the value φ is:

min

N
∑

j=1

xj

∣

∣

∣

∣

∣

∣

∑N
j=1{δij − pij(a)}xj ≥ 0 1 ≤ i ≤ N, a ∈ A(i)

xi +
∑N

j=1{δij − pij(a)}uj ≥ ri(a) 1 ≤ i ≤ N, a ∈ A(i)

.

(8.107)

Lemma 8.26

Let (x, u) be a feasible solution of program (8.107) and define w, y, z by yi := xi + ui, 1 ≤ i ≤ N ,

wi := maxa∈A1(i)

∑N
j=1 pj(a)xj, 1 ≤ i ≤ m and zi := maxa∈A1(i) {ta+

∑N
j=1 pj(a)uj}, 1 ≤ i ≤ m.

Then,

(1) (x, w, y, z) is a feasible solution of linear program (8.105).

(2)
∑N

j=1 xj +
∑m

j=1 wj ≥
∑N

j=1 φj +
∑m

j=1 maxa∈A1(j)

∑N
k=1 pk(a)φk.

Proof

The proof of part (1) consists of the verification of the eight sets of the constraints of (8.105).

a. xi ≥
∑N

j=1 pij(a)xj, 1 ≤ i ≤ N, a ∈ A2(i) (since (x, u) is feasible of (8.107)).

b. xi − wi = xi −maxa∈A1(i)

∑N
j=1 pj(a)xj

≥ maxa∈A(i)

∑N
j=1 pj(a) xj −maxa∈A1(i)

∑N
j=1 pj(a) xj ≥ 0, 1 ≤ i ≤ m.

(the first inequality because (x, u) is feasible of (8.107)).

394 CHAPTER 8. SPECIAL MODELS

c. wi −
∑N

j=1 pj(a)xj = maxa∈A1(i)

∑N
j=1 pj(a)xj −

∑N
j=1 pj(a)xj ≥ 0, 1 ≤ i ≤ m, a ∈ B(i).

d. wi − wi+1 = maxa∈A1(i)

∑N
j=1 pj(a)xj −maxa∈A1(i+1)

∑N
j=1 pj(a)xj ≥ 0, 1 ≤ i ≤ m− 1

(because A1(i+ 1) ⊆ A1(i)).

e. xi +
∑N

j=1{δij − pij(a)}yj = xi +
∑N

j=1{δij − pij(a)}(xj + uj)

≥ xi +
∑N

j=1{δij − pij(a)}uj ≥ ri(a), 1 ≤ i ≤ N, a ∈ A2(i).

f. yi − zi = xi + ui −maxa∈A1(i) {ta +
∑N

j=1 pj(a)uj}
= mina∈A1(i) {xi + ui − ta −

∑N
j=1 pj(a)uj}

≥ mina∈A1(i){ri(a)− ta} = mina∈A1(i) si = si, 1 ≤ i ≤ m.
g. wi + zi −

∑N
j=1 pj(a)yj = maxa∈A1(i)

∑N
j=1 pj(a)xj +

maxa∈A1(i) {ta +
∑N

j=1 pj(a)uj} −
∑N

j=1 pj(a)yj

≥ ∑N
j=1 pj(a)xj + ta +

∑N
j=1 pj(a)(uj − yj) = ta, 1 ≤ i ≤ m, a ∈ B(i).

h. zi − zi+1 = maxa∈A1(i) {ta +
∑N

j=1 pj(a)uj} −maxa∈A1(i+1) {ta +
∑N

j=1 pj(a)uj}
≥ 0, (because A1(i+ 1) ⊆ A1(i)).

For the proof of part (2), we can use x ≥ φ and write
∑N

j=1 xj +
∑m

j=1 wj =
∑N

j=1 xj +
∑m

j=1 maxa∈A1(j)

∑N
k=1 pk(a)xk

≥ ∑N
j=1 φj +

∑m
j=1 maxa∈A1(j)

∑N
k=1 pk(a)φk.

Lemma 8.27

Let (x, w, y, z) is a feasible solution of (8.105). Then,

(1) wi ≥
∑N

j=1 pj(a)xj for all 1 ≤ i ≤ m, a ∈ A1(i).

(2) (x, y) is a feasible solution of (8.107) and x ≥ φ.

Proof

For the proof of part (1) take any 1 ≤ i ≤ m and a ∈ A1(i), say a ∈ B(k) for some i ≤ k ≤ m.

Then, we have wi ≥ wk ≥
∑N

j=1 pj(a)xj. For the proof of part (2) we have to verify the

constraints of (8.107). It is obvious that
∑N

j=1{δij − pij(a)}xj ≥ 0, 1 ≤ i ≤ N, a ∈ A2(i) and

xi +
∑N

j=1{δij − pij(a)}yj ≥ ri(a), 1 ≤ i ≤ N, a ∈ A2(i).

Take any 1 ≤ i ≤ m and a ∈ A1(i), say a ∈ B(k) for some i ≤ k ≤ m. Then,
∑N

j=1{δij − pij(a)}xj = xi −
∑N

j=1 pj(a)xj ≥ wi − wk ≥ 0

and
xi +

∑N
j=1{δij − pij(a)}yj = xi + yi −

∑N
j=1 pj(a)yj

≥ wi + si + zi −
∑N

j=1 pj(a)yj

≥ si + ta +
∑N

j=1 pj(a)yj −
∑N

j=1 pj(a)yj = ri(a).

Hence, (x, y) is a feasible solution of (8.107). Furthermore, x ≥ φ, because φ is the componentwise

smallest superharmonic vector.

Theorem 8.28

(1) The linear programs (8.105) and (8.106) have finite optimal solutions.

(2) If (x, w, y, z) is an optimal solution of (8.105), then x = φ and wj = maxa∈A1(j)

∑N
k=1 pk(a)φk.

8.7. SEPARABLE PROBLEMS 395

Proof

We know that (8.107) has a finite optimal solution (x∗, u∗) with x∗ = φ. Hence, program (8.105)

is feasible and bounded, implying that (8.105) and its dual (8.106) have finite optimal solutions.

Consider an optimal solution (x = φ, u) of (8.107). Then, it follows from Lemma 8.26 part (2)

that the corresponding solution (x = φ, w, y, z) is an optimal solution of (8.105), because
∑N

j=1 xj +
∑m

j=1 wj =
∑N

j=1 φj +
∑m

j=1 maxa∈A1(j)

∑N
k=1 pk(a)φk.

Let (x, w, y, z) is an optimal solution of (8.105). Then,
∑N

j=1 xj +
∑m

j=1 wj =
∑N

j=1 φj +
∑m

j=1 maxa∈A1(j)

∑N
k=1 pk(a)φk.

By Lemma 8.27, x ≥ φ and wj ≥ maxa∈A1(j)

∑N
k=1 pk(a)φk, 1 ≤ j ≤ m. Hence, x = φ and

wj = maxa∈A1(j)

∑N
k=1 pk(a)φk.

Lemma 8.28

For any pair of feasible solutions (x, w, y, z) and (y, µ, z, σ, x, λ,w, ρ) of (8.105) and (8.106),

respectively, the following equalities hold:

{

N
∑

j=1

{δij − pij(a)}xj

}

· xi(a) = 0, 1 ≤ i ≤ N, a ∈ A2(i) (8.108)

{xi −wi} · λi = 0, 1 ≤ i ≤ m (8.109)

{

wi −
N
∑

j=1

pj(a)xj

}

· wi(a) = 0, 1 ≤ i ≤ m, a ∈ B(i) (8.110)

{wi −wi+1} · ρi = 0, 1 ≤ i ≤ m− 1 (8.111)

Proof

From the constraints of (8.105) and the nonnegativity of the variables of (8.106) it follows that

the right hand sides of (8.108), (8.109), (8.110) and (8.111) are at least 0. If we add all left hand

sides, we obtain
∑N

i=1

∑

a∈A2(i)

∑N
j=1{δij − pij(a)}xj · xi(a) +

∑m
i=1{xi −wi} · λi +

∑m
i=1

∑

a∈B(i){wi −
∑N

j=1 pj(a)xj · wi(a) +
∑m−1

i=1 {wi − wi+1} · ρi =
∑N

j=1 xj ·
{

∑N
i=1

∑

a∈A2(i)
{δij − pij(a)}xi(a) +

∑m
i=1 δijλi −

∑m
i=1

∑

a∈B(i) pj(a)wi(a)
}

+

∑m
i=1 wi

{

− λi +
∑

a∈B(i)wi(a) + ρi − ρi−1

}

= 0,

since the terms between brackets are zero by the constraints of (8.106). Hence, the relations

(8.108), (8.109), (8.110) and (8.111) are proven.

From the complementary slackness property of linear programming is follows that optimal solu-

tions (x, w, y, z) and (y, µ, z, σ, x, λ,w, ρ) of (8.105) and (8.106), respectively, satisfy

{

N
∑

j=1

{δij − pij(a)}xj

}

· yi(a) = 0, 1 ≤ i ≤ N, a ∈ A2(i) (8.112)

{xi − wi} · µi = 0, 1 ≤ i ≤ m (8.113)

396 CHAPTER 8. SPECIAL MODELS

{

wi −
N
∑

j=1

pj(a)xj

}

· zi(a) = 0, 1 ≤ i ≤ m, a ∈ B(i) (8.114)

{wi − wi+1} · σi = 0, 1 ≤ i ≤ m− 1 (8.115)

{

xi +

N
∑

j=1

{δij − pij(a)}yj − ri(a)
}

· xi(a) = 0, 1 ≤ i ≤ N, a ∈ A2(i) (8.116)

{yi − zi − si} · λi = 0, 1 ≤ i ≤ m (8.117)

{

wi + zi −
N
∑

j=1

pj(a)yj − ta
}

· wi(a) = 0, 1 ≤ i ≤ m, a ∈ B(i) (8.118)

{zi − zi+1} · ρi = 0, 1 ≤ i ≤ m− 1 (8.119)

Lemma 8.29

Let (x, w, y, z) and (y, µ, z, σ, x, λ,w, ρ) be optimal solutions of (8.105) and (8.106), respectively.

Let mi = min{j ≥ i | ∑a∈B(j) wj(a) > 0} and ni = min{j ≥ i | ∑a∈B(j) {wj(a) + zj(a)} > 0}.
Define a policy f∞ ∈ C(D) such that

xi

(

f(i)
)

> 0 if
∑

a∈A2(i)

xi(a) > 0 (8.120)

wmi

(

f(i)
)

> 0 if
∑

a∈A2(i)

xi(a) = 0 and λi > 0 (8.121)

yi

(

f(i)
)

> 0 if
∑

a∈A2(i)

xi(a) = λi = 0 and yi

(

f(i)
)

> 0 (8.122)

wni

(

f(i)
)

> 0 if
∑

a∈A2(i)

xi(a) = λi =
∑

a∈A2(i)

yi(a) = 0 and
∑

a∈A1(i)

wni
(a) > 0 (8.123)

zni

(

f(i)
)

> 0 if
∑

a∈A2(i)

xi(a) = λi =
∑

a∈A2(i)

yi(a) =
∑

a∈A1(i)

wni
(a) = 0 (8.124)

Then,

(1) f∞ is well-defined.

(2) xi +
∑N

j=1{δij − pij(f)}yj = ri(f), i ∈ S+ = {j ∈ S | ∑a∈A2(i)
xj(a) + λj > 0}.

(3)
∑N

j=1{δij − pij(f)}xj = 0, i ∈ S.

Proof

(1) Suppose that
∑

a∈A2(i)
xi(a) = 0, λi > 0 and

∑

a∈B(j)wj(a) = 0 for all j ≥ i. Then, by the

constraints of (8.106), we obtain 0 =
∑m

j=i{ρj − ρj−1 − λj} = −ρi−1 −
∑m

j=i λj ≤ λi < 0,

implying a contradiction. Hence, f∞ is well-defined if
∑

a∈A2(i)
xi(a) = 0 and λi > 0. Because

∑

a∈B(m) {wm(a) + zm(a)} = 1 + µm + σm−1 > 0, ni is well-defined for all i. Therefore, the

policy f∞ is well-defined.

(2) Take any i ∈ S+.

If
∑

a∈A2(i)
xi(a) > 0, then by (8.116), xi +

∑N
j=1 {δij − pij(f)}yj = ri(f).

If
∑

a∈A2(i)
xi(a) = 0, then λi > 0, and by (8.109) and (8.117), xi = wi and yi = si + zi.

The definition ofmi implies that
∑

a∈B(j)wj(a) = 0, j = i, i+1, . . . , mi−1 and wmi

(

f(i)
)

> 0.

Hence, by the constraints of (8.106), we obtain ρj = ρj−1 + λj, j = i, i+ 1, . . . , mi − 1, i.e.

8.7. SEPARABLE PROBLEMS 397

ρj = ρi−1 +
∑j

k=i ≥ λi > 0, j = i, i+ 1, . . . , mi − 1. Then, by (8.111) and (8.119),

wj = wj+1, zj = zj+1 for j = i, i+ 1, . . . , mi − 1, implying wi = wmi
, zi = zmi

.

Since wmi

(

f(i)
)

> 0, by (8.118), we have wmi
+ zmi

−∑N
j=1 pj(f)yj − tf(i) = 0.

Hence,

ri(f) = si + tf(i) = yi − zi +wmi
+ zmi

−∑N
j=1 pj(f)yj

= yi − zi +wi + zi −
∑N

j=1 pj(f)yj = wi +
∑N

j=1 {δij − pij(f)}yj

= xi +
∑N

j=1 {δij − pij(f)}yj.

(3) If f(i) is determined by (8.120) or (8.122), the result follows from (8.108) and (8.112),

respectively. Suppose that f(i) is determined by (8.121), then λi > 0 and wmi

(

f(i)
)

> 0. By

(8.110), wmi
=
∑N

j=1 pj(f)xj. In the proof of part (2) is shown that λi > 0 implies

wmi
= wi = xi. Therefore,

∑N
j=1 {δij − pij(f)}xj = wmi

−∑N
j=1 pj(f)xj = 0.

Finally, suppose that f(i) is determined by (8.123) and (8.124). Then, by (8.110) or (8.114),

wni
=
∑N

j=1 pj(f)xj. Since
∑

a∈A2(i)
xi(a) =

∑

a∈A2(i)
yi(a) = 0, it follows from the con-

straints of (8.106) that µi > 0, implying by (8.113), that wi = xi. Furthermore, from the

definition of ni, it follows that
∑

a∈B(j){wj(a) + zj(a)} = 0, j = i, i+ 1, . . . , ni − 1. Then,

by the constraints of (8.106) it follows that σj > 0, j = i, i+ 1, . . . , ni − 1, and consequently,

by (8.115), wj = wj+1, j = i, i+ 1, . . . , ni − 1. Combining these results yields
∑N

j=1 {δij − pij(f)}xj = wi −
∑N

j=1 pj(f)xj = wni
−∑N

j=1 pj(f)xj = 0.

Lemma 8.30

Let (y, µ, z, σ, x, λ,w, ρ) be an optimal solution of (8.106), and let S+ and policy f∞ be defined

as in Lemma 8.29. Then, S+ is closed under P (f), i.e. pij(f) = 0 for every i ∈ S+ and j /∈ S+.

Proof

Suppose that pij(f) > 0 for some i ∈ S+ and j /∈ S+. Since i ∈ S+, the action f(i) is defined

either by (8.120) or by (8.121). Furthermore, since j /∈ S+,
∑

a∈A2(j)
xj(a) +

∑m
i=1 δijλi = 0.

If f(i) is defined by (8.120), then by the constraints of (8.106), we can write

0 =
∑

a∈A2(j)
xj(a) +

∑m
i=1 δijλi =

∑N
i=1

∑

a∈A2(i)
pij(a)xi(a) +

∑m
i=1

∑

a∈B(i) pj(a)wi(a)

≥ pij(f)xi

(

f(i)
)

> 0,

implying a contradiction.

If f(i) is defined by (8.121), then we obtain

0 =
∑

a∈A2(j)
xj(a) +

∑m
i=1 δijλi =

∑N
i=1

∑

a∈A2(i)
pij(a)xi(a) +

∑m
i=1

∑

a∈B(i) pj(a)wi(a)

≥ pj(f)wmi

(

f(i)
)

> 0,

which also gives a contradiction.

Lemma 8.31

Let (y, µ, z, σ, x, λ,w, ρ) be an extreme optimal solution of (8.106), and let S+ and policy f∞ be

defined as in Lemma 8.29. Then, the states of S\S+ are transient in the Markov chain with

transition matrix P (f).

398 CHAPTER 8. SPECIAL MODELS

Proof

Suppose that there exists a state j ∈ S\S+, which is recurrent under P (f). Since S+ is closed,

there is an ergodic class J ⊆ S\S+. Let J = J1 ∪ J2 ∪ J3, where J1, J2 and J3 are the states of J

in which f(i) is determined by (8.122), (8.123) and (8.124), respectively.

We first show that J2 = ∅. From the constraints of (8.106) it follows that for any j ∈ S\S+, we

have
∑N

i=1

∑

a∈A2(i)
pij(a)xi(a) +

∑m
i=1

∑

a∈B(i) pj(a)wi(a) = 0, i.e. every term in this equation

is 0. Suppose that i ∈ J2. Then, wni

(

f(i)
)

> 0, and consequently pij(f) = 0 for every j ∈ S\S+.

This contradicts that S\S+ contains an ergodic class J. For i ∈ J1, we have yi

(

f(i)
)

> 0. For

i ∈ J3, we have
∑

a∈A2(i)
{xi(a) + yi(a)} = 0,

∑

a∈B(j){wj(a) + zj(a)} = 0, i ≤ j ≤ ni − 1, and

zni

(

f(i)
)

> 0. From the constraints of (8.106) it follows that µi > 0 and σj > 0, i ≤ j ≤ ni − 1.

Next, consider the columns, denoted by a(i), b(i), c(i) and d(j), of the matrix of the constraints

of (8.106) corresponding to the positive variables: a(i) corresponds to yi

(

f(i)
)

, i ∈ J1, b
(i) to

zni

(

f(i)
)

, i ∈ J3, c
(i) to µi, i ∈ J3 and d(j) to σj, j = i, i+ 1, . . . , ni − 1 for i ∈ J3.

These columns have the following 2N + 2m components:

a
(i)
k =

δik − pik(f) k = 1, 2, . . . , N

0 k = N + 1, N + 2, . . . , 2N + 2m
(8.125)

b
(i)
k =

−pk(f) k = 1, 2, . . . , N

δni,k−N k = N + 1, N + 2, . . . , N +m

0 k = N +m+ 1, N +m+ 2, . . . , 2N + 2m

(8.126)

c
(i)
k =

δik k = 1, 2, . . . , N

−δi,k−N k = N + 1, N + 2, . . . , N +m

0 k = N +m+ 1, N +m+ 2, . . . , 2N + 2m

(8.127)

d
(j)
k =

0 k = 1, 2, . . . , N

δj,k−N − δj,k−N−1 k = N + 1, N + 2, . . . , N +m

0 k = N +m+ 1, N +m+ 2, . . . , 2N + 2m

j = i, i+ 1, . . . , ni − 1

(8.128)

Since (y, µ, z, σ, x, λ,w, ρ) is an extreme optimal solution of (8.106) and the above columns corre-

spond to strictly positive variables, these columns are linearly independent. Let p be the number

of elements in ∪i∈J3{i, i+1, . . . , ni−1}. Then, there are q = |J1|+2 · |J3|+p independent vectors.

Notice that all columns have zeros in the last N+m components. Since an ergodic class is closed,

the components k /∈ J, 1 ≤ k ≤ N of the vectors are zero, because for i ∈ J, δik = pik(f) = 0.

Furthermore, we observe that the components N + k, 1 ≤ k ≤ m are zero, except {ni | i ∈ J3}
(in b(i)), {i | i ∈ J3} (in c(i)) and ∪i∈J3{i, i+ 1, . . . , ni − 1} (in d(j)).

Hence, there are at most |J| + |J3| + p = |J1| + 2 · |J3| + p = q components (of the 2N = 2m

components) which can be positive.

Consider the contracted vectors, obtained from a(i), b(i), c(i) and d(j), by deleting the components

that are 0 in all vectors. Then, the q contracted vectors have at most q components and are

8.7. SEPARABLE PROBLEMS 399

still independent, i.e. they have exactly q components and the corresponding matrix is nonsin-

gular. On the other hand, the components of each vector add up to 0, which contradicts the

nonsingularity. This completes the proof of this lemma.

Theorem 8.29

The policy f∞, defined in Lemma 8.29, is an average optimal policy.

Proof

Let (x, w, y, z) be optimal solution of (8.105). Then, by Theorem 8.28, x = φ, and, by Lemma

8.29 part (3), φ = P (f)φ. Consequently, φ = P ∗(f)φ, where P ∗(f) is the stationary matrix of

P (f). Since the states of S\S+ are transient in the Markov chain with transition matrix P (f),

see Lemma 8.31, we have p∗ik(f) = 0 for every i ∈ S, k /∈ S+. Hence, we can write by Lemma

8.29 part (2),

φi(f
∞) = {P ∗(f)r(f)}i =

∑

k∈S p
∗
ik(f)rk(f) =

∑

k∈S+
p∗ik(f)rk(f)

=
∑

k∈S+
p∗ik(f){φk +

∑N
j=1[δkj − pkj(f)]yj}

= {P ∗(f)φ}i + {P ∗(f)[I − P (f)]y}i = {P ∗(f)φ}i = φi, i ∈ S,
i.e. f∞ is an average optimal policy.

8.7.6 Examples (part 2)

1. Replacement problem

Consider the following replacement problem:

State space S = {0, 1, . . . , N}; action sets A(i) = {r, 1, . . . , N}, where r is the action ’retain’

(keep the item for at least one more time period) and action 1 ≤ a ≤ N means that we replace

the item for another item of state a. The automobile replacement problem of Section 8.7.2 is an

example of a replacement problem.

Consider the following relevant data:

sa = the cost of buying an item of state a, 1 ≤ a ≤ N ;

ui = the trade-in value of an item of state i, 1 ≤ i ≤ N ;

ta = the expected cost of operating an item of state a for one time period, 1 ≤ a ≤ N ;

pij = the probability that an item of state i is transfered to state j in one time period, 1 ≤ i, j ≤ N.
The standard MDP for this model has the rewards and transition probabilities:

ri(a) =

{

−ti i = 1, 2, . . . , N ; a = r

ui − (sa + ta) i = 1, 2, . . . , N ; a = 1, 2, . . . , N

pij(a) =

pij i, j = 1, 2, . . . , N ; a = r

paj i, j = 1, 2, . . . , N ; a = 1, 2, . . . , N

The standard linear program (8.107) has 2 ·∑i∈S

∑

a∈A(i) = 2N (N + 1) constraints and 2N

variables. For the reduced formulation as separable problem, we obtain:

S1 = S; S2 = ∅; A1(i) = {1, 2, . . . , N}, 1 ≤ i ≤ N ; A2(i) = {r}, 1 ≤ i ≤ N .

400 CHAPTER 8. SPECIAL MODELS

Notice that m = N, B(i) = ∅, 1 ≤ i ≤ N − 1 and B(N) = {1, 2, . . . , N}. From the constraints

of (8.106) it follows that ρj =
∑j

k=1 λk and σj =
∑j

k=1 µk + j for j = 1, 2, . . . , N − 1.

Hence, the variables ρj and σj can be deleted from (8.106) for all j. Then, program (8.106) can

be formulated as

max
N
∑

i=1

−tixi +
N
∑

i=1

uiλi −
N
∑

a=1

(sa − ta)wa (8.129)

subject to the constraints
∑N

i=1{δij − pij}yi + µj − ∑N
a=1 pj(a)za + xj = 1, 1 ≤ j ≤ N

− ∑N
j=1 µj +

∑N
a=1 wa +

∑N
a=1 za = N

∑N
i=1{δij − pij}xi + λj −

∑N
a=1 pj(a)wa = 0, 1 ≤ j ≤ N

− ∑N
j=1 λj +

∑N
a=1 wa = 0

xi, yi, za, wa, λi, µi ≥ 0 for all i and a.

The relation −∑N
j=1 λj +

∑N
a=1 wa = 0 can be deleted, because this is implied by the previous

set of equalities, namely:
∑N

j=1

{∑N
i=1{δij −pij}xi +λj −

∑N
a=1 pj(a)wa

}

=
∑N

j=1 λj −
∑N

a=1wa.

Hence, the linear program becomes

max
N
∑

i=1

−tixi +
N
∑

i=1

uiλi −
N
∑

a=1

(sa − ta)wa (8.130)

subject to the constraints
∑N

i=1{δij − pij}yi + µj − ∑N
a=1 pj(a)za + xj = 1, 1 ≤ j ≤ N

− ∑N
j=1 µj +

∑N
a=1 wa +

∑N
a=1 za = N

∑N
i=1{δij − pij}xi + λj −

∑N
a=1 pj(a)wa = 0, 1 ≤ j ≤ N

xi, yi, za, wa, λi, µi ≥ 0 for all i and a.

This linear program has 6N variables and 2N + 1 constraints. Let (y, µ, z, x, λ,w) be an extreme

optimal solution of program 8.130. An optimal action in state i ∈ S, as defined in Lemma 8.29,

becomes for this replacement problem:

If xi > 0 or xi = λi = 0 and yi > 0: take the action r (retain).

If xi = 0 and λi > 0 or xi = λi = yi = 0 and
∑N

a=1wa > 0: take an action a with wa > 0.

If xi = λi = yi =
∑N

a=1wa = 0: take an action a with za > 0.

2. Inventory problem

Consider the inventory problem of Section 8.7.2. We have seen that there are N + 1 states

and that the total number of decisions is equal to 1
2 (N + 1)(N + 2). Therefore, the standard

LP formulation (8.107) has (N + 1)(N + 2) constraints and 2(N + 1) variables. In the reduced

formulation of this separable problem, we have

S1 = {0, 1, . . . , N − 1}; S2 = {N}.
A1(i) = {i+ 1, i+ 2, . . . , N} → B(i) = {i+ 1}, 0 ≤ i ≤ N − 1; A2(i) = {i}, 0 ≤ i ≤ N .

8.8. BIBLIOGRAPHIC NOTES 401

The dual linear program (8.106) for this inventory problem becomes

max

N
∑

i=0

−hixi +

N−1
∑

i=0

(−K + ci)λi +

N−1
∑

i=0

{−c(i+ 1)− hi+1}wi+1 (8.131)

subject to the constraints

y0 −
∑N

i=0

{∑

k≥i pk

}

yi + µ0 −
∑N−1

i=0

{∑

k≥i+1 pk

}

zi+1 + x0 = 1

yj −
∑N

i=j pi−jyi + µj −
∑N

i=j pi−jzi + xj = 1, 1 ≤ j ≤ N − 1

(1− p0)yN − p0zN + xN = 1

σj − σj−1 − µj + wj+1 + zj+1 = 1, 0 ≤ j ≤ N − 1

x0 −
∑N

i=0

{
∑

k≥i pk

}

xi + λ0 −
∑N−1

i=0

{
∑

k≥i+1 pk

}

wi+1 = 0

xj −
∑N

i=j pi−jxi + λj −
∑N

i=j pi−jwi = 0, 1 ≤ j ≤ N − 1

(1− p0)xN − p0wN = 0

ρj − ρj−1 − λj + wj+1 = 0, 0 ≤ j ≤ N − 1

ρ−1 = ρN−1 = σ−1 = σN−1 = 0; xi, yi, zi, wi, λi, µi, ρi, σi ≥ 0 for all i.

This linear program has 8N variables and 2(2N + 1) constraints. Let (y, µ, z, σ, x, λ,w, ρ) be an

extreme optimal solution of program (8.131). An optimal action in state i ∈ S, as defined in

Lemma 8.29, where mi = min{j ≥ i + 1 | wj > 0} and ni = min{j ≥ i + 1 | wj + zj > 0},
becomes for this inventory problem:

If xi > 0: no order.

If xi = 0 and λi > 0: order mi − 1 items.

If xi = λi = 0 and yi > 0: no order.

If xi = λi = yi = 0: order ni − 1 items.

Remark

In the case that the optimal policy is an (s, S)-policy, the underlying Markov chain is unichained.

Then, a linear program with 4N variables and 2N + 2 constraints suffices (see Exercise 8.11).

8.8 Bibliographic notes

The general replacement model of Section 8.1.1 is strongly related to a paper by Gal ([100]), in

which paper the method of policy iteration was considered. With the same approach the average

reward case for an irreducible MDP can be treated. The replacement model with increasing

deterioration, that has a control-limit optimal policy, appears in Derman ([68]). The skip to

the right model with failure is due to Kallenberg ([152]). The separable replacement model was

discussed in Sobel ([277]). It may also be viewed as a special case of the SER-SIT game (see

([214]).

The surveillance-maintenance-replacement problem is taken from Derman ([69]). The problem

of optimal repair allocation in a series system appears in [159]. We follow a proof contributed by

402 CHAPTER 8. SPECIAL MODELS

Weber (personal communication). Section 8.2.3 is taken from a paper by Katehakis and Derman

(see [160]).

The section production and inventory control is taken from Denardo ([63]): Chapter 5 (for our

sections 8.3.1 and 8.3.2), Chapter 6 (for our section 8.3.3) and Chapter 7 (for our section 8.3.4).

The production control problem has received considerable attention in the literature. Dynamic

programming formulations for the concave-cost case were due initially to Wagner and Whithin

([317]), and, independently, to Manne ([192]). Extensions to backlogging are due to Zangwill

([339], [340]) and Manne and Veinott ([194]). Work on single-critical-number policies include

Bellman, Glicksberg and Gross ([18]), Karlin ([156]) and Veinott ([307], [309]). The notion that

the ordering cost can be absorbed into the holding cost may be implicit in Beckmann ([16]). Scarf

([251]) analyzed an inventory model with set-up costs, backlogging and convex operating costs.

He introduced K-convexity and used it to show that an (s, S) policy is optimal. Veinott ([309])

analysed this model with quasi-convex costs. Porteus [221]) introduced K-quasi-convexity.

The queueing control models are taken from Sennott ([262]) with the exception of the admis-

sion control of an M/M/1 queue model which can be found in Puterman ([227]). Lippman ([182])

applies uniformization to characterize optimal policies in several exponential queueing control sys-

tems. Serfozo ([264]) formalizes this approach in the context of countable-state continuous-time

models. Bertsekas ([22]) and Walrand ([318]) contain many interesting applications of the use of

uniformization in queueing control models.

The material of section 8.5 is taken from Ross [239] (sections 8.5.1, 8.5.5, 8.5.6 and 8.5.7) and

Walrand [318] (sections 8.5.2, 8.5.3 and 8.5.4). The work of section 8.5.1 appeared in [72]. The

classical µc-rule is given by Cox and Smith ([47]). The proof of Theorem 8.11 for the optimality

of the µc-rule is due to Buyukkoc, Varaiya and Walrand ([36]). The optimality of the threshold

policy in section 8.5.3 was shown by Lin and Kumar ([180]). The first to prove the optimality

of the SQP was Winston ([335]), in 1977. The proof of Theorem 8.14 is a variant of a proof

given by Ephremides, Varaiya and Walrand ([78]). Theorem 8.15 is from Ross ([239]). Theorem

8.16 is due to Bruno, Downey and Frederickson [35]) and Theorem 8.17 to Glazebrook ([106]).

The alternative proof of the optimality of the LEFT policy is from Pinedo and Weiss ([216]).

For the work on stochastic minimizing the makespan or the time until one of the processors is

idle we refer to Weber ([319]). The tandem queue model can be found in Weiss [321]), which

presents a nice survey of multiserver scheduling models. Another survey of such models is given

by Pinedo and Schrage ([215]). For dynamic programming and stochastic scheduling we refer

also to Koole ([171]). In [131] Hordijk and Koole have introduced a new type of arrival processes,

called a Markov decision arrival process. This arrival process can be controlled and allows for an

indirect dependence on the number of customers in the queues. As a special case, they showed

the optimality of LEPT and the µc-rule in the last node of a controlled tandem network for

various cost structures.

The fundamental contribution on the multi-armed bandit problem, the optimality of the index

policy, is due to Gittins ([104] and [105]). The presentation of this result as formulated in the

proofs of Lemma 8.20 and Theorem 8.23 is taken from Ross ([239]). Other proofs of this theorem

8.9. EXERCISES 403

are given by Whittle ([332] and [333]) who introduced the term Gittins index in honor to Gittins,

Katehakis and Veinott ([162]), Weber ([320]), Tsitsiklis ([291] and [292]) and Weiss ([322]), who

in fact established an index theorem for the more general branching bandits model. Bertsimas

and Nino-Mora ([23]) provided a proof for many other classes of multi-armed bandit problems.

The parametric linear programming method with complexity O(N 3) was proposed by Kallenberg

([149]). He improved an order O(N 4) method of Chen and Katehakis ([38]), who have introduced

the linear program (8.80). In [205] Nino-Mora presents a fast-pivoting algorithm that computes

the N Gittins indices in the discounted and undiscounted case by performing 2
3N

3 + O(N 2)

arithmetic operations. The interpretation as restart-in-k problem is given by Katehakis and

Veinott ([162]) and the method of the largest-remaining-index rule is due to Varaiya, Walrand

and Buyukkoc ([306]). The bisection/successive approximation method was proposed by Ben-

Israel and Fläm ([20]). Other contributions on this subject were made by Katehakis and Rothblum

([161], who considered the problem under alternative optimality criteria, namely sensitive discount

optimality, average reward optimality and average overtaking optimality, and Glazebrook and

Owen ([107]).

De Ghellinck and Eppen ([52]) examined separable MDPs with the discounted rewards as

optimality criterion. They streamlined the linear program of D’Epenoux ([67]). Denardo intro-

duced in [57] the notion of zero-time transitions. Discounted and averaging versions (for the

unichain case) are then shown to yield policy iteration and linear programming formulations. In

the discounted case, the linear program is identical to that of De Ghellinck and Eppen. Kallen-

berg ([150]) has shown that for the average reward criterion also in the multichain case a simpler

linear program can be used to solve the original problem. The automobile replacement problem

was first considered by Howard ([134]). The totally separable problem of Exercise 8.12 is a special

case of a stochastic game studied in [214] and [277].

8.9 Exercises

Exercise 8.1

a. Show for the case in which i and j are the two smallest indices of C0(x) the nonpositivity

of the inductive hypothesis H(m+ 1) (see (8.21)), i.e. assuming H(m) show that

µj{Tm+1(1j, x)− Tm+1(0j, x)} ≤ 0.

b. Show for the case f∗(x) < i < j of the inductive hypothesis H(m+ 1).

Exercise 8.2

Consider the following production and inventory control model without backlogging:

T = 5; D1 = 1, D2 = 4, D3 = 5, D4 = 3, D5 = 1.

ct(a) =

{

0 if a = 0

7 if a ≥ 1
, 1 ≤ t ≤ T ; ht(i) = i, i ≥ 0, 1 ≤ t ≤ T.

Compute an optimal production plan.

404 CHAPTER 8. SPECIAL MODELS

Exercise 8.3

Consider the production and inventory control model of Exercise 8.2 with backlogging.

Let the shortage cost functions be ht(i) = −2i, i ≤ 0, 1 ≤ t ≤ T.
Compute an optimal production plan.

Exercise 8.4

Consider the following inventory control model with a single-critical-number optimal policy.

Let s = 2; k = 3; R = 5; α = 0.9; T = 4.

The demand is as follows:

t pt(0) pt(1) pt(2) pt(3) pt(4) pt(5)

1 0.2 0.3 0.3 0.1 0.1 0.0

2 0.0 0.1 0.2 0.3 0.3 0.1

3 0.0 0.1 0.2 0.3 0.3 0.1

4 0.2 0.3 0.3 0.1 0.1 0.0

Compute an optimal single-critical-number policy.

Exercise 8.5

Consider the following inventory control model with fixed ordering cost, in which backlogging is

not allowed.

T = 4; α = 0.9; kt = 3, 1 ≤ t ≤ 4; Kt = 1, 1 ≤ t ≤ 5; Rt = 5, 1 ≤ t ≤ 4; e(i) = 2i, i ≥ 0.

ht(a) = (1− α)kta, 1 ≤ t ≤ 4.

The demand is as follows:

t pt(0) pt(1) pt(2) pt(3) pt(4) pt(5)

1 0.2 0.3 0.3 0.1 0.1 0.0

2 0.0 0.1 0.2 0.3 0.3 0.1

3 0.0 0.1 0.2 0.3 0.3 0.1

4 0.2 0.3 0.3 0.1 0.1 0.0

Compute an optimal policy.

Exercise 8.6

Show that X ≥st Y implies X+ ≥st Y
+ and X− ≤st Y

−.

Exercise 8.7

Show that E{C1,2} ≤ E{C2,1} ⇔ λ1 − µ1 ≥ λ2 − µ2, where E{C1,2} is defined in section 8.5.7.

Exercise 8.8

Consider the model of Example 8.2 with N sequences of nonnegative numbers. Let for any k

the sequence {xk
n | n = 1, 2, . . .} be nonincreasing in n. Show that the policy that chooses the

sequence with the largest next reward (such policy is called a myopic policy) is optimal.

8.9. EXERCISES 405

Exercise 8.9

Consider the model of Example 8.2 with α = 0.5 and with as the three sequences:

x1 = {3, 2, 4, 0, 0, . . .}, x2 = {2, 3, 2, 0, 0, . . .} and x3 = {2, 1, 4, 0, 0, . . .}.
What is the optimal order of the sequences to maximize

∑∞
t=1 α

t−1 Rt.

Exercise 8.10

Consider a multi-armed bandit problem with three projects and with discount factor α = 1
2 .

The data of the projects are:

Project 1: S1 = {1, 2, 3, 4}; r11 = 4, r12 = 2, r13 = 4, r14 = 0.

p1
12 = p1

23 = p1
34 = p1

44 = 1 (the other transition probabilities are 0).

Project 2: S2 = {1, 2, 3, 4}; r21 = 2, r22 = 6, r23 = 2, r24 = 0.

p2
12 = p2

23 = p2
34 = p2

44 = 1 (the other transition probabilities are 0).

Project 3: S3 = {1, 2, 3, 4}; r31 = 3, r32 = 3, r33 = 4, r44 = 0.

p3
12 = p3

23 = p3
34 = p3

44 = 1 (the other transition probabilities are 0).

a. Determine the 12 Gittins indices by the interpretation with stopping times.

b. Determine the 12 Gittins indices by the parametric linear programming method.

c. Determine the 12 Gittins indices by the restart-in-k method.

d. Determine the 12 Gittins indices by the largest-remaining-index method.

e. If the starting state is (1, 1, 1), i.e. in each project we start in state 1, what will be the

sequence of the projects in an optimal policy?

Exercise 8.11

Consider the inventory model as described in Section 8.7.6. Show that in the unichain case a

linear program with 4N variables and 2N + 2 constraints suffices.

Exercise 8.12

Consider the totally separable problem, i.e. an MDP with S = {1, 2, . . . , N}; A(i) = {1, 2, . . . ,M},
i ∈ S : ri(a) = si + ta, (i, a) ∈ S × A and pij(a) = pj(a), (i, a) ∈ S ×A, j ∈ S.

Let the action a∗ be defined by ta∗ +
∑N

j=1 pa∗jsj = max1≤a≤M

{

ta +
∑N

j=1 pajsj
}

.

Show that the policy f∞∗ with f(i) = a∗, i ∈ S, is an average optimal policy for this totally

separable problem.

406 CHAPTER 8. SPECIAL MODELS

Chapter 9

Other topics

9.1 Complexity results

9.1.1 Complexity theory

9.1.2 MDPs are P-complete

9.1.3 DMDPs are in NC
9.1.4 For discounted MDPs, the policy iteration and linear programming method are

strongly polynomial

9.2 Additional constraints

9.2.1 Introduction

9.2.2 Infinite horizon and discounted rewards

9.2.3 Infinite horizon and total rewards

9.2.4 Infinite horizon and total rewards for transient MDPs

9.2.5 Finite horizon

9.2.6 Infinite horizon and average rewards

9.2.7 Constrained MDPs with sum of discounted rewards and different discount factors

9.2.8 Constrained discounting MDPs with two discount factors

9.3 Multiple objectives

9.3.1 Multi-objective linear programming

9.3.2 Discounted rewards

9.3.3 Average rewards

9.4 The linear program approach for average rewards revisited

9.5 Mean-variance tradeoffs

9.5.1 Formulations of the problem

9.5.2 A unifying approach

9.5.3 Determination of an optimal solution

9.5.4 Determination of an optimal policy

9.5.5 The unichain case

9.5.6 Finite horizon variance-penalized MDPs

407

408 CHAPTER 9. OTHER TOPICS

9.6 Deterministic MPDS

9.6.1 Introduction

9.6.2 Average costs

9.6.3 Discounted costs

9.7 Semi-Markov decision processes

9.7.1 Introduction

9.7.2 Model formulation

9.7.3 Examples

9.7.4 Discounted rewards

9.7.5 Average rewards - general case

9.7.6 Average rewards - special cases

9.7.7 Continuous-time Markov decision processes

9.8 Bibliographic notes

9.9 Exercises

9.1 Complexity results

9.1.1 Complexity theory

We present a summary of computational complexity. Most of the readers will have some intuitive

idea about what is meant by the running time of an algorithm. Although this intuition will be

sufficient to understand the substance of the matter, in some cases it is important to formalize this

intuition. This is particular the case when we deal with concepts like P , NP , NC, NP-complete

and P-complete. Most complexity results are framed in terms of decision problems, i.e. problems

that require a yes/no response for each input.

Below we make some of the notions more precise. We shall not elaborate all technical details.

For a more background information we refer to the books of Aho, Hopcroft and Ullman ([1]),

Garey and Johnson ([102]), Papadimitriou ([210]) and Schrijver ([253]).

An algorithm is a finite list of instructions to solve any instance of some problem for which

the algorithm is developed. The classical mathematical formalization of an algorithm is the

Turing machine. However, for our goal an informal description will be sufficient. We measure

the running time of an algorithm as the total number of elementary steps to solve the problem.

Examples of elementary steps are: variable assignments, instructions such as for, repeat, while,

if, then, else, go to, and simple arithmetic operations like addition, subtraction, multiplication

and division.

We are interested in a good upper bound of the number of elementary steps as a function of the

input size. The input to an algorithm usually consists of a list of numbers. If these numbers are

integers, we can encode them in binary representation with blog2 nc+1 bits for storing an integer

n. The input size of an instance is the total number of bits needed for the binary representation.

9.1. COMPLEXITY RESULTS 409

We are special interested in the rates of growth asymptotically, i.e. when the input size tends

to infinity. We now will describe the symbols O, Ω and Θ, which are used in the context of

comparing the rates of growth.

Let f(n) and g(n) be two nonnegative functions of n. We say that f(n) = O
(

(g(n)
)

if there

exist c and n0, such that f(n) ≤ c · g(n) for all n ≥ n0. This means, informally, that f does not

grow at a faster rate than g. For example, 5n3 + 3n = O(n3). We say that f(n) = Ω
(

(g(n)
)

if

there exist c and n0, such that f(n) ≥ c · g(n) for all n ≥ n0. This means, informally, that f does

not grow at a slower rate than g. We say that f(n) = Θ
(

(g(n)
)

if there exist c1, c2 and n0, such

that c1 · g(n) ≤ f(n) ≤ c2 · g(n) for all n ≥ n0. This means, informally, that f and g have the

same rate of growth. A function f has a polynomial growth if f(n) = O(np) for some p ∈ N; f

has an exponential growth if f(n) = Ω(cn) for some c > 1.

The most commonly used measure of time complexity, the worst-case time complexity, of

an algorithm A is the maximum amount of time taken on any input of size n; we denote this

quantity as tA(n). Time complexities are classified by the nature of the function tA(n). For

instance, an algorithm with tA(n) = O(n) is called a linear time algorithm, and an algorithm

with tA(n) = Ω(2n) is said to be an exponential time algorithm. An algorithm A is said to be of

polynomial time if its running time is upper bounded by a polynomial expression in the size of

the input for the algorithm, i.e. tA(n) = O(nk) for some constant k. An algorithm is said to run

in polylogarithmic time if tA(n) = O
(

(log n)k
)

, for some constant k.

In some contexts, especially in optimization, one differentiates between strongly polynomial

and (weakly) polynomial algorithms. For these concepts not only the running time is of impor-

tance, but also the space used by the algorithm.

Consider a problem with an input of size n, given by n bits. A polynomial time algorithm is

allowed to perform elementary steps with these bits where the total number of steps is bounded

by a polynomial in n. What often is neglected in the analysis of an algorithm is the potentially

growing size of numbers. Note that the well-known algorithm to determine the decimal digits of

2k - by using as input size of k the n = log2 k bits (roughly speaking) and iteratively n times

squaring 2 - needs a linear number of elementary steps, namely n multiplications. However, the

space to represent the output 2k is proportional to log2 2k = k = 2n, which is exponential in the

input size n.

An algorithm is said to be of strongly polynomial if:

(1) the number of elementary steps in the arithmetic model of computation is bounded by a

polynomial in the size of the input;

(2) the space used by the algorithm is bounded by a polynomial in the size of the input.

Any algorithm with these two properties can be converted to a polynomial time algorithm by re-

placing the arithmetic operations by suitable algorithms for performing the arithmetic operations

on a Turing machine. If the second requirement above is omitted, then this is not true anymore.

An algorithm which runs in polynomial time but which is not strongly polynomial is said to run

in (weakly) polynomial time. The linear programming problem has a polynomial time algorithm

(see [157]), but a strongly polynomial algorithm for linear programming is not known.

410 CHAPTER 9. OTHER TOPICS

We now present the formal descriptions of the complexity classes P , NP , NC and the concepts

of reducibility, NP-complete and P-complete problems.

The class P
We say that a decision problem belongs to the class P if there is an algorithm A and a number

k such that for each instance I of the problem the algorithm A will produce a solution in time

O(nk), where n is the input size, i.e. the number of bits in the input string that represents I .

The set P is also called the set of easy decision problems; other synonyms are tractable, efficient

or fast.

The class NP
A decision problem belongs to the class NP if there is an algorithm A that has the following

property: associated with each instance I for which the answers is yes, there exists a certificate

C(I) such that the algorithm A recognizes in polynomial time that I is a yes-problem. Hence,

NP is the class of decision problems for which it is easy to check the correctness of a problem

with a yes answer with the aid of special information, the certificate. We are not asking to find

a solution, but only to verify that an alleged yes-solution really is correct.

The class NP includes many combinatorial optimization problems. As an example, consider

the graph-coloring problem: given a graph and a positive integer k, is it possible to color the

vertices with k colors such that neighbors have different colors. This problem is not known to be

in P . It is however in NP , and here is the algorithm and the certificate. Let G be a graph and

k a positive integer such that G is k-colorable. The certificate of G is a list of the colors that get

assigned to each vertex of G in some proper k-coloring of the vertices of G. We have to check

that for each edge of G the two endpoints have a different color. This can be done in O(m) time,

where m is the number of edges.

The class NC
A decision problem belongs to the classNC if there is an algorithmA for a parallel computer with

p processors and numbers k and l such that p is polynomial in the input size n, i.e. p = O(nk),

and for each instance I of the problem the algorithm A will produce a solution in polylogaritmic

time, i.e. in O
(

(log n)l
)

.

Obviously, by multiplying the polylogarithmic time and the polynomial number of processors,

all problems in NC are in P . The great enigma for parallel computation, analogous to the

P = NP question for sequential computation, is whether P = NC. That is, while P = NP asks

whether there are problems in NP that are inherently nonpolynomial, P = NC asks whether

there are problems in P that are inherently sequential.

Polynomial reducibility

Let P and Q be two decision problems. We say that P can be polynomial reduced to Q if every

instance I of P in polynomial time can be converted to an instance J of Q in such a way that I

and J have the same answer (’yes’ or ’no’). Hence, P is not harder to solve than Q, i.e. if there

exists a polynomial algorithm for Q, there also exists a polynomial algorithm for P .

9.1. COMPLEXITY RESULTS 411

NP-complete

A problem Q is NP-complete if: (1) Q ∈ NP ; (2) Any P ∈ NP is polynomial reducible to Q.

So, NP-complete problems are the hardest problems in NP . For many decision problems it

is shown that they are NP-complete. No polynomial algorithm is known for solving an NP-

complete problem. The open question whether P = NP basically boils down to whether any

NP-complete problem can be solved in polynomial time.

Obviously, P ⊆ NP . P consists of the problems for which it is ’easy’ to find a solution and

NP consists of the problems for which it is ’easy’ to check a solution of a yes-problem. One

generally sets the problems in P against the NP-complete problems, although there is still no

proof that these two concepts really are distinct.1 For almost every combinatorial optimization

problem one has been able either to prove that it is solvable in polynomial time, or that it is

NP-complete. But theoretically it is still a possibility that these two concepts are just the same.

Example 9.1 The satisfiability problem (SAT)

A Boolean variable x is a variable that can assume only the values true and false. Boolean

variables x and y can be combined by the logical connectives and (denoted by x ∧ y) and or

(denoted by x ∨ y); furthermore, for each Boolean variable x we have the negation (denoted by

x). One can form Boolean formulas in much the same way that real variables can be combined

by arithmetic operations to form algebraic expressions. For example x3 ∧ x2 ∧ (x1 ∨ x2 ∨ x3) is a

Boolean formula.

Given a value t(x) for each variable x, we can evaluate a Boolean formula, just as we would

an algebraic expression. For example, the Boolean formula x3 ∧ x2 ∧ (x1 ∨ x2 ∨ x3), evaluated at

the set of values t(x1) = true, t(x2) = true and t(x3) = false, gives the value true.

So, the formula above can be made true by some appropriate assignment: such Boolean

formula is called satisfiable. Not all Boolean formulas are satisfiable; there are some that cannot

be made true by any assignment, essentially because they are encodings of a contradiction.

For example, consider (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x3 ∨ x1) ∧ (x1 ∨ x2 ∨ x3).

For satisfiability, all subformulas within parentheses (called clauses) that contain literals (that is,

variables or negations) must be true. The first clause says that - in order to have satisfiability - at

least one of the variables must be true. The next three clauses force all variables to be the same,

so all variables must be true; but then, the last clause is false. Hence, the formula is unsatisfiable.

The satisfiability problem (SAT) is as follows: Given m clauses C1, C2, . . . , Cm involving the

variables x1, x2, . . . , xn, is the formula C1 ∧ C2 ∧ · · · ∧Cm satisfiable?

Of course, SAT can be solved by trying all possible assignments to see if one satisfies the formula.

This is not an efficient algorithm, however, since there are 2n assignments, so the algorithm has

an exponential running time.

The theory of NP-completeness started with Cooks paper [46], which contains the proof that

SAT is NP-complete. The wealth of the consequences of Cooks work and its close relationship

to combinatorial optimization were made clear by Karp (see [158]).

1The P = NP question is one of the seven Millennium Problems and solving it brings one million dollar from

the Clay Mathematics Institute. See also www.claymath.org/millennium/P vs NP/

412 CHAPTER 9. OTHER TOPICS

P-complete

The notion of P-complete decision problems is useful in the analysis of both: (1) which problems

are difficult to parallelize effectively; (2) which problems are difficult to solve in polynomial space.

Formally, a decision problem Q is P-complete if: (1) Q ∈ P ; (2) any P ∈ P is reducible to Q by

using an appropriate reduction.

The specific type of reduction used varies and may affect the exact set of P-complete problems.

If we use NC-reductions, that is, reductions which can operate in polylogarithmic time on a

parallel computer with a polynomial number of processors, then - under the unproven assumption

that NC 6= P - all P-complete problems lie outside NC.
So, P-complete problems cannot be effectively parallelized, because otherwise all problems

in P can be solved in polylogarithmic time on a parallel computer with a polynomial number

of processors, which contradicts NC 6= P . P-complete problems are the hardest problems in P .

No polylogarithmic algorithm on a parallel computer with a polynomial number of processors is

known for solving a P-complete problem. The open question whether P = NC basically boils

down to whether any P-complete problem can be solved in polylogarithmic time on a parallel

computer with a polynomial number of processors.

The basic P-complete problem under NC-reductions is the circuit value problem (CVP). It

plays the same role in parallel complexity as the SAT problem in NP-complete problems.

A circuit C is a finite sequence of triples, i.e. C = {(ai, bi, ci), 1 ≤ i ≤ N}. For each 1 ≤ i ≤ N ,

ai is one of the Boolean operations false, true, and and or; bi, ci are nonnegative integers smaller

than i. If ai is either false or true, then the triple is called an input and bi = ci = 0. If ai is

either and or or, then the triple is called a gate and bi, ci ≥ 1. The value of a triple is defined

recursively as follows. First, the value of the input (true, 0, 0) is true, and the value of the input

(false, 0, 0) is false. The value of a gate (ai, bi, ci) is the Boolean operation ai applied to the value

of the bi-th and ci-th triples. The value of the circuit C is the value of the last gate. Finally, the

CVP is the following problem: given a circuit C, is its value true? Ladner has shown (see [175])

that the CVP problem is P-complete under NC-reductions.

Example 9.2

Let C = {(false, 0, 0), (true, 0, 0), (and, 1, 2), (or, 3, 1)}. The values of the triples 1 and 2, the

inputs, are false and true, respectively. Triple 3, an and-gate, has value false ∧ true = false;

triple 4, an or-gate, has value false ∨ false = false. Hence, the value of the circuit is false.

P-hard and NP-hard problems

A problem P is P-hard if all problem in P can be reduced to P with respect to an appropriate

reduction. A P-hard problem P is as hard as any problem in P . To show that P is P-hard it is

sufficient to show that some P-complete problem can be reduced to P . For a P-hard problem it

is not necessary to belong to P .

A problem P is NP-hard if all problem in NP can be polynomially reduced to P . An NP-

hard problem P is as hard as any problem in NP . To show that P is NP-hard it is sufficient

9.1. COMPLEXITY RESULTS 413

to show that some NP-complete problem can be polynomially reduced to P . For an NP-hard

problem it is not necessary to belong to NP .

9.1.2 MDPs are P-complete

Consider an MDP with one of the following optimality criteria:

(1) total expected reward over a finite horizon;

(2) total expected discounted reward over an infinite horizon;

(3) average expected reward over an infinite horizon.

We shall show that in all three cases the MDP is P-complete.

(1) Total expected reward over a finite horizon with T stages

We first show that this MDP belongs to the class P . Let M :=
∑N

i=1 |A(i)|. As input size of

this problem we take n := max(M, T). Then, for each 1 ≤ t ≤ T , step 2 of Algorithm 2.1 has

complexity O(M ·N), and the overall complexity of Algorithm 2.1 is O(T ·M ·N) = O(n3), which

is polynomial in the size n of the problem.

Next, we show that any CVP can be reduced to an MDP in polynomial time. This MDP will

have total reward 0 or negative for any given starting state, so is may be considered as a decision

problem, and the value of the CVP is true if and only if the optimal total reward is 0 for starting

state N , the size of the circuit.

Let C = {(ai, bi, ci), 1 ≤ i ≤ N} be a circuit. We construct the following MDP. The state

space S := {0, 1, . . . , N}, where state i corresponds to the triple (ai, bi, ci) for i = 1, 2, . . . , N .

State 0 is an absorbing state without rewards, i.e. there is only one action which has probability

1 to stay in state 0 and the reward is 0. If state i corresponds to an input (ai, 0, 0), then there

is also only one action in this state which has probability 1 to transit to state 0 and the reward

is 0 if ai = true and -1 if ai = false. If ai is an or gate, then there are two actions in state i,

each with reward 0 and deterministic transitions; the first action has a transition to state bi and

the second action has a transition to state ci. So, in such state one can decide whether the next

state is bi or ci. If ai is an and gate, there is only one action in state i, which has reward 0 and

transitions to the states bi and ci, each with probability 1. As initial state we take the last state

N and the time horizon is also N , the size of the circuit.

The following observations are obvious: (1) this construction is a polynomial in time complex-

ity; (2) the total reward is either 0 or negative; (3) at each stage with probability 1 the system

moves to a smaller state, so we end after at most T = N steps in the absorbing state 0.

We claim that the optimal expected total reward from starting state N is 0 if and only if the

value of C is true. Suppose that the optimal expected reward, starting in state N , is 0. Then,

it follows that there are decisions so that the state with negative rewards, i.e. inputs (false, 0, 0)

are not reached. Thus these decisions are choices of a true gate among bi, ci for each or gate of

the circuit, so that its overall value is true. Conversely, if the value is true, there must be a way

to choose an input gate for each or gate so that the false inputs are not reached, or, equivalently,

414 CHAPTER 9. OTHER TOPICS

the states with negative rewards are not visited. Hence, the optimal expected total reward from

starting state N is 0.

Notes

1. The above proof shows that even the stationary finite horizon problem is P-hard.

2. As input size n we have chosen n = max(M, T). If we don’t allow that the input size is

dependent on the horizon T , it is not known whether the stationary finite horizon problem is

in P , because of the following difficulty. We could be given a stationary process with horizon

T = 2N and the input size could be of size O(N). Still, the dynamic programming algorithm

for this problem would take time proportional to N · T , and thus exponential in the input

size.

3. In the nonstationary case, the input must specify the transition probabilities and rewards for

each 1 ≤ t ≤ T , and so the input size is at least T .

(2) Total expected discounted reward over an infinite horizon

Since an MDP with optimality criterion the total expected discounted reward over an infinite

horizon can be formulated as a linear programming problem, and since the linear program problem

belongs to P , MDP also belongs to P . We can also show that CVP can be reduced to an MDP

in polynomial time. It is easy to verify that essentially the same construction as for the finite

horizon works also for an MDP with discounted rewards.

(3) Average expected reward over an infinite horizon

An MDP with optimality criterion the average expected reward over an infinite horizon can be

formulated as a linear programming problem, so this MDP also belongs to P . We can also show

that CVP can be reduced to an MDP in polynomial time, but we need a modification of our

construction: we don’t need state 0, but we need transitions from the states corresponding to the

inputs back to the initial state.

Below we present two examples with each of these three criteria: in the first example the value

of the circuit is false and in the second example the value of the circuit is true.

Example 9.3

Let C = {(false, 0, 0), (true, 0, 0), (and, 1, 2), (or, 3, 1)}. This is the same circuit as in Example

9.2 and the value of the circuit is false.

The data of the MDP for the criterion of total reward over a finite horizon are:

T = 4; S = {0, 1, 2, 3, 4}; A{0} = A{1} = A{2} = A{3} = {1}, A{4} = {1, 2};
p00(1) = 1, p10(1) = 1, p20(1) = 1, p31(1) = p32(1) = 1

2 , p43(1) = 1, p41(2) = 1;

r0(1) = 0, r1(1) = −1, r2(1) = 0, r3(1) = 0, r4(1) = 0, r4(2) = 0.

The value of this MDP, starting in state 4, is −1
2 6= 0.

The data of the MDP for the criterion of total discounted reward over an infinite horizon are the

same (without T). Let α = 1
2 . The value of this MDP, starting in state 4, is −1

8 6= 0.

The data of the MDP for the criterion of average reward over an infinite horizon are:.

9.1. COMPLEXITY RESULTS 415

S = {1, 2, 3, 4}; A{1} = A{2} = A{3} = {1}, A{4} = {1, 2};
p14(1) = 1, p24(1) = 1, p31(1) = p32(1) = 1

2 , p43(1) = 1, p41(2) = 1;

r1(1) = −1, r2(1) = 0, r3(1) = 0, r4(1) = 0, r4(2) = 0.

The value of this MDP, starting in state 4, is −1
6 6= 0.

Example 9.4

Let C = {(false, 0, 0), (true, 0, 0), (and, 1, 2), (or, 3, 2)}. The values of the triple 1 and 2, the

inputs, are false and true, respectively. Triple 3, an and-gate, has value false ∧ true = false;

triple 4, an or-gate, has value false ∨ true = true. Hence, the value of the circuit is true.

The data of the MDP for the criterion of total reward over a finite horizon are:

T = 4 : S = {0, 1, 2, 3, 4}; A{0} = A{1} = A{2} = A{3} = {1}, A{4} = {1, 2};
p00(1) = 1, p10(1) = 1, p20(1) = 1, p31(1) = p32(1) = 1

2 , p43(1) = 1, p42(2) = 1;

r0(1) = 0, r1(1) = −1, r2(1) = 0, r3(1) = 0, r4(1) = 0, r4(2) = 0.

The value of this MDP, starting in state 4, is 0.

The data of the MDP for the criterion of total discounted reward over an infinite horizon are the

same (without T). Let α = 1
2 . The value of this MDP, starting in state 4, is 0.

The data of the MDP for the criterion of average reward over an infinite horizon are:.

S = {1, 2, 3, 4}; A{1} = A{2} = A{3} = {1}, A{4} = {1, 2};
p14(1) = 1, p24(1) = 1, p31(1) = p32(1) = 1

2 , p43(1) = 1, p42(2) = 1;

r1(1) = −1, r2(1) = 0, r3(1) = 0, r4(1) = 0, r4(2) = 0.

The value of this MDP, starting in state 4, is 0.

9.1.3 DMDPs are in NC

An MDP is said to be deterministic if each action uniquely determines the next state of the

process. In other words, the probability distribution associated with each action assigns proba-

bility 1 to one of the states. Deterministic Markov decision problems are denoted as DMDPs. A

DMDP can be conveniently represented as a network, i.e. a directed graph with weights on the

arcs. The vertices of the graph correspond to the states of the DMDP and the arcs correspond

to the actions. If in state i action a ∈ A(i) is chosen which has a transition with probability 1

to state j, then the graph has an arc from state i to state j with as weight the cost ci(a) (we

assume in this section that we have costs instead of rewards, which can be assumed without loss

of generality by taking ci(a) := −ri(a) for all (i, a) ∈ S ×A). For DMDPs, we may assume that

in every state i there is at most one transition to any state j (if there are more, we always will

take the transition with the lowest cost). Hence, |A(i)| ≤ N for all states i.

We shall show below that the deterministic cases of the finite horizon (stationary and non-

stationary), discounted, and average reward MDPs are in NC. Our approach is to look at these

problems as variants of the graph-theoretic shortest path problem. We consider the decision

problem with a fixed starting state i1. The particular variants of the problem are then equivalent

to certain variants of the shortest path problem. If a DMDP with a given starting state belongs

to NC, then also the decision problem for all possible starting states belongs to NC, because in

416 CHAPTER 9. OTHER TOPICS

stead of p processors we use Np processors (p processors for each stating state), which is also

polynomial in the input size if p is polynomial in the input size .

The nonstationary finite horizon problem

The parallel algorithms that we describe employ a technique to yield fast parallel (or space

efficient) algorithms known as path doubling (see [250] and [271]). The idea is, once we have

computed all optimal paths between any two states, where each path starts at time t1 and ends

at time t2, and similarly between t2 and t3, to compute in one step all optimal paths between t1

and t3. We shall see below that we can think of this as ’multiplying’ two N×N matrices A(t1, t2)

and A(t2, t3), where the (i, j)th entry of A(t1, t2) is the cost of the optimal path from state i to

state j between the times t1 and t2.

Note that {A(t1, t3)}ij = mink{A(t1, t2}ik +{A(t2, t3)}kj. For the usual matrix multiplication

A · B, where A and B have elements aij and bij, respectively, we have {A · B}ij =
∑

k aik · bkj.

Therefore, for t1 < t2 < t3, the matrix A(t1, t3) can be obtained by ’multiplication’ of the

matrices A(t1, t2) and A(t2, t3), in which the multiplication of aik · bkj is replaced by addition

{A(t1, t2}ik + {A(t2, t3)}kj, and the addition (
∑

k) is replaced by the operation of taking the

minimum (mink).

For each (i, j) we compute mink{A(t1, t2}ik + {A(t2, t3)}kj in the following way, using N

parallel processors:

(1) Compute independently on N parallel processors the elements {A(t1, t2}ik + {A(t2, t3)}kj for

k = 1, 2, . . . , N . For each processor this computation needs O(1) time complexity.

(2) Pair up the N elements and compute the pairwise minima, each minimum of two elements

can be computed in O(1) time, to reduce the size of the array by a half and repeat it log2N

times to find the minimum of the entire array.

So, the computation of each {A(t1, t3)}ij can be done withN parallel processors in log2N parallel

steps of O(1) time and consequently the computation of the whole matrix {A(t1, t3)} can be done

with N 3 parallel processors in log2N time complexity.

This approach immediately suggests an NC parallel algorithm for the finite horizon nonsta-

tionary problem. We start with the T − 1 matrices A(t, t + 1) for t = 1, 2, . . . , T − 1, where

{A(t, t + 1)}ij equals the cost of the decision leading at time t from state i to state j, if such

decision exists at time t, and equal to ∞ otherwise. To solve the decision problem, we must

compute A(1, T) and this can be done by ’multiplying’ these matrices in dlog2 T e stages.

For example, for T = 9, in stage 1 we start with A(1, 2), A(2, 3), A(3, 4), A(4, 5), A(5, 6), A(6, 7),

A(7, 8) and A(8, 9). In stage 2, we compute A(1, 3) := A(1, 2) ·A(2, 3), A(3, 5) := A(3, 4) ·A(4, 5),

A(5, 7) := A(5, 6) ·A(6, 7) and A(7, 9) := A(7, 8) ·A(8, 9). Then, in stage 3, we obtain the matrices

A(1, 5) := A(1, 3) · A(3, 5) and A(5, 9) := A(5, 7) · A(7, 9). Finally, in stage 4, we end with the

matrix A(1, 9) := A(1, 5) · A(5, 9).

Each multiplication needs log2N parallel steps when N 3 processors are used. Hence, when T ·N 3

processors are used, each stage of the log2 T stages can be computed in log2N parallel steps.

9.1. COMPLEXITY RESULTS 417

Therefore, the parallel time of the computation of A(1, T) is (log2 T) · (log2N). Since the size of

the input n = T ·N 2, we have that p, the number of processors, and T ∗, the parallel time, satisfy

p = O(n2) and T ∗ = O
(

(log2 n)2
)

, respectively. Hence, this is an NC parallel algorithm and the

following theorem holds.

Theorem 9.1

The nonstationary finite horizon deterministic Markov decision problem is in NC.

Note

Notice that this technique does not solve the nonstationary finite horizon problem, whose input

is of size n = max(N 2, T). We have to attack this problem by a more sophisticated technique,

which is explained later.

The infinite horizon undiscounted DMDP

As we shall show in section 9.5.2, the infinite horizon average cost DMDP is equivalent to finding

the cycle in the corresponding network that is reachable from the starting state i1, and has the

minimum mean-weight cycle. To make sure that we do not consider cycles that are not reachable

from the starting state i1, we first determine the nodes that are reachable from i1. This can

be done in log2N parallel time (see [271]). The cycle with the minimum mean-weight can be

found by computing, in parallel, for each k = 1, 2, . . . , N , the shortest cycle of length k, and

accompanying the results, each divided by k. To compute the shortest cycle of length k, we

essentially have to compute the kth power of matrix A, whose (i, j)th entry is equal to the cost of

the decision leading from state i to state j, if such decision exists, and equal to∞ otherwise. This

can be done with k · N 2 processors in (log2 k) · (log2N) parallel steps. If we use N 4 processors,

the total time of this approach is of order (log2N)2. Hence, this is an NC algorithm and the next

theorem holds.

Theorem 9.2

The infinite horizon undiscounted deterministic Markov decision problem is in NC.

The infinite horizon discounted DMDP

Define a sigma in i1 in a directed graph as a path P from i1 until the first repetition of a

node. In other words, a sigma in i1 is a path P of the form P = {i1, i2, . . . , ik, j1, j2, . . . , jl, j1},
where all nodes i1, i2, . . . , ik, j1, j2, . . . , jl are distinct. The discounted cost c(P) of the sigma

P = {i1, i2, . . . , ik, j1, j2, . . . , jl, j1} satisfies

c(P) =

k
∑

t=1

αt−1c(it, it+1) +
αk

1− αl
·

l
∑

t=1

αt−1c(jt, jt+1(modl)).

The discounted cost of a sigma coincides with the discounted cost of an infinite path that follows

the sigma and repeats the cycle forever. It follows from the fact that the discounted DMDP has

418 CHAPTER 9. OTHER TOPICS

a stationary optimal policy, that the cost of an optimal policy is the optimal discounted cost of

a sigma in the corresponding directed graph.

We can compute the optimal sigma as follows. First, we compute the shortest discounted cost

of a path of length k for k = 1, 2, . . . , N among any pair of nodes by multiplying the matrices

A, αA, α2A, αk−1A, where A is the matrix whose (i, j)th entry is equal to the cost of the decision

leading from state i to state j, if such decision exists, and equal to ∞ otherwise. This can be

done in at most (log2N)2 steps by using N 4 processors.

Let B1, B2, . . . , BN be the resulting products. Notice that the (i, j)th entry of Bk is the

discounted length of the shortest path from i to j with exactly k arcs. Once this is done, we

compute, for any starting node i1 and each node j, for each k, l = 1, 2, . . . , N the value λ+ αk

1−αl ·µ,

where λ is the (i1, j)th entry of Bk and µ is the (j, j)th entry of Bl. Of all these values, we pick the

minimum. If we use N 4 processors, the total time needs order (log2N)2 parallel steps. Therefore,

there is an NC algorithm for the infinite horizon discounted DMDP, which result is stated in the

following theorem.

Theorem 9.3

The infinite horizon discounted deterministic Markov decision problem is in NC.

The stationary finite horizon problem

The nonstationary finite horizon problem has input size n = T · N 2, but the input size of the

stationary finite horizon problem is max{N 2, T}, so the statement that the stationary finite

horizon problem is in NC because it is a special case of the nonstationary finite horizon problem,

which is in NC by Theorem 9.1, is not correct.

The stationary DMDP over a finite horizon with horizon T is equivalent to finding the shortest

path with T arcs in the corresponding graph. If T ≤ N 2, the previous technique for the non-

stationary finite horizon problem has parallel time (log2 T) · (log2N) = O
(

(log2N)2
)

when we

use p = O(N 4) processors. Hence, the problem belongs to NC. Therefore, we now assume that

N 2 < T , implying that the input size is determined by T , which can be encoded with log2 T bits;

so, we have to find an algorithm that should run in a number of parallel steps that is polynomial

in log (log2 T).

Without loss of generality, assume that the arc lengths are such that no ties in the length of

paths are possible (this can be achieved by perturbing the lengths). Consider the shortest path,

starting in i1, with T arcs. Since T > N 2 there are many repetitions of nodes on this path.

Consider the first such repetition, that is, the first time the path forms a sigma, and remove the

cycle from the path. Then, consider the first repetition in the resulting sequence. Continuing in

this way, we can decompose the path into a simple path plus several simple cycles.

We first need to show that we can assume that only one simple cycle is repeated at least N

times, namely the one that has the shortest average length of arcs. In proof, consider two simple

cycles with m1 and m2 arcs, repeated n1 and n2 times, respectively, with n1, n2 ≥ N . Assume

the cycle with m1 arcs has the smallest average of arc length. Since n1, n2 ≥ N ≥ m1, m2, we

9.1. COMPLEXITY RESULTS 419

can repeat the first cycle m2 times more, and repeat the second cycle m1 times less to obtain

another path with T arcs of smaller length. Thus, only one cycle is repeated at least N times.

Furthermore, since we have no ties, for each 1 ≤ k ≤ N at most one cycle with k arcs is repeated.

Therefore, the shortest path of T arcs has the following structure: it consists of a path with

l < N 3 arcs (this is the simple path plus at most N repetitions of one cycle of k arcs, for each

1 ≤ k ≤ N) plus a simple cycle repeated many times to fill the required number of arcs. Therefore,

for each value of l < N 3, each node j and each 1 ≤ k ≤ N that divides T − l we do, in parallel,

the following: we compute the shortest path P of length l from i1 through j, the shortest cycle

C of length k through j, and the total cost of this path, i.e. c(P) + T−l
k ·C(C). Of the resulting

constructions, we pick the cheapest. By this approach, we obtain the following result.

Theorem 9.4

The stationary finite horizon deterministic Markov decision problem is in NC.

9.1.4 For discounted MDPs, the policy iteration and linear programming

method are strongly polynomial

In this section we show that, for discounted MDPs, the policy iteration and the linear program-

ming algorithm both are strongly polynomial algorithms. We have already mentioned (see the

remark at the end of section 3.4) that one iteration of policy iteration is strongly polynomial. It

is also easy to verify that one iteration of the the linear programming algorithm is also strongly

polynomial, withO
(

N ·(M−N)
)

arithmetic operations. Hence, we have to show that the number

of iterations in policy iteration and linear programming has strongly polynomial complexity.

Let ki be the number of actions available in state i, i.e. |A(i)| = ki for i = 1, 2, . . . , N .

For notation convenience, let A(1) = {1, 2, . . . , k1}, A(2) = {k1 + 1, k1 + 2, . . . , k1 + k2}, . . . ,
A(N) = {∑N−1

i=1 ki + 1,
∑N−1

i=1 ki + 2, . . . ,
∑N

i=1 ki = M}.
The linear program (in fact this is the dual program (3.32) with βj = 1 for all j) can be

written as

max {rTx | Ax = e; x ≥ 0}, (9.1)

where A is an N ×M -matrix, r, x are M -vectors and e is a vector of all ones. The matrix A has

the special form A = E − αP , with Eij :=
{ 1 if j ∈ A(i)

0 otherwise
and Pij :=

{ pli(j) if j ∈ A(l)

0 otherwise
.

Since each action j belongs to exactly one A(i), we have eTE = eT (e is the vector of all ones,

where its dimension depends on the context; the first e has dimension N and the e in the right-

hand side has dimension M), and because
∑

i pli(j) = 1 for every l and j, we also have eTP = eT ,

and consequently, ET and PT are stochastic matrices, and eTA = (1− α)eT .

The dual program of (9.1) is

min {eTv | ATv ≥ r}, or equivalently, min {eTv | AT v − s = r; s ≥ 0}. (9.2)

We have seen that the dual program (9.2) has the unique solution vα, the value vector, and

consequently s∗ := AT vα − r is the unique optimal value for s.

420 CHAPTER 9. OTHER TOPICS

A deterministic policy f∞ chooses exactly one action f(i) ∈ A(i) for each state i. Obviously,

we have a total of
∏N

i=1 ki different policies. For any deterministic policy f∞, let Af , Ef and Pf

be the N ×N -submatrix of A,E and P , respectively, consisting of the columns corresponding to

f(i), i ∈ S. Then, Ef = I (the identity matrix) and Af = I − αPf .

It is well known that Af is nonsingular, has a nonnegative inverse and is a feasible basis for

the linear program (9.1). Let xf be the basic feasible solution for policy f∞, i.e. xf is the unique

solution of the linear system Afx = e. The corresponding basic solution vf of the dual program

(9.2) is the unique solution of the linear system AT
f v = rf . The basic pair of solutions (xf , vf)

are optimal solutions of (9.1) and (9.2) if and only if AT vf ≥ r.

Example 3.1 (continued)

For this example, we have N = 3; M = 9; A(1) = {1, 2, 3}, A(2) = {4, 5, 6}, A(3) = {7, 8, 9}.

E =

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

and P =

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

.

r = (1, 2, 3, 6, 4, 5, 8, 9, 7).

Hence, the dual pair of linear programs (9.1) and (9.2) are in this example:

max {x1 + 2x2 + 3x3 + 6x4 + 4x5 + 5x6 + 8x7 + 9x8 + 7x9}
subject to

1
2x1 + x2 + x3 − 1

2x4 − 1
2x7 = 1

− 1
2x2 + x4 + 1

2x5 + x6 − 1
2x8 = 1

− 1
2x3 − 1

2x6 + x7 + x8 + 1
2x9 = 1

x1, x2, x3, x4, x5, x6, x7, x8, x9 ≥ 0

and

min {v1 + v2 + v3}
subject to

1
2v1 ≥ 1; − 1

2v1 + v2 ≥ 6; − 1
2v1 + v3 ≥ 8

v1 − 1
2v2 ≥ 2; 1

2v2 ≥ 4; − 1
2v2 + v3 ≥ 9

v1 − 1
2v3 ≥ 3; v2 − 1

2v3 ≥ 5; 1
2v3 ≥ 7

Take f∞ with f(1) = 2, f(2) = 4, f(3) = 9. The systemAfx = e is:

x2 − 1
2x4 = 1

− 1
2x2 + x4 = 1

1
2x9 = 1

with solution x2 = 2, x4 = 2, x9 = 2. The dual systemAT v = rf is:

v1 − 1
2v2 = 2

− 1
2v1 + v2 = 6

1
2v3 = 7

with solution v1 = 20
3 , v2 = 28

3 , v3 = 14. The pair (xf , vf) is not optimal, because vf is not

feasible for the dual program.

9.1. COMPLEXITY RESULTS 421

The optimality conditions for the dual pair of linear programs (9.1) and (9.2) are:

Ax = e

ATv − s = r

xjsj = 0, j = 1, 2, . . . ,M

x, s ≥ 0

Lemma 9.1

(1) eTx = N
1−α for every feasible solution x of (9.1).

(2) 1 ≤ xf
j ≤ N

1−α for every basic variable xf
j , 1 ≤ j ≤ N , for every basic solution xf of (9.1).

Proof

(1) Let x be a feasible solution x of (9.1). Then, we have N = eT e = eTAx = (1− α)eTx,

implying eTx = N
1−α .

(2) Let xf be a basic solution of (9.1). Then, by part (1), xf
j ≤ N

1−α , 1 ≤ j ≤ N . Furthermore,

e = Afx
f = (I − αPf)xf , implying xf = (I − αPf)−1e =

∑∞
t=1 α

t−1P t−1
f e ≥ e, i.e. xf

j ≥ 1

for j = 1, 2, . . . , N .

Let f∞ be any deterministic policy and let A = (Af , Aν) and r =
(

rf

rν

)

(the ν-variables are the

nonbasic variables). Then, for the basic pair of dual solutions x =
(xf

xν

)

and (vf , s) =
(

vf ,
(sf

sν

))

,

we have xν = sf = 0, and consequently,

Afx
f +Aνx

ν = e ↔ xf = A−1
f e; xν = 0

AT
f v

f − sf = rf ↔ vf = (AT
f)−1rf

AT
ν v

f − sν = rν ↔ sν = −rν +AT
ν (AT

f)−1rf ; sf = 0

If sν ≥ 0, then x =
(

xf

xν

)

=
(A−1

f
e

0

)

and (v, s) =
(

vf ,
(

sf

sν

))

=
(

(AT
f)−1rf ,

(

0
−rν+AT

ν (AT
f

)−1rf

)

)

are a

pair of dual optimal solutions of (9.1) and (9.2), respectively.

Lemma 9.2

There is a unique partition B ⊆ {1, 2, . . . ,M} and C ⊆ {1, 2, . . . ,M}, i.e. B ∩C = ∅ and

B ∪C = {1, 2, . . . ,M}, with |B| ≥ N and |C| ≤M −N such that:

(1) There is at least one optimal solution pair
(

x∗,
(

v∗

s∗

))

that is strictly complementary, i.e.

x∗j > 0 for all j ∈ B and s∗j > 0 for all j ∈ C.
(2) For all optimal pairs

(

x∗,
(v∗

s∗

))

, we have x∗j = 0 for all j ∈ C and s∗j = 0 for all j ∈ B.

Proof

The strict complementary result is well known for general linear programming (see [108]) with

B ⊆ {1, 2, . . . ,M} the set of variables that are positive for at least one optimal solution and C the

set of variables that are zero in all optimal solutions. It is obvious that |B| ≥ N , and therefore

|C| ≤M −N , and that x∗j = 0 for all j ∈ C when x∗ is optimal for (9.1).

Notice that the dual program (9.2) has a unique optimal solution (v∗, s∗) = (vα,−r + ATvα).

Take any j ∈ B. Then, there exists an optimal solution x of (9.1) with xj > 0. From the

complementary slackness property it follows that s∗j = 0.

422 CHAPTER 9. OTHER TOPICS

The interpretation of Lemma 9.2 is as follows: since there may exist multiple optimal policies for

an MDP, B contains those state-actions each of which appears in at least one optimal policy, and

C contains the rest state-actions neither of which appears in an optimal policy. Lets call each

action in C a non-optimal action. Then, by the uniqueness of the optimal s∗, we have s∗j > 0 if

and only if j ∈ C.

Let f∞ be a deterministic policy with corresponding basic solution x =
(

xf

xν

)

and basic dual

solution (v, s) =
(

vf ,
(sf

sν

))

. By the complementary slackness of a dual pair of solutions, we have

sf = 0, implying vf = (AT
f)−1rf .

Then, rTx = (rf)Txf +(rν)Txν and Ax = Afx
f +Aνx

ν = e, implying xf = (Af)−1(e−Aνx
ν).

Hence,

rTx = (rf)T{A−1
f (e−Aνx

ν)}+ (rν)Txν

= (rf)TA−1
f e − {(rf)TA−1

f Aν − (rν)T}xν

= (rf)TA−1
f e − {AT

ν (AT
f)−1rf − rν}Txν

= (rf)TA−1
f e − (rν)Txν ,

where rν := AT
ν (AT

f)−1rf − rν. Let rf := AT
f v

f − rf . Then, rf = AT
f (AT

f)−1rf − rf = 0. The

vector r =
(

rf

rν

)

is called the reduced cost vector.

The simplex method

If rν ≥ 0, then is the current policy f∞ is optimal. Otherwise, let k := argminj r
ν
j < 0 and

suppose that k ∈ A(i). The simplex method will break a tie arbitrarily, and it updates (i.e.

changes the current policy f∞) in exactly one state-action, action k, that is, it updates only the

state with the most negative reduced cost.

The policy iteration method

The classic policy iteration method is to update every state that has a negative reduced cost.

For each state i, let ki := argminj A(i)r
ν
j . Then, for every state i with rν

j < 0, ki will replace the

current action f(i)).

We first prove the strongly polynomial result for the simplex method. For the improvement of

the new policy g∞ over the current policy f∞, we have the following result.

Lemma 9.3

For the optimal objective value z∗ = eT vα and for two consecutive policies f∞ and g∞ with ∆

the most negative reduced cost, we have the following bounds:

(1) z∗ ≤ (rf)Txf − N
1−α ·∆.

(2) z∗ − (rg)Txg ≤ {1− 1−α
N } · {z∗ − (rf)Txf}.

Proof

(1) For every feasible solution x of (9.1), we can write rTx = (rf)Txf − (rν)Txν. Since rf = 0,

r ≥ ∆ · e and, by Lemma 9.1, eTx = N
1−α , we also have (rν)Txν = rTx ≥ ∆ · eTx = ∆ · N

1−α .

9.1. COMPLEXITY RESULTS 423

Hence, for all feasible solution x of (9.1), rTx ≤ (rf)Txf −∆ · N
1−α . In particular, for an

optimal solution x∗ of (9.1), we obtain z∗ = rTx∗ ≤ (rf)Txf − N
1−α ·∆.

(2) Since the new basic solution xg has components with values at least 1 (see Lemma 9.1),

the objective value is increased by at least −∆ and, by part (1) of the present lemma,

−∆ ≥ 1−α
N · {z∗ − (rf)Txf}. Hence, (rg)Txg − (rf)Txf ≥ 1−α

N · {z∗ − (rf)Txf}, implying

z∗ − (rg)Txg ≤ {1− 1−α
N } · {z∗ − (rf)Txf}.

Corollary 9.1

If the simplex methods generates the sequence of deterministic policies f∞0 , f∞1 , . . . , f∞t , . . . , then

z∗ − (rft)Txft ≤ {1− 1−α
N }t · {z∗ − (rf0)Txf0} for t = 0, 1,

Lemma 9.4
(1) If policy f∞ is non-optimal, then there is a state-action j ∈ C which is basic for f∞ and

satisfies s∗j ≥ 1−α
N · {z∗ − (rf)Txf}, where s∗ is the optimal dual slack vector of (9.2).

(2) Let the simplex methods generate the sequence of policies f∞0 , f∞1 , . . . , f∞t , . . . , where

f∞0 is a non-optimal policy with non-optimal state-action j ∈ C identified in part (1).

Then, if xj is a basic variable in policy f∞t , we have xft

j ≤ N2

1−α ·
z∗−(rft)T xft

z∗−(rf0)T xf0
.

Proof

(1) Since ATvα − s∗ = r, we have for every feasible solution x of (9.2)

(AT vα − s∗)Tx = rTx ↔ (vα)TAx− (s∗)Tx = rTx ↔ (vα)T e− (s∗)Tx = rTx. Therefore,

z∗ − (rf)Txf = (vα)T e− (rf)Txf = (s∗)Txf =
∑

i s
∗
i x

f
i . Since this summation has N terms,

there must be a component j of xf which satisfies s∗jx
f
j ≥ 1

N · {z∗ − (rf)Txf} > 0 (the last

inequality because policy f∞ is non-optimal). Since xf
j ≤ N

1−α (see Lemma 9.1), we obtain

s∗j ≥ 1−α
N2 · {z∗ − (rf)Txf} > 0. Because s∗j > 0, we also have j ∈ C.

(2) Suppose that f∞0 is a non-optimal policy with non-optimal state-action j ∈ C identified in

part (1). Take any t ∈ N0. Then, we can write z∗ − (rft)Txft = (s∗)Txft ≥ s∗jxft

j . Since

j ∈ C, we have s∗j > 0 and we can write xft

j ≤
z∗−(rft)T xft

s∗j
≤ N2

1−α ·
z∗−(rft)T xft

z∗−(rf0)T xf0
.

These lemmas lead to the following key result.

Theorem 9.5

Let f∞0 be any non-optimal policy. Then, there is a non-optimal state-action j ∈ C, which is

basic for f∞0 , but which would never appear in any of the policies generated by the simplex method

after t > N
1−α · log N2

1−α iterations, starting from f∞0 .

Proof

From Corollary 9.1, after t iterations of the simplex method, we have
z∗−(rft)T xft

z∗−(rf0)T xf0
≤ {1− 1−α

N }t.
Therefore, after t > N

1−α · log N2

1−α iterations, we have by Lemma 9.4,

xft

j ≤
N 2

1− α ·
z∗ − (rft)Txft

z∗ − (rf0)Txf0
≤ N 2

1− α · {1−
1− α
N
}t.

424 CHAPTER 9. OTHER TOPICS

Since log (1− x) ≤ −x for all x < 1, we can show that N2

1−α · {1− 1−α
N }t < 1 for t > N

1−α · log N2

1−α ,

namely: log N2

1−α + t · log {1− 1−α
N } ≤ log N2

1−α − t · 1−α
N < 0 for t > N

1−α · log N2

1−α , implying

N2

1−α · {1− 1−α
N }t < 1 for t > N

1−α · log N2

1−α .

Suppose that state-action j appears in any of the policies generated by the simplex method after

t > N
1−α · log N2

1−α iterations. Then, xft

j < 1, which contradicts Lemma 9.1.

Let T :=
⌊

N
1−α · log N2

1−α

⌋

+ 1. Then, a non-optimal action of the starting policy f∞0 will never be

an action of policy f∞t for all t ≥ T . If policy f∞T is not optimal, there must be a non-optimal

action of this policy that would never be an action of a policy f∞t for all t ≥ 2T . We can repeat

this argument and in each of these cycles of T simplex iterations at least one new non-optimal

action is eliminated from appearance in any of the future policy cycles, generated by the simplex

method. However, we have at most |C| ≤M−N (see Lemma 9.2) many such non-optimal actions

to eliminate. Hence, after at most T · (M −N) iterations the simplex method terminates with an

optimal policy. This result is summarized in the following theorem.

Theorem 9.6

The simplex method with the most-negative reduced cost pivoting rule is a strongly polynomial

algorithm. Starting from any policy, the method terminates in at most T · (M − N) iterations,

where T :=
⌊

N
1−α · log N2

1−α

⌋

+ 1. Furthermore, each iteration uses O
(

N · (M − N)
)

arithmetic

operations.

We now turn our attention to the classic policy iteration method, in which in each iteration every

state that has a negative reduced cost is updated and the current action is replaced by the action

with the most-negative reduced cost for this state. We have already seen that the policy iteration

method may be viewed as a block-pivoting simplex algorithm. In this block-pivoting simplex

algorithm for MDPs in one iteration at most 1 ≤ k ≤ N usual pivoting iterations are executed.

Hence, one iteration of the classic policy iteration method uses O
(

N 2 · (M − N)
)

arithmetic

operations.

For the block-pivoting simplex algorithm, we have the following facts:

(1) Lemma 9.1 and Lemma 9.2 hold, since they are independent of which of the two methods

(block-pivoting or usual pivoting) is used.

(2) Lemma 9.3 still holds for the block-pivoting simplex method, because the the action

corresponding to the most-negative reduced cost ∆ is always one of the incoming basic

variables for the block-pivoting simplex method. Consequently, Corollary 9.1 also holds.

(3) The properties established by Lemma 9.1 are also independent of how the policy sequence is

generated as long as the state-action with the most-negative reduced cost is included in the

next policy, so that they hold for the block-pivoting simplex method as well.

(4) Theorem 9.5 also holds, since the proof is based on Corollary 9.1 and Lemma 9.1.

Based on the above mentioned facts, we have the following result for the classic policy iteration

method.

9.1. COMPLEXITY RESULTS 425

Theorem 9.7

The classic policy iteration method is a strongly polynomial algorithm. Starting from any policy,

the method terminates in at most T · (M − N) iterations, where T :=
⌊

N
1−α · log N2

1−α

⌋

+ 1.

Furthermore, each iteration uses O
(

N 2 · (M −N)
)

arithmetic operations.

Remark 1

The pivoting rule makes the difference. Melekopoglou and Condon ([197]) showed that a special

policy iteration algorithm, where only the action for the state with the smallest index is updated,

needs an exponential number of iterations. Notice that this smallest-index rule is a popular rule

in the simplex method for general LP problems, because it avoids cycling in the presence of

degeneracy. On the other hand, the most-negative reduced cost rule is exponential for solving

some other LP problems. Thus, searching for suitable pivoting rules for solving different LP

problems is essential, and one cannot rule out the simplex method simply because the behavior

of one pivoting rule on one problem is shown to be exponential. The question: Is there any

strongly polynomial algorithm for solving the MDP regardless the discount factor α is still an

open problem.

Remark 2

Mansour and Singh ([195]) have derived an upper bound on the number of iterations for the

policy iteration method that does not depend on the discount factor α. This bound is 1
N · 2N for

an MDP that has in each state 2 actions. They showed that the greedy policy iteration method,

which greedily accepts all single-state action changes that are improvements, will take at most

O
(

1
N · 2N

)

iterations. Below we present their results in detail.

We introduce a partial ordering between the deterministic policies as follows. For two determin-

istic policies f∞ and g∞, we define g∞ � f∞ if vα
i (g∞) ≥ vα

i (f∞) for each state i, and for at least

one state j, vα
j (g∞) > vα

j (f∞). If for every state i we have vα
i (g∞) ≥ vα

i (f∞), then g∞ ≡ f∞, i.e.

g∞ and f∞ are equivalent. The partial ordering tells us when a policy is better than another and

when they are incomparable. Clearly any optimal policy is better then all suboptimal policies

and equivalent to all other optimal policies. This partial order is central to our analysis.

Assume that we have an MDP with two actions in each state. We know from the policy

iteration method that in every iteration the current policy, say f∞, is replaced by the next policy,

say f∞, where g∞ � f∞. Therefore, policies h∞ such that f∞ � h∞ ≺ g∞ are skipped. How

many such policies h∞ are here in each iteration? There is at least one such policy: the current

policy f∞. This, of course, implies a trivial upper bound of 2N iterations. For special choices of

the next policy g∞ we shall perform a more careful analysis of the number of skipped policies.

The more policies we can skip at each iteration, the better, i.e. lower, the upper bound will be.

Lemma 9.5

Let f∞ and g∞ be two policies whose actions differ in only one state. Then, f∞ and g∞ are

comparable, i.e. either g∞ � f∞, g∞ ≺ f∞ or g∞ ≡ f∞.

426 CHAPTER 9. OTHER TOPICS

Proof

Suppose that f∞ and g∞ differ only in state i, i.e. g(k) = f(k) for all k 6= i and g(i) 6= f(i).

Then, skg(k) := rk(g) + α
∑

j pkj(g)v
α
j (f∞)− vα

k (f∞) = 0 for all k 6= i.

For sig(i) := ri(g) + α
∑

j pij(g)v
α
j (f∞)− vα

i (f∞) there are three possibilities:

(1) sig(i) > 0. Then, Lgv
α(f∞ > vα(f∞), implying vα(g∞) > vα(f∞), i.e. g∞ � f∞.

(2) sig(i) < 0. Then, Lgv
α(f∞ < vα(f∞), implying vα(g∞) < vα(f∞), i.e. g∞ ≺ f∞.

(3) sig(i) = 0. Then, Lgv
α(f∞ = vα(f∞), implying vα(g∞) = vα(f∞), i.e. g∞ ≡ f∞.

Given a policy f∞, let SA(f) := {(i, a) | sia(f) > 0} be the set of improving state-actions and

S(f) := {i | (i, a) ∈ SA(f) for at least one action a ∈ A(i)} be the set of states that have at least

one improving action. Let f∞1 , f∞2 , . . . be a sequence of policies generated by a run of the policy

iteration method.

Lemma 9.6

There are no indices k and l with k < l such that S(fk) ⊆ S(fl).

Proof

For any pair of policies f∞ and g∞ such f(i) = g(i) for all i ∈ S(f), we have f∞ � g∞, namely:

Consider an MDP M∗ such that in the states of S(f) the action f(i) is the only action.

Clearly, both f∞) and g∞ are valid policies for M∗. On the other hand, in M∗ there are

no improving actions. Hence, f∞ is an optimal policy in M∗. Therefore, f∞ � g∞.

Now, we prove the lemma by contradiction. Assume that k < l and S(fk) ⊆ S(fl).

Let SAkl := {(i, a) ∈ SA(fk) | a 6= fl(i)}. If (i, a) ∈ SAkl, then (i, a) ∈ SA(fl), namely:

If (i, a) ∈ SAkl, then i ∈ S(fk) ⊆ S(fl). Because i ∈ S(fl) and sifl(i)(fl) = 0, we have

sia(fl) > 0, since there are only two actions. Therefore, (i, a) ∈ SA(fl).

Note that SAkl 6= ∅, because otherwise fk(i) = fl(i) for all i ∈ S(fk), implying f∞k � f∞l which

contradicts that k < l in the sequence of policies generated by a run of the policy iteration

method. Then, let g∞ be a policy obtained from f∞l in the policy iteration method by taking

improving actions on SAkl, i.e. taking the actions of fk ∈ SAkl (because there are only two

actions in each state). Hence, g∞ � f∞l � f∞k . On the other hand, since fk(i) = g(i) for all

i ∈ S(fk), we have f∞k � g∞, which gives a contradiction.

So far we have showed that a nonempty subset of states can appear at most once in general policy

iteration. This still leaves open the possibility that all subsets appear in the run of the algorithm,

and thus we observe all 2N policies. The next step is to show that each time we replace a current

policy f∞ by the next policy g∞ by taking the other action in all states of S(f), then we rule

out more policies. This is done in the greedy policy iteration method.

Greedy policy iteration

In the greedy policy iteration method, the next policy g∞ is obtained from the current policy f∞

by taking in all states of S(f) the improving action.

9.1. COMPLEXITY RESULTS 427

Lemma 9.7

Let g∞ be the policy obtained from f∞ by in the greedy policy iteration method, and let k := |S(f)|.
Then, there exist k different policies h∞1 , h

∞
2 , . . . , h

∞
k such that g∞ � h∞i � f∞ for i = 1, 2, . . . , k.

Proof

The proof is by induction on k. If k = 1, then h1 := g satisfies g∞ � h∞1 � f∞. For the rest of the

proof assume that k ≥ 2. Consider all the single state modifications of f∞ using the alternative

action in exactly one of the states of S(f) and let g∞1 , g
∞
2 , . . . , g

∞
k be the corresponding policies.

Since the policies are partial ordered at least one policy, say g∞1 , has the property that for every

2 ≤ i ≤ k either g∞1 � g∞i or g∞1 and g∞i are incomparable.

Without loss of generality we may assume that SA(f) = {(s1, a1), (s2, a2), . . . , (sk, ak)} and that

g1(s1) = a1. For the pairs (si, ai), 2 ≤ i ≤ k, we shall show later that (si, ai) ∈ SA(g∞1).

First, we consider all the single state modifications of g∞1 by taking in state si the action ai

for i = 2, 3, . . . , k. Let g∞1,2, g
∞
1,3, . . . , g

∞
1,k be the corresponding policies. By Lemma 9.5 either

g∞1 � g∞1,i or g∞1 � g∞1,i for i = 2, 3, . . . , k. We shall show that g∞1 � g∞1,i is not possible.

For a proof, assume that g∞1 � g∞1,i. Note that g∞i and g∞1,i differ only in state s1. Hence, by

Lemma 9.5, either g∞i � g∞1,i or g∞i � g∞1,i. If g∞1,i � g∞i , then g∞1 � g∞1,i � g∞i , contradicting

the property of policy g∞1 . So, g∞i � g∞1,i, implying
(

s1, f(s1)
)

∈ SA(g1,i). Since g∞1 � g∞1,i, we

also have
(

si, f(si)
)

∈ SA(g1,i). Because f is obtained from g1,i by replacing the actions a1

and ai by f(s1) and f(si), respectively, we obtain f∞ � g∞1,i, contradicting the fact that

g∞1,i � f∞. So we have shown that g∞1,i � g∞1 .

Since g∞1,i � g∞1 for i = 2, 3, . . . , k, we have (si, ai) ∈ SA(g1) for i = 2, 3, . . . , k. Therefore,

|S(g1)| = |S(f)| − 1 = k − 1. Let h1 := g1. Then, the lemma follows using also the induction

hypothesis on g∞1 = h∞1 .

Theorem 9.8

The greedy policy iteration method considers at most O
(

1
N · 2N

)

different policies.

Proof

Let f∞ be a policy that occurs in some iteration of the greedy policy iteration method. We

distinguish the following two cases: (1) |S(f)| > 1
3N ; (2) |S(f)| ≤ 1

3N .

Case (1): |S(f)|> 1
3N

By Lemma 9.7, we have at least 1
3N policies better than the current policy f∞ that are ruled out

after this iteration. Since the MDP has 2N policies, there are at most 2N

N/3 = 3 · 2N

N iterations of

this type.

Case (2): |S(f)| ≤ 1
3N

By Lemma 9.6, we do not consider the same set of improving actions twice. Hence, the total

number of iterations of this type is at most
∑N/3

k=0

(

N
k

)

.

Assuming that
∑N/3

k=0

(

N
k

)

≤ 2 ·
(

N
N/3

)

≤ 3 · 2N

N , which we shall prove later, we have shown that

the total number of iterations is at most 3 · 2N

N + 3 · 2N

N = 6 · 2N

N = O
(

1
N · 2N

)

.

428 CHAPTER 9. OTHER TOPICS

Proof that
∑m

k=0

(

N
k

)

≤ 2 ·
(

N
m

)

for m ≤ 1
3N

We apply induction on m. For m = 0, the inequality is obvious. Assume that
∑m

k=0

(N
k

)

≤ 2 ·
(N
m

)

for some m and consider
∑m+1

k=0

(

N
k

)

=
∑m

k=0

(

N
k

)

+
(

N
m+1

)

. Then, by the induction hypothesis,
∑m+1

k=0

(

N
k

)

≤ 2 ·
(

N
m

)

+
(

N
m+1

)

. Hence, we have to show that 2 ·
(

N
m

)

≤
(

N
m+1

)

for m+ 1 ≤ 1
3N .

We have

2 ·
(

N
m

)

= 2 · N !
(N−m)!m! ≤

(

N
m+1

)

= N !
(N−m−1)!(m+1)! ⇔ 2

N−m ≤ 1
m+1 Lleftrightarrow m+ 1 ≤

1
3(N + 1).

If m ≤ 1
3N , then certainly m+ 1 = 1

3 (N + 1).

Proof that 2 ·
(

N
N/3

)

≤ 3 · 2N

N

We apply induction on N . For convenience, we take N = 3, 6, 9,

If N = 3, we obtain 2 ·
(

3
1

)

= 6 ≤ 3 · 23

3 = 8. Assume that 2 ·
(

N
N/3

)

≤ 3 · 2N

N for some N and

consider N + 3 instead of N . Then, we can write

2 ·
(

N+3
N/3+1

)

= 2 ·
(

N
N/3

)

· (N+1)(N+2)(N+3)

(2
3
N+1)(2

3
N+2)(1

3
N+1)

≤ 3 · 2N

N ·
(N+1)(N+2)(N+3)

(2N+3)(2N+6)(N+3)
· 27 = 81 · 2N−1

N · (N+1)(N+2)
(2N+3)(N+3)

.

To show that 2 ·
(N+3
N/3+1

)

≤ 3 · 2N+3

N+3 , we have to show that (N+1)(N+2)
N(2N+3)

≤ 16
27 , which is equivalent

to 5N 2 − 6N − 54 ≥ 0, i.e. N ≥ 4. Since we have already shown the inequality for N = 3, the

inequality is verified for all N .

Exponential version of policy iteration

We shall present an MDP and a version of the policy iteration method for which the number of

iterations is exponential in the number of states.

In this MDP, the state space S = S1 ∪ S2 ∪ S3, where:

- S1 has N decision states, labeled 1, 2, . . . , N ;

- S2 has N + 1 chance states, labeled 0, N + 1, N + 2, . . . , 2N ;

- S3 has 2 sinks, labeled A and B.

The states of S1 have two actions, labeled 0 and 1. If in state i action 0 is chosen, then there is

a deterministic transition to state i − 1 (1 ≤ i ≤ N); if in state i action 1 is chosen, there is a

deterministic transition to state N + i (1 ≤ i ≤ N).

In the states of S2 there is only one action, so there is no choice. In the states N + i (2 ≤ i ≤ N)

there are transitions to the states N+i−1 and i−2, each with probability 1
2 ; in stateN+1 there

are transitions to the sinks A and B, each with probability 1
2 ; in state 0 there are transitions to

the sink A and the state N , each also with probability 1
2 . The sinks A and B are absorbing states

in which the process terminates with a final cost: 1 in sink A and 0 in sink B. All other costs

are 0.

As utility function the total cost is considered. This can be interpreted as the probability to

reach sink A. Minimizing the total cost is equivalent to minimizing the probability to terminate in

sink A. Since for every policy the process terminates in A or B, this is equivalent to maximizing

the probability to terminate in sink B. This model satisfies Assumption 1.2. Furthermore,

the model is transient, because under every policy and starting state the process terminates with

9.1. COMPLEXITY RESULTS 429

probability 1 in one of the sinks. As we have shown in Chapter 4, the properties of the discounted

model with α = 1, i.e. the utility function is the total cost, are also valid for the transient model.

We terminate in a sink from either state 0 or state N +1. In both cases there is a probability

of 1
2 to end in sink A. Hence, the total cost for any starting state from the decision states S1 is

at least 1. Consider the policy that takes action 0 in the states N,N − 1, . . . , 2 and action 1 in

state 1. For this policy the total cost for any starting state from S1 is equal to 1
2 . So, this is the

optimal policy.

Since there are only two actions in the states of S1, a policy can be represented as an N -bits

vector f = fNfN−1 · · ·f1, where fi is the label of the action taken in state i (1 ≤ i ≤ N). So, the

optimal policy is 00 . . .01 with total cost 1
2 for the states of S1. The total cost, given starting state

i and policy f , is denoted by vi(f). Note that vN+1(f) = 1
2 for every policy f . By induction on

N , it is easy to verify that for the optimal policy f∗ we have vN+i(f∗) = 2i+1
2i+1 for i = 2, 3, . . . , N .

Example 9.5

Take N = 3. The MDP model can be represented by the following directed graph.

s

s

s

s

s

s s

s

s

������������

������������

������������

6 5 4 B

3 2 1 0 A

- - -

- - - -

�

* *

*
?? ?? ??

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1 1 1

1 1 1

For the policy f = 011, the total cost for the possible starting states can be computed as unique

solution of the following system of linear equations:

v0(f) = 1
2vA(f) + 1

2v3(f); v3(f) = v2(f); v6(f) = 1
2v1(f) + 1

2v5(f);

v1(f) = v4(f); v4(f) = 1
2vA(f) + 1

2vB(f); vA(f) = 1;

v2(f) = v5(f); v5(f) = 1
2v0(f) + 1

2v4(f); vB(f) = 0.

Note that the equations for the states in S2 ∪ S3, in this case the states 0, 4, 5, 6, A,B, are

independent of the policy.

The unique solution of this system is: v0(f) = 5
6 ; v1(f) = 1

2 ; v2(f) = 2
3 ; v3(f) = 2

3 ; v4(f) =
1
2 ; v5(f) = 2

3 ; v6(f) = 7
12 ; vA(f) = 1; vB(f) = 0.

Similarly, we can compute the total cost for every policy and every starting state. This is sum-

marized in the following tabular.

430 CHAPTER 9. OTHER TOPICS

f v0(f) v1(f) v2(f) v3(f) v4(f) v5(f) v6(f) vA(f) vB(f)

000 1 1 1 1 1
2

3
4

7
8 1 0

100 9
10

9
10

9
10

4
5

1
2

7
10

4
5 1 0

110 9
10

9
10

7
10

4
5

1
2

7
10

4
5 1 0

010 5
6

5
6

2
3

2
3

1
2

2
3

3
4 1 0

011 5
6

1
2

2
3

2
3

1
2

2
3

7
12 1 0

111 11
14

1
2

9
14

4
7

1
2

9
14

4
7 1 0

101 11
14

1
2

1
2

4
7

1
2

9
14

4
7 1 0

001 3
4

1
2

1
2

1
2

1
2

5
8

9
16 1 0

We see in this tabular that each new policy is better than the previous one. Hence, there is a

sequence of 8 improving policies. In this example there are 2N = 8 policies. A new policy is

obtained from the previous one by taking the first improving action when the decision states are

ordered as in the policy, i.e. the sequence N,N − 1, . . . , 1. This example, for a general N , gives

the desired exponential number of iterations. Furthermore, the sequence of policies for a model

with one more decision state can be obtained from the previous one by first adding a 0 after

the previous sequence, so for N = 4 we obtain 0000, 1000, 1100, 0100, 0110, 1110, 1010, 0010.

Then, add a 1 after the previous sequence and pass through this sequence in the reverse order,

so for N = 4: 0011, 1011, 1111, 0111, 0101, 1101, 1001, 0001. Hence, the whole sequence for

N = 4 we have the complete sequence 0000, 1000, 1100, 0100, 0110, 1110, 1010, 0010, 0011, 1011,

1111, 0111, 0101, 1101, 1001, 0001. Notice that this is a sequence of binary numbers in which

a subsequent number differs from the previous one in only one bit. Such a sequence is called a

Gray code.

We shall consider the simple policy iteration algorithm. In this algorithm we take in each iteration

only one improving action and this new action is chosen in the state with the highest index. For

the MDP model of this the algorithm is as follows.

Algorithm 9.1 Simple policy iteration algorithm

Input: Instance of an MDP as described above.

Output: An optimal deterministic policy f∞, represented by f = fNfN−1 . . . f2f1.

1. Choose as initial policy f = fNfN−1 . . . f2f1 with fk = 0 for k = N,N − 1, . . . , 1.

2. for k = N,N − 1, . . . , 1 do

if if state k has an improving action then

begin fk := 1− fk; go to step 3 end

3. if in step 2 no improving action is found then f = fNfN−1 . . . f2f1 is an optimal policy

(STOP)

else go to step 2.

9.1. COMPLEXITY RESULTS 431

Define for policy f = fNfN−1 . . . f2f1 the numbers a1, a2, . . . , aN by

{

a1 = −1
2 ;

ak+1 = (1
2 − fk)ak, 1 ≤ k ≤ N − 1.

Lemma 9.8

ak+1 = 1
2(−1)fkak for k = 1, 2, . . . , N − 1.

Proof

If fk = 1, then 1
2 (−1)fkak = −1

2ak = (1
2 − fk)ak = ak+1.

If fk = 0, then 1
2 (−1)fkak = 1

2ak = (1
2 − fk)ak = ak+1.

Lemma 9.9

vN+k(f)− vk−1(f) = ak

ak−1
{vN+k−1(f)− vk−2(f)} for k = 2, 3, . . . , N .

Proof

For any k = 2, 3, . . . , N , we have

vN+k(f)− vk−1(f) = {1
2vN+k−1(f) + 1

2vk−2(f)} − {fk−1vN+k−2(f) + (1− fk−1)vk−2(f)}
= (1

2 − fk−1)vN+k−1(f)− (1
2 − fk−1)vk−2(f)

= (1
2 − fk−1){vN+k−1(f)− vk−2(f)}

= ak

ak−1
{vN+k−1(f)− vk−2(f)}

The transitions in state 0 imply v0(f) = 1
2vA(f) + 1

2vN (f) = 1
2 + 1

2vN (f). The next lemma gives

a recurrence relation for the total cost in the other states.

Lemma 9.10

For every 1 ≤ k ≤ N , we have vN+k(f) = vk−1(f) + akvN(f) and vk(f) = vk−1(f) + fkakvN (f).

Proof

We apply induction on k.

For k = 1, we have

vN+1(f) = 1
2vA(f) + 1

2vB(f) = 1
2 and v0(f) + a1vN (f) = 1

2 + 1
2vN(f)− vN (f) = 1

2 .

If f1 = 0, then v0(f) + f1a1vN (f) = v0(f) and v1(f) = v0(f).

If f1 = 1, then v0(f) + f1a1vN (f) = v0(f)− 1
2vN (f) = 1

2 and v1(f) = vN+1(f) = 1
2 .

Therefore, we have shown the lemma for k = 1.

The proof of the induction step is as follows.

vN+k(f)− vk−1(f) = ak

ak−1
{vN+k−1(f)− vk−2(f)}

= ak

ak−1
· ak−1vN (f) = akvN (f),

the the first equality by Lemma 9.9 and the second equality by the induction hypothesis.

If fk = 0, then vk(f) = vk−1(f) and vk−1(f) + fkakvN (f) = vk − 1(f).

If fk = 1, then vk(f) = vN+k(f) and vk−1(f) + fkakvN (f) = vk−1(f) + akvN (f) = vN+k(f),

the last equality is shown some lines above. This completes the proof of this lemma.

432 CHAPTER 9. OTHER TOPICS

Lemma 9.11

State k has an improving action if and only if either fk = 0 and ak < 0 or fk = 1 and ak > 0.

Proof

For k = 1, we have an improving action if and only if f1 = 0 (because then v1(f) = 1
2+ 1

2vN(f) = 3
4

and for f1 = 1, we have v1(f) = vN+1(f) = 1
2); we also have a1 < 0, so the lemma holds.

For k ≥ 2, we distinguish between the following four cases:

(1) State k has an improving action and fk = 0:

By Lemma 9.10, vk(f) = vk−1(f) > vN+k(f) = vk − 1(f) + akvN (f) → ak < 0.

(2) State k has an improving action and fk = 1:

By Lemma 9.10, vk(f) = vN+k(f) = vk − 1(f) + akvN (f) > vk−1(f) → ak > 0.

(3) State k has no improving action and fk = 0:

By Lemma 9.10, vk(f) = vk−1(f) ≤ vN+k(f) = vk − 1(f) + akvN (f) → ak ≥ 0.

(4) State k has no improving action and fk = 1:

By Lemma 9.10, vk(f) = vN+k(f) = vk − 1(f) + akvN (f) ≤ vk−1(f) → ak ≤ 0.

Corollary 9.2

If state k has an improving action and in some state l > k the alternative action is chosen, then

state k has still an improving action.

Proof

Since ak is not influenced by the action in larger states (see Lemma 9.8), the property of Lemma

9.11still holds. Therefore, then state k has still an improving action.

Lemma 9.12

If in the current iteration fk is changed and fNfN−1 · · ·fk+2fk+1 = 00 . . .01, then all states

N,N − 1, . . . , k+ 2, k + 1 have improving actions.

Proof

First, suppose that fk is switched from 0 to 1, i.e. for fk = 0 state k has an improving action.

From Lemma 9.11 it follows that ak < 0. By Lemma 9.8, ak+1 = 1
2 (−1)fkak = −1

2ak > 0. Because

fk+1 = 1, state k + 1 has an improving action. Since ak+2 = 1
2 (−1)fk+1ak+1 = −1

2ak+1 < 0 and

fk+2 = 0, state k + 2 has also an improving action. It can similarly be proved by induction that

the other larger numbered state have improving actions, too.

Next, suppose that fk is switched from 1 to 0. From Lemma 9.11 it follows that ak > 0. By

Lemma 9.8, ak+1 = 1
2(−1)fkak = 1

2ak > 0, so by Lemma 9.11, state k + 1 has an improving

action. The remaining part of the proof is the same as before.

9.1. COMPLEXITY RESULTS 433

Lemma 9.13

The following two statements hold for every 1 ≤ k ≤ N :

(1) If fNfN−1 · · ·fk+1fk = 00 . . .01 and the states N,N − 1, . . . , k + 1, k have improving actions,

then during the next 2N−k+1 − 1 iterations of the simple policy iteration algorithm switches

are made in the states N,N − 1, . . . , k+ 1, k to reach the policy fNfN−1 · · ·fk+1fk = 00 . . .00.

(2) If fNfN−1 · · ·fk+1fk = 00 . . .00 and the states N,N − 1, . . . , k + 1, k have improving actions,

then during the next 2N−k+1 − 1 iterations of the simple policy iteration algorithm switches

are made in the states N,N − 1, . . . , k+ 1, k to reach the policy fNfN−1 · · ·fk+1fk = 00 . . .01.

Proof

The lemma will be proved by induction on k, where k = N,N − 1, . . . , 2, 1. It is obvious that the

statements hold for k = N . Assume as induction hypothesis that the statements hold for k = m.

We shall prove that the statements hold for k = m− 1. We shall prove statement (1); statement

(2) can be proved following the same reasoning.

Consider the policy fNfN−1 · · ·fmfm−1 = 00 . . .01 and suppose that the statesN,N−1, . . . , m,m−
1 have improving actions. The simple policy iteration algorithm examines the states in the order

N,N−1, From the second statement of the induction hypothesis, we deduce that it performs

2N−m+1 − 1 iterations to reach the policy for which fNfN−1 · · ·fm+1fm = 00 . . .01.

The state m − 1 has still an improving action (see Corollary 9.2), so fm−1 is switched in the

next iteration from 1 to 0. By Lemma 9.12, all states N,N − 1, . . . , m have improving actions.

From the first statement of the induction hypothesis, we deduce that the algorithm performs

2N−m+1 − 1 iterations to reach the policy for which fNfN−1 · · ·fm+1fm = 00 . . .00.

Hence, after (2N−m+1 − 1) + 1 + (2N−m+1 − 1) = 2N−(m−1)+1 − 1 iterations of the simple policy

iteration algorithm the policy fNfN−1 · · ·fmfm−1 = 00 . . .00 is reached.

Theorem 9.9

The simple policy iteration algorithm requires an exponential number of iterations in the worse

case.

Proof

Since we start with the policy f = 00 . . .00, we have a1 = −1
2 and ak+1 = 1

2ak for k = 1, 2, . . . , N−
1, implying ak = −(1

2)k < 0. Then, by Lemma 9.11, all states have improving actions. By Lemma

9.13, part (2) with k = 1, the simple policy iteration algorithm requires 2N −1 iterations to reach

the optimal policy f = 00 . . .01.

9.1.5 Value iteration for discounted MDPs

In the value iteration method, given an initial vector v1, a sequence v2, v3, . . . of vectors and a

sequence f∞1 , f∞2 , . . . of policies is computed, using the formula vn+1 = Uvn = Lfnv
n The vector

vn and the policy f∞n are used as approximations for the value vector vα and for an optimal policy

f∞∗ . From Lemma 3.9, we have the bound ‖vα(f∞n)−vα‖∞ ≤ 2αn(1−α)−1 · ‖Uv1−v1‖∞, n ∈ N.

434 CHAPTER 9. OTHER TOPICS

In order to obtain an ε-optimal policy, we set 2αn(1− α)−1 · ‖Uv1 − v1‖∞ ≤ ε, which yields

n ≥ n1 :=
1

| log α| · log
{2 · ‖Uv1 − v1‖∞

ε · (1− α)

}

. (9.3)

Similarly, we can derive another bound based on the span. From Theorem 3.8 part (2), we obtain

‖vα(f∞n)− vα‖∞ ≤ α(1−α)−1 · span (Uvn− vn). Then, using the result of Exercise 3.9, we have

‖vα(f∞n)− vα‖∞ ≤ αn(1−α)−1 · span (Uv1− v1), n ∈ N. In order to obtain an ε-optimal policy,

we set αn(1− α)−1 · span (Uv1 − v1) ≤ ε, which yields

n ≥ n2 :=
1

| log α| · log
{span (Uv1 − v1)

ε · (1− α)

}

. (9.4)

Each iteration of the value iteration method needs at most N ·M arithmetic operations, where

M :=
∑N

i=1 A(i)|. Hence, we have the following result, which shows that an ε-optimal policy can

be computed in polynomial time.

Theorem 9.10
(1) The value iteration method Algorithm 3.4 with stopping criterion ‖y − x‖∞ ≤ 1

2 · 1−α
α · ε

computes an ε-optimal policy and a 1
2ε-approximation of the value vector vα and has

complexity O(N ·M · n1), where n1 := 1
| log α| · log

{

2·‖Uv1−v1‖∞
ε·(1−α)

}

.

(2) The value iteration method Algorithm 3.4 with stopping criterion span (y − x) ≤ 1−α
α · ε

computes an ε-optimal policy and a 1
2ε-approximation of the value vector vα and has

complexity O(N ·M · n2), where n2 := 1
| log α| · log

{

span (Uv1−v1)
ε·(1−α)

}

.

Next, we shall show that, under a reasonable assumption, also an optimal policy can be computed

in polynomial time. Therefore, we need the following assumption.

Assumption 9.1

The rewards ri(a), (i, a) ∈ S×A and the components v1
i , i ∈ S, are integers; the discount factor

α and the transition probabilities pij(a), (i, a) ∈ S × A, j ∈ S, are rational numbers.

Let δ be the smallest integer such that: (1) δ · α is integer; (2) δ · pij(a) is integer for all

(i, a, j) ∈ S ×A× S; (3) |ri(a)| ≤ δ for all (i, a) ∈ S × A; (4) |v1
i | ≤ δ for all i ∈ S.

The quantity δ represents the accuracy in the problem data. Let p be the number of nonzero

transition probabilities pij(a), (i, a, j) ∈ S ×A× S. Then, the input size of the problem, i.e. the

number of binary bits needed to write down the discount factor α, the number of states N , the

rewards ri(a), (i, a) ∈ S × A, the transition probabilities pij(a), (i, a, j) ∈ S × A × S and the

initial values v1
i , i ∈ S, is at most some constant times L, where L := p · log δ.

Lemma 9.14

If ‖vn − vα‖∞ ≤ 1
2 δ2N+2·NN , then the corresponding policy f∞n is optimal.

9.1. COMPLEXITY RESULTS 435

Proof

vα is the unique solution of the linear system {δ2I − (δα)(δP (f∗)}x = δ2r(f∗), where f∞∗ is

an optimal policy. Note that all entries in this system are integer. Solving this system by

Cramers rule gives vα
i = wi

m , i ∈ S, with wi, i ∈ S, and m integer and m = det (Q), where

Q = δ2{I − αP (f∗)}. Notice that the entries of Q satisfy |qij| ≤ δ2 for all i, j. Hence, by the

definition of the determinant, det(Q) = q11q
′
11+q12q

′
12+· · ·+q1Nq

′
1N , where q′ij = (−1)i+j ·det(Qij)

with Qij the (i, j)-minor of Q, i.e. the submatrix of Q obtained by crossing out the ith row and

j column. Therefore, we obtain the inequality m ≤ δ2NNN .

Consider a nonoptimal action a in state i, i.e. ri(a) + α
∑

j pij(a)v
α
j 6= vα

i . Then, we can write

ri(a) + α
∑

j pij(a)v
α
j =

δ2mri(a)+δ2α
P

j pij(a)wj

δ2m
6= vα

i = δ2wi

δ2m
.

Since the numerators δ2mri(a) + δ2α
∑

j pij(a)wj and δ2wi both are integers, it must be that

ri(a) + α
∑

j pij(a)v
α
j and vα

i differ by at least 1
δ2m
≥ 1

δ2N+2NN .

Therefore, we have

|ri(a) + α
∑

j pij(a)v
n
j − vα

i | = |{ri(a) + α
∑

j pij(a)v
α
j − vα

i } − {α
∑

j pij(a)(v
α
j − vn

j)}|
≥ |ri(a) + α

∑

j pij(a)v
α
j − vα

i | − |α
∑

j pij(a)(v
α
j − vn

j)|}
≥ 1

δ2N+2NN − α‖vα − vn‖∞ > 1
δ2N+2NN − 1

2δ2N+2NN

= 1
2δ2N+2NN ≥ ‖vα − vn‖∞.

Since ‖vn+1− vα‖∞ ≤ ‖vn− vα‖∞, action a is no action in f∞n . Hence, f∞n contains only optimal

actions, i.e. f∞n is an optimal policy.

Theorem 9.11

The value iteration method Algorithm 3.4 with stopping criterion ‖y−x‖∞ ≤ 1
2 · 1−α

α · ε computes

an optimal policy in at most n3 iterations, where n3 := 1
| log α| · log

{

2δ2N+2NN · {‖v1‖∞ + R
1−α}

}

with R := max(i,a) |ri(a)‖.

Proof

Since ‖vn+1− vα‖∞ ≤ αn · ‖v1− vα‖∞, we have ‖vn+1− vα‖∞ ≤ ε if n ≥ 1
| log α| · log

{ ‖v1−vα‖∞
ε

}

.

If ε ≤ 1
2δ2N+2NN , then ‖vn+1 − vα‖∞ ≤ 1

2δ2N+2NN if n ≥ 1
| log α| · log

{

2δ2N+2NN · ‖v1 − vα‖∞
}

.

Because ‖v1 − vα‖∞ ≤ ‖v1‖∞ + ‖vα‖∞ ≤ ‖v1‖∞ + R
1−α , the inequality n ≥ n3 implies

n ≥ 1
| log α| · log

{

2δ2N+2NN · ‖v1 − vα‖∞
}

and consequently ‖vn+1 − vα‖∞ ≤ 1
2δ2N+2NN .

Then, by Lemma 9.14, f∞n+1 is optimal, i.e. after at most n3 iterations the algorithm terminates

with an optimal policy.

Because the discount factor α is considered as a constant and both ‖v1‖∞ ≤ δ and R ≤ δ, the

number of iterations n3 satisfies n3 = O
(

N · log (δN)
)

, which is polynomial in L. Furthermore,

each iteration has at most N ×M arithmetic operations. Therefore, under Assumption 9.1, the

value iteration method is a polynomial-time algorithm for the computation of an optimal policy.

436 CHAPTER 9. OTHER TOPICS

9.2 Additional constraints

9.2.1 Introduction

Formulating MDPs only in terms of the standard utility functions can be quite insufficient.

Instead of introducing a single utility that has to be maximized (minimized) we often consider a

situation where one type of profit (costs) has to be maximized (minimized) while keeping other

types of rewards (costs) above (below) some given bounds. The first reference in this area is a

paper of Derman and Klein ([70]). They consider an inventory problem for which the total costs

are minimized under the constraint that the shortage is bounded by a given number. We will

first present two examples of constrained problems from telecommunication.

Telecommunication networks are designed to enable simultaneous transmission of heteroge-

neous types of information. At the access to the network, or at the nodes within the network

itself, the different types of traffic typically compete for a shared resource. Typical performance

measures are the transmission delay, the throughput, probabilities of losses of packets, etc. Then,

several constrained MDP problems can be considered, e.g.

(1) The maximization of the throughput, subject to constraints on its delay.

A tradeoff exists between achieving high throughput, on the one hand, and low expected

delays on the other.

(2) Dynamic control of access of different traffic types.

In this model the problem is considered where several different traffic types compete for some

resource; some weighted sum of average delays of some traffic is to be minimized, whereas

for some other traffic types, a weighted sum of average delays should be bounded by some

given limit.

For constrained Markov decision problems, for short CMDP, the nice property for the standard

utility functions that there exists a deterministic optimal policy doesn’t hold, in general. Even

optimality simultaneously for all starting states is no longer valid. Therefore, we will optimize

with respect to a given initial distribution β, i.e. βj is the probability that state j is the starting

state, j ∈ S. A special case is βj = δij, i.e. that state i is the (fixed) starting state.

In many cases the reward or costs functions are specified in terms of expectations of some

functions of the state-action probabilities xR
ia(t), defined for any policy R by

xβ,R
ia (t) :=

∑

j∈S

βj · PR{Xt = i, Yt = a | X1 = j}, t = 1, 2, (9.5)

9.2.2 Infinite horizon and discounted rewards

For the additional constraints we assume that, besides the immediate costs ri(a), there are for

k = 1, 2, . . . , m also certain immediate costs cki (a), (i, a) ∈ S ×A. A policy R is called a feasible

policy for a CMDP if the total expected discounted costs over the infinite horizon, denoted for the

k-th cost function as cαk (β, R) and defined by cαk (β, R) :=
∑∞

t=1 α
t−1
∑

i,a x
β,R
ia (t)cki (a), is at most

9.2. ADDITIONAL CONSTRAINTS 437

bk, k = 1, 2, . . . , m. An optimal policy R∗ is a feasible policy that maximizes vα(β, R), defined by

vα(β, R) :=
∑

j βj · vα
j (R) =

∑∞
t=1 α

t−1
∑

i,a x
β,R
ia (t)ri(a), over all feasible policies R, i.e.

vα(β, R∗) = supR {vα(β, R) | cαk (β, R) ≤ bk, k = 1, 2, . . . , m}. (9.6)

Define xα
ia(β, R) :=

∑∞
t=1 α

t−1xβ,R
ia (t), (i, a) ∈ S×A, as the total discounted state-action frequen-

cies. Then, vα(β, R) =
∑

i,a x
α
ia(β, R)ri(a) and cαk (β, R) =

∑

i,a x
α
ia(β, R)cki (a), k = 1, 2, . . . , m.

Define the vector sets K, K(M), K(S), K(D) and P , with components (i, a) ∈ S ×A by

K := {xα(β, R) | R is an arbitrary policy};
K(M) := {xα(β, R) | R is a Markov policy};
K(S) := {xα(β, R) | R is a stationary policy};

K(D) := {xα(β, R) | R is a deterministic policy};

P :=

x

∣

∣

∣

∣

∣

∣

∑

(i,a){δij − αpij(a)}xia = βj, j ∈ S
xia ≥ 0, (i, a) ∈ S ×A

.

For any |S×A|-vector x ∈ P , we define an |S|-vector, also denoted by x, by xi :=
∑

a xia, i ∈ S.

From the context it will be clear whether an |S ×A|-vector x or an |S|-vector x is meant.

Theorem 9.12

K = K(M) = K(S) = K(D) = P , where K(D) is the closed convex hull of the finite set of

vectors K(D).

Proof

The equality K = K(M) follows directly from Theorem 1.1. Furthermore, it is obvious that

K(D) ⊆ K(S) ⊆ K(M) ⊆ K. We first show that K ⊆ K(D), then K = K(M) = K(S) = K(D),

where K(S) is the closed convex hull of the infinite set of vectors K(S), and finally we show that

K(S) = P , which implies - because P is a closed convex set - that K(S) = K(S).

For the proof of K ⊆ K(D), suppose the contrary. Then, there exists a policy R such that

xα(β, R) ∈ K and xα(β, R) /∈ K(D). Since K(D) is a closed convex set, it follows from

the Separating Hyperplane Theorem (see e.g. [155] pp.397–398) that there are coefficients

ri(a), (i, a) ∈ S ×A, such that

∑

i,a

xα
ia(β, R)ri(a) >

∑

i,a

xiari(a) for all x ∈ K(D). (9.7)

Consider the discounted MDP with immediate rewards ri(a), (i, a) ∈ S × A. We have seen in

Chapter 3 that there exists an optimal policy f∞ ∈ C(D). Because xα(β, R) ∈ K, we can write

∑

i,a x
α
ia(β, R)ri(a) = vα(β, R) ≤ vα(β, f∞) =

∑

i,a x
α
ia(β, f

∞)ri(a),

which contradicts (9.7). Hence, we have shown that K ⊆ K(D), and consequently

K(D) ⊆ K(S) ⊆ K(M) = K ⊆ K(D) and K(S) = K(D).

438 CHAPTER 9. OTHER TOPICS

Next, we will show that K(D) ⊆ K(M), implying K = K(M) = K(S) = K(D). Take any

x ∈ K(D). Let C(D) = {f∞1 , f∞2 , . . . , f∞n }. Then, xia =
∑n

k=1 pk x
α
ia(β, f

∞
k), (i, a) ∈ S × A for

certain pk ≥ 0 with
∑n

k=1 pk = 1. By Theorem 1.1, there exists a policy R ∈ C(M) satisfying

∑

j∈S βj · PR{Xt = i, Yt = a | X1 = j} =
∑

j∈S βj ·
∑n

k=1 pk Pf∞
k
{Xt = i, Yt = a | X1 = j},

for all (i, a) ∈ S ×A and t = 1, 2, Hence,

xia =
∑n

k=1 pk x
α
ia(β, f

∞
k) =

∑n
k=1 pk

∑∞
t=1 α

t−1x
β,f∞

k

ia (t) =
∑∞

t=1 α
t−1

∑n
k=1 pk x

β,f∞
k

ia (t)

=
∑∞

t=1 α
t−1

∑n
k=1 pk

∑

j∈S βj · Pf∞
k
{Xt = i, Yt = a | X1 = j}

=
∑∞

t=1 α
t−1

∑

j∈S βj · PR{Xt = i, Yt = a | X1 = j} = xα
ia(β, R), (i, a) ∈ S ×A.

Therefore, x = xα(β, R) ∈ K(M).

Finally, we we show that K(S) = P . For each x ∈ P , let π∞ ∈ C(S) be defined by

πia :=
xia

xi
if xi =

∑

a xia > 0 and arbitrary if xi = 0. (9.8)

Then, πiaxi = xia for all (i, a) ∈ S ×A. Since x ∈ P , we can write

βj =
∑

a xja − α
∑

(i,a) pij(a)xia = xj − α
∑

(i,a) pij(a)πiaxi

= xj − α
∑

i pij(π)xi, j ∈ S,
or, in vector notation, βT = xT {I − αP (π)}, implying xT = βT {I − αP (π)}−1, i.e.

xi =
∑∞

t=1 α
t−1
∑

j∈S βj · Pπ∞{Xt = i | X1 = j}, i ∈ S.

Hence,

xia = xiπia =
∑∞

t=1 α
t−1
∑

j∈S βj · Pπ∞{Xt = i, Yt = a | X1 = j}
= xα

ia(β, π
∞), (i, a) ∈ S × A.

showing P ⊆ K(S). Conversely, take any xα(β, π∞) ∈ K(S). Then,

xα
ia(β, π

∞) =
∑∞

t=1 α
t−1
∑

j∈S βj · {P (π)t−1}i · πia =
{

βT · {∑∞
t=1{αP (π)}t−1

}

i
· πia ≥ 0, for all

(i, a) ∈ S × A, which can be written as

xα
ia(β, π

∞) =
{

βT · {I − αP (π)}−1
}

i
· πia or xα

ia(β, π
∞) = xα

i (β, π∞) · πia,

where xα
i (β, π∞) :=

{

βT · {I − αP (π)}−1
}

i
. From this expression it follows that

∑

(i,a){δij − αpij(a)}xα
ia(β, π

∞) = xα
j (β, π∞)− α∑i{

∑

a pij(a)πia}xα
i (β, π∞)

= xα
j (β, π∞)− α∑i pij(π)xα

i (β, π∞) =
{(

xα(β, π)
)T{I − αP (π)}

}

j

=
{

βT {I − αP (π)}−1{I − αP (π)}
}

j
= βj, j ∈ S.

Hence, xα(β, π∞) ∈ P , completing the proof that P = K(S).

In order to solve the CMDP (9.6), we consider the following linear program

max

∑

(i,a)

ri(a)xi(a)

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a) {δij − αpij(a)}xi(a) = βj, j ∈ S
∑

(i,a) c
k
i (a)xi(a) ≤ bk, k = 1, 2, . . . , m

xi(a) ≥ 0, (i, a) ∈ S × A

(9.9)

9.2. ADDITIONAL CONSTRAINTS 439

Theorem 9.13

(1) The linear program (9.9) is infeasible if and only if the CMDP (9.6) is infeasible.

(2) If x is an optimal solution of program (9.9), then π∞, defined by (9.8), is a stationary

optimal policy for the CMDP (9.6).

Proof

(1) Assume that the linear program (9.9) is infeasible and that the CMDP (9.6) is feasible,

i.e. there exists a policy R satisfying cαk (β, R) =
∑

i,a x
α
ia(β, R)cki (a) ≤ bk, k = 1, 2, . . . , m.

Since K = P , there exists an x ∈ P with x = x(β, R). Hence x is a feasible solution of the

linear program (9.9), which yields a contradiction. The reverse statement can be shown in a

similar way.

(2) Let x be an optimal solution of program (9.9) and let π∞ be defined by (9.8). Then, π∞ is a

feasible solution of the CMDP (9.6) with vα(β, π∞) =
∑

i,a x
α
ia(β, π

∞)ri(a) =
∑

i,a xiari(a) as

value of the objective function. Let R∗ be an arbitrary feasible solution of (9.6). Then,

xα(β, R∗) is a feasible solution of (9.9) with

vα(β, R∗) =
∑

i,a x
α
ia(β, R∗)ri(a) ≤

∑

i,a xiari(a) = vα(β, π∞), i.e.

π∞ is an optimal policy of the CMDP (9.6).

Remarks

1. If βj > 0, j ∈ S, then it is shown in Theorem 3.18 that the mapping πx
ia := xia

P

a xia
,

(i, a) ∈ S ×A, is a bijection between P and K(S) with as inverse mapping xπ, defined by

xπ
i (a)(π) :=

{

βT · {I−αP (π)}−1
}

i
·πia, (i, a) ∈ S×A. Furthermore, the extreme points of P

correspond to the deterministic policies of C(D).

2. If the linear program (9.9) is feasible, an extreme optimal solution has at most N +m, i.e. the

number of the constraints in (9.9)), strictly positive variables. Hence, there exists an

optimal stationary policy with in at most m states a randomization.

Algorithm 9.2 Construction of an optimal stationary policy for the CMDP (9.6)

Input: Instance of an MDP, an initial distribution β, immediate costs cki (a), (i, a) ∈ S ×A and

bounds bk for k = 1, 2, . . . , m.

Output: Either the statement that problem (9.6) is infeasible or an optimal stationary policy

π∞ of problem (9.6).

1. Determine an optimal policy x for linear program (9.9).

2. if program (9.9) is infeasible then problem (9.6) is infeasible

else the stationary policy π∞, defined by πia := xi(a)
P

a xi(a)
if
∑

a xi(a) > 0 and arbitrarily if
∑

a xi(a) = 0 is an optimal stationary policy for problem (9.6).

440 CHAPTER 9. OTHER TOPICS

Monotone optimal policies

Consider the constrained MDP problem (9.6) with S = {1, 2, . . . , N}, A(i) = {1, 2, . . . ,M}, i ∈ S,

where S and A are ordered in the usual way, and under the conditions B1, B2, B3 and B4 of

Assumption 3.2 from section 3.9, i.e.

(B1) ri(a) is nonincreasing in i for all a;

(B2)
∑N

j=k pij(a) is nondecreasing in i for all k and a.

(B3) ri(a) is supermodular on S × A;

(B4)
∑N

j=k pij(a) is submodular on S ×A for all k.

Furthermore, we impose the following additional assumptions:

(B5) cki (a) is nonincreasing in i for all a and all k;

(B6) cki (a) is submodular on S × A for all k.

We have already seen that problem (9.6) has an optimal stationary policy with in at most m

states a randomization and that such optimal policy can be obtained from linear program (9.9).

The dual program of (9.9) is:

min

N
∑

j=1

βjvj +

m
∑

k=1

λkbk

∣

∣

∣

∣

∣

∣

∑N
j=1{δij − αpij(a)}vj +

∑m
k=1 c

k
i (a)λk ≥ ri(a), (i, a) ∈ S ×A

λk ≥ 0, 1 ≤ k ≤ m

(9.10)

From the theory of linear programming we know that a necessary and sufficient condition for

optimality of a feasible solution x∗ of (9.9) is the existence of (v∗, λ∗) such that:

(1) (v∗, λ∗) is feasible for (9.9);

(2) x∗i (a) ·
{

r∗i (a)−
∑N

j=1{δij − αpij(a)}v∗j
}

= 0 for all (i, a) ∈ S ×A, where

r∗i (a) := ri(a)−
∑m

k=1 c
k
i (a)λ

∗
k;

(3) λ∗k ·
{
∑

(i,a) c
k
i (a)− bk

}

= 0 for k = 1, 2, . . . , m.

Since λ∗k ≥ 0 for 1 ≤ k ≤ m, it follows from B1, B5, B3 and B6 that r∗i (a) is nonincreasing in i

for all a and is supermodular on S ×A.

A stationary policy π∞ is called a randomized nondecreasing policy if for every 1 ≤ i ≤ N−1, the

following property holds: if πia = 0 for all 1 ≤ a ≤ b, then also πi+1,a = 0 for all 1 ≤ a ≤ b. Hence,

the sets of actions which are used for π are nonincreasing in the state. The next theorem shows

that, under the assumptions B1 until B6, the constrained MDP problem (9.6) has an optimal

randomized nondecreasing stationary policy.

Theorem 9.14

Consider a feasible constrained MDP problem (9.6) for which the assumptions B1 until B6 hold.

Then, this problem has a randomized nondecreasing stationary optimal policy.

9.2. ADDITIONAL CONSTRAINTS 441

Proof

Let x∗ be an optimal solution of (9.9) with (v∗, λ∗) as corresponding optimal solution of (9.10).

From the optimality properties (1) and (2) it follows that x∗ and v∗ are optimal solutions of

the unconstrained problem with rewards r∗i (a) instead of ri(a), (i, a) ∈ S × A. Note that this

unconstrained problem satisfies B1 until B4. From the proof of Theorem 3.36, we know that

s∗i (a) := r∗i (a) + α ·∑N
j=1 pij(a)v

∗
j is supermodular on S × A. Hence, for all 1 ≤ i ≤ N − 1 and

all 1 ≤ a ≤ b ≤M , we have s∗i (a) + s∗i+1(b) ≥ s∗i (b) + s∗i+1(a), i.e.

s∗i (b)− s∗i (a) ≥ s∗i+1(b)− s∗i+1(a) for all 1 ≤ i ≤ N − 1 and all 1 ≤ a ≤ b ≤M. (9.11)

Let b be the smallest optimal action in state i for the unconstrained problem, i.e. we have

v∗i = s∗i (b) > s∗i (a) for all 1 ≤ a < b. Then, it follows from (9.11) that s∗i+1(b) > s∗i+1(a),

implying 0 ≥ s∗i+1(b) − v∗i+1 > s∗i+1(a) − s∗i+1. From the orthogonality property (2) it follows

that x∗i+1(a) = 0 for all 1 ≤ a < b. This completes the proof of the existence of a randomized

nondecreasing stationary policy.

Example 9.6

Consider the model of Example 3.7 for which we add the constraint x6(1) + x7(1) + x8(1) ≤ 0.4.

Notice that this constraint satisfies B5 and B6. We assume that we start with a new item, i.e.,

in state 1 and let β1 = 1, βi = 0 for i = 2, 3, . . . , 8. The corresponding linear program is:

max{−x7(1)− 5x8(1)− 2x1(2)− 2x2(2)− 2x3(2)− 2x4(2)− 2x5(2)− 2x6(2)− 2x7(2)− 2x8(2)}
subject to the constraints

x1(1)+x1(2) = 1+0.9 · {0.03x1(1)+x1(2)+x2(2)+x3(2)+x4(2)+x5(2)+x6(2)+x7(2)+x8(2)};
x2(1) + x2(2) = 0 + 0.9 · {0.07x1(1) + 0.02x2(1)};
x3(1) + x3(2) = 0 + 0.9 · {0.05x1(1) + 0.03x2(1) + 0.05x3(1)};
x4(1) + x4(2) = 0 + 0.9 · {0.1x1(1) + 0.1x2(1) + 0.05x3(1) + 0.05x4(1)};
x5(1) + x5(2) = 0 + 0.9 · {0.1x1(1) + 0.1x2(1) + 0.1x3(1) + 0.05x4(1) + 0.02x5(1)};
x6(1) + x6(2) = 0 + 0.9 · {0.2x1(1) + 0.2x2(1) + 0.1x3(1) + 0.1x4(1) + 0.08x5(1) + 0.05x6(1)};
x7(1)+x7(2) = 0+0.9 ·{0.2x1(1)+0.2x2(1)+0.2x3(1)+0.2x4(1)+0.1x5(1)+0.1x6(1)+0.1x7(1)};
x8(1) + x8(2) = 0 + 0.9 · {0.25x1(1) + 0.35x2(1) + 0.5x3(1) + 0.6x4(1) + 0.8x5(1) + 0.85x6(1) +

0.9x7(1) + x8(1)};
x6(1) + x7(1) + x8(1) ≤ 0.4;

x1(1),x2(1),x3(1),x4(1),x5(1),x6(1),x7(1),x8(1),x1(2),x2(2),x3(2),x4(2),x5(2),x6(2),x7(2),x8(2)≥0.

An optimal solution of this program and the corresponding policy is presented in the next table:

i xi(1) xi(2) πi1 πi1 i xi(1) xi(2) πi1 πi1

i = 1 4.4564 0 1 0 i = 5 0.4756 0 1 0

i = 2 0.2859 0 1 0 i = 6 0.4000 0.5666 0.4138 0.5862

i = 3 0.2181 0 1 0 i = 7 0 1.0540 0 1

i = 4 0.4572 0 1 0 i = 8 0 2.0862 0 1

442 CHAPTER 9. OTHER TOPICS

Notice that the only difference with the optimal policy for the unconstrained model is that in state

6 there is randomization. Next, we add a second constraint x5(1)+x6(1)+2x7(1)+4x8(1) ≤ 0.6,

which also satisfies B5 and B6. An optimal solution of this program and the corresponding policy

is presented in the following table:

i xi(1) xi(2) πi1 πi1 i xi(1) xi(2) πi1 πi1

i = 1 4.5764 0 1 0 i = 5 0.2000 0.2832 0.4139 0,5861

i = 2 0.2936 0 1 0 i = 6 0.4000 0.5714 0.4118 0.5882

i = 3 0.2239 0 1 0 i = 7 0 1.0554 0 1

i = 4 0.4695 0 1 0 i = 8 0 1.9265 0 1

We see that in this case in two states (state 5 and again state 6) there is randomization.

The structure of the value function

We have seen in Corollary 5.2 that in the unconstrained case the value vector vα is a continuous,

piecewise rational function in α with no singular point in the interval [0, 1). We will show the

same property for constrained discounted MDPs. If the discount factor is not fixed but varies

over the whole interval [0, 1), the formulation

supR {vα(β, R) | cαk (β, R) ≤ bk, k = 1, 2, . . . , m}. (9.12)

is less appropriate, because in general the functions vα(β, R) and cαk (β, R), 1 ≤ k ≤ m tend to

infinity if α tends to 1. Therefore, we consider the scaled version

supR {(1− α)vα(β, R) | (1− α)cαk (β, R) ≤ dk, k = 1, 2, . . . , m}, (9.13)

which is an equivalent problem for any fixed α. Note that this transformation is invariant for

the property of continuous, piecewise rational function in a with no singular point in the interval

[0, 1). The optimum value of (9.12) is called the value vα(β) of the discounted constrained Markov

decision problem, and the optimum value of (9.13)is scaled value wα(β).

Remark

Since (1−α)vα(β, R) = limT→∞
Eβ,R{

PT
t=1 αt−1rXt

(Yt)}
Eβ,R{

PT
t=1 αt−1} , and a similar expression holds for the cost

functions (1−α)cαk (β, R) ≤ bk, k = 1, 2, . . . , m, the scaled versions of vα(β, R) and cαk (β, R) may

be considered as the total discounted rewards (or costs) per total discounted time, so as a dis-

counted time average. We have already seen that we may restrict the policy space of a discounted

constrained Markov decision problem to the set of stationary policies. For any stationary policy

π∞, we have limα↑1 (1−α)vα(β, π∞) = φ(β, π∞) (the proof is similar to the proof of Theorem 5.8,

part (2)). So as the discount factor tends to 1, a scaled discounted constrained Markov decision

problem converges to an undiscounted constrained Markov decision problem.

From the analysis in the first part of this section it follows that problem (9.13) can be solved by

the following linear program:

max

∑

(i,a)

(1− α)ri(a)xi(a)

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a) {δij − αpij(a)}xi(a) = βj, j ∈ S
∑

(i,a) (1− α)cki (a)xi(a) ≤ dk, k = 1, 2, . . . , m

xi(a) ≥ 0, (i, a) ∈ S × A

(9.14)

9.2. ADDITIONAL CONSTRAINTS 443

Using the interest rate ρ := 1−α
α , i.e., (1 − α) = α, and the variables yi(a) = αyi(a) for all

(i, a) ∈ S × A, we obtain the following equivalent formulation:

max

∑

(i,a)

{ρri(a)}yi(a)

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a) {(1 + ρ)δij − pij(a)}yi(a) = βj, j ∈ S
∑

(i,a) {ρcki (a)}yi(a) ≤ dk, k = 1, 2, . . . , m

yi(a) ≥ 0, (i, a) ∈ S ×A

(9.15)

If this problem is solved with the phase I - phase II technique (see e.g. [341]), then in phase I the

following linear program with artificial variables zj, j ∈ S, and slack variables sk, 1 ≤ k ≤ m, is

considered:

max

z0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a) {(1 + ρ)δij − pij(a)}yi(a) + zj = βj, j ∈ S
∑

(i,a) {ρcki (a)}yi(a) + sk = dk, k = 1, 2, . . . , m
∑

j zj + z0 = 0

yi(a) ≥ 0, (i, a) ∈ S × A; zj ≥ 0, j ∈ S; sk ≥ 0, 1 ≤ k ≤ m

(9.16)

For program (9.16) an initial feasible basis is available, namely the basic variables zj , j ∈ S,

sk, 1 ≤ k ≤ m, and z0. Then, for the optimal solution (y∗, z∗, s∗) of program (9.16) there are

two possibilities:

a. z∗ < 0: in this case program (9.15) has no feasible solution;

b. z∗ = 0: in this case y∗ is a feasible basis solution of (9.15) and phase II can be started, in

which the original objective function will be optimized.

We will analyze problem (9.15) in the same way as we analyzed in Section 7.7 linear program

(7.36). We make the following observations about the programs (9.15) and (9.16):

1. There are only a finite number of different bases for the linear program 9.15.

2. For each of these bases the corresponding simplex tableau has the following properties:

a. The elements are rational functions in ρ.

b. The tableau is optimal if and only if both the basic variables and the dual variables are

nonnegative. Each variable is rational function in ρ; so, it is nonnegative on a finite

number of closed intervals. Hence, each basis can be optimal on only a finite number of

intervals, which are closed intervals of the interest rate.

c. Infeasibility of problem (9.15) corresponds to an optimal tableau in phase I with z∗ < 0,

which corresponds to open intervals.

d. Feasibility and optimality of problem (9.15) corresponds to an optimal tableau in phase II,

which corresponds to closed intervals.

Combining the above observations and using the property that any rational function in ρ is also

a rational function in α, we obtain the following result.

444 CHAPTER 9. OTHER TOPICS

Theorem 9.15

There exist numbers 0 = α0 < α1 < · · · < αp−1 < αp = 1 such that:

(1) For every j = 1, 2, . . . , p either problem (9.13) is infeasible for all α ∈ [αj−1, αj) or there

is a stationary policy π∞(j) that is optimal for all α ∈ [αj−1, αj).

(2) The policy π∞(j) is a rational function in α and corresponds on the interval [αj−1, αj)

to a fixed set of basic variables.

(3) When problem (9.13) is feasible on [αj−1, αj), then the value is also a rational function

in α on that interval.

Example 5.4 (continued)

Take β1 = β2 = 0.5 and add one constraint: (1 − α)cα1 (β, R) ≤ 1, where cα1 (β, R) is the total

discounted cost for an MDP with one-step costs c1(1) = c1(2) = c1(3) = 4, c2(1) = 0.

Simple calculations give for the three deterministic policies: cα1 (β, f∞1) = 2, cα1 (β, f∞2) = 2
1−α and

cα1 (β, f∞3) = 2
1−0.5α. Hence, f∞1 is feasible for 1

2 ≤ α < 1, f∞2 is feasible for all α ∈ [0, 1) and f∞3
is feasible for 2

3 ≤ α < 1. The linear program (9.15) becomes:

max

ρy1(1)+
1
2ρy1(2)+
3
4ρy1(3)+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1 + ρy1(1) + ρy1(2) + (1
2 + ρy1(3) = 1

2

−y1(1) − 1
2y1(3) + ρy2(1) = 1

2

4ρy1(1) + 4ρy1(2) + 4ρy1(3) ≤ 1

y1(1), y1(2), y1(3), y2(1) ≥ 0

.

The linear program (9.16) for phase I of the simplex method is:

max

z0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1 + ρy1(1) + ρy1(2) + (1
2 + ρy1(3) + z1 = 1

2

−y1(1) − 1
2y1(3) + ρy2(1) + z2 = 1

2

4ρy1(1) + 4ρy1(2) + 4ρy1(3) + s1 = 1

z0 + z1 + z2 = 0

y1(1), y1(2), y1(3), y2(1), z1, z2, s1 ≥ 0

.

The corresponding first simplex tableau is (this tableau is similar to the simplex tableau in

Example 7.4; we also add the original objective function as last equation in the tableaus):

1 y1(1) y1(2) y1(3) y2(1)

z1
1
2 1 + ρ ρ 1

2 + ρ 0

z2
1
2 -1 0 −1

2 ρ

s1 1 4ρ 4ρ 4ρ 0

z0 -1 −ρ −ρ −ρ −ρ
0 −ρ −1

2ρ −3
4ρ 0

In the first iteration the pivot column is the column of the variable y1(1) and the pivot row is the

row of z1. The next tableau becomes (with common denominator 1 + ρ). In this way we obtain

the next tableau.

9.2. ADDITIONAL CONSTRAINTS 445

1 + ρ z1 y1(2) y1(3) y2(1)

y1(1) 1
2 1 ρ 1

2 + ρ 0

z2 1 + 1
2ρ 1 ρ 1

2ρ ρ+ ρ2

s1 1− ρ −4ρ 4ρ 2ρ 0

z0 −1− 1
2ρ ρ −ρ −1

2ρ −ρ− ρ2

1
2ρ ρ −1

2ρ+ 1
2ρ

2 −1
4ρ+ 1

4ρ
2 0

In the second iteration we exchange the variables y2(1) and z2. Then the common denominator

is ρ+ ρ2). In this way we obtain the following tableau.

ρ+ ρ2 z1 y1(2) y1(3) z2

y1(1) 1
2ρ ρ ρ2 1

2ρ+ ρ2 0

y2(1) 1 + 1
2ρ 1 ρ 1

2ρ 1 + ρ

s1 ρ− ρ2 −4ρ2 4ρ2 2ρ2 0

z0 0 ρ+ ρ2 0 0 ρ+ ρ2

1
2ρ

2 ρ2 −1
2ρ

2 + 1
2ρ

3 −1
4ρ

2 + 1
4ρ

3 0

This tableau corresponds with the deterministic policy f∞1 and is feasible if ρ − ρ2 ≥ 0, i.e.

ρ ∈ (0, 1] or α ∈ [12 , 1). Policy f∞1 is optimal if also −1
2ρ

2 + 1
2ρ

3 ≥ 0 and −1
4ρ

2 + 1
4ρ

3 ≥ 0, i.e. if

ρ ≥ 1. Hence only for ρ = 1, i.e. α = 1
2 policy f f∞1 is feasible and optimal.

For ρ < 1, we have to execute a pivot operation. Since phase I of the simplex method is

finished, the z-variables can be removed from the tableau and we continue with phase II. Take

the column of y1(2) as pivot column and the row of s1 as pivot row. This yields the following

tableau.

4ρ2 s1 y1(3)

y1(1) ρ2 −ρ2 2ρ2

y2(1) 3ρ ρ 0

y1(2) ρ− ρ2 −4ρ2 2ρ2

1
2ρ

2 + 1
2ρ

3 1
2ρ

2 − 1
2ρ

3 0

This tableau is feasible and optimal if ρ − ρ2 ≥ 0 and 1
2ρ

2 − 1
2ρ

3 ≥ 0, i.e. if ρ ∈ (0, 1], which

equivalent to α ∈ (1
2 , 1]. Hence, the constrained problem is feasible and has an optimal stationary

policy π∞ if ρ ∈ (0, 1]. The optimal stationary policy π∞, as function of ρ, is

π11 = y1(1)
y1(1)+y1(2)+y1(3)

= ρ; π12 = y1(2)
y1(1)+y1(2)+y1(3)

= 1− ρ; π13 = y1(3)
y1(1)+y1(2)+y1(3)

= 0.

Furthermore, we obtain from this final simplex tableau, because s1 is a nonbasic variable, that

(1− α)c1(β, π
∞) = 1 for all α ∈ (1

2 , 1].

Remarks

1. If problem (9.13) is feasible in the neighborhood of α = 1, i.e. there exists a stationary policy

π∞(p) such that (1− α)c1(β, π
∞) ≤ dk for k = 1, 2, . . . , m, then the value wα(β) satisfies

wα(β) = (1− α)vα
(

β, π∞(p)
)

for αp−1 ≤ α < αp = 1. Note that (1− α)vα
(

β, π∞(p)
)

≤M ,

where M := max(i,a) ri(a) and furthermore (1−α)vα
(

β, π∞(p)
)

=
∑

(i,a) {ρri(a)}y∗i (a), where

446 CHAPTER 9. OTHER TOPICS

y∗ is the optimal solution of (9.15) on the interval [αp−1, 1) with components y∗i (a) which are

rational functions in ρ with no singular points for ρ ∈ (0,∞). Hence, wα(β) can be expressed

as a power series in (1− α), i.e., wα(β) =
∑∞

k=0 ak(1−α)k for some real numbers a0, a1,

Therefore, vα(β) = (1− α)−1wα(β) has a Laurent series expansion in the neighborhood of

α = 1.

2. Theorem 5.10 shows that vρ(π∞) = (1 + ρ)
{

ρ−1P ∗(π)r(π)+
∑∞

k=0 (−ρ)k){D(pi)}k+1r(π)
}

for 0 < ρ < ‖D(π)‖−1 and for any stationary policy π∞. This expression is called the Laurent

expansion about the origin ρ = 0 (actually, in Theorem 5.10 this result is shown for determi-

nistic policies, but the proof is similar for stationary policies). Since the randomizations may

depend on ρ, it is not obvious that vρ(β, π∞(p) has a similar Laurent expansion, although it

has a Laurent expansion of another form. The next example shows this phenomenon.

Example 5.4 (continued)

We have wρ(β) =
1
2
ρ2+ 1

2
ρ3

4ρ2 = 1
8(1 + ρ) for all ρ ∈ (0, 1]. As function of the discount factor α, we

have wα(β) = 1
8 · 1

α = 1
8

∑∞
k=0 (1 − α)k for all α ∈ [12 , 1). As Laurent expansion for the value

function vα(β) we obtain vα(β) = (1− α)−1wα(β) = 1
8

∑∞
k=−1 (1− α)k for all α ∈ [12 , 1). For the

optimal stationary policy π∞, we can write

P (π) =
(

1−ρ ρ
0 0

)

; P ∗(π) =
(

0 1
0 1

)

; D(π) = ρ−1
(

1 −1
0 0

)

; Dk(π) = ρ−1
(

1 −1
0 0

)

.

For the Laurent expansion of vρ(π∞), as given in the above Remark 2, we need 0 < ρ < ‖D(π)‖−1.

Since ‖D(π)‖ = ρ−1, this expansion is not valid.

9.2.3 Infinite horizon and total rewards

For this section we have the assumption that the model is substochastic, i.e.
∑

j pij(a) ≤ 1 for

all (i, a) ∈ S × A. Given an initial distribution β, let the total expected reward and the total

expected costs for a transient policy R be denoted by v(β, R) and ck(β, R), i.e.

v(β, R) :=
∑∞

t=1

∑

i βi ·
∑

(j,a) PR{Xt = j, Yt = a | X1 = i} · rj(a);

ck(β, R) :=
∑∞

t=1

∑

i βi ·
∑

(j,a) PR{Xt = j, Yt = a | X1 = i} · ckj (a).

Notice that v(β, R) and ck(β, R) are well defined and finite for any transient policy R. The

constrained problem for transient policies, given some real numbers bk, 1 ≤ k ≤ m, is defined as:

supR transient {v(β, R) | ck(β, R) ≤ bk, k = 1, 2, . . . , m}. (9.17)

Given an initial distribution β and a transient policy R, we define xia(β, R), the total expected

state-action frequencies of (i, a) ∈ S × A by xia(β, R) :=
∑∞

t=1 x
β,R
ia (t), where xβ,R

ia (t) is defined

in (9.5). Then, for any transient policy R,

v(β, R) =
∑

i,a xia(β, R)ri(a) and ck(β, R) =
∑

i,a xia(β, R)cki (a) for k = 1, 2, . . . , m.

9.2. ADDITIONAL CONSTRAINTS 447

Let the vector sets K,K(M), K(S), K(D) and P , with components (i, a) ∈ S×A, be defined by:

K := {x(β, R) | R is an arbitrary transient policy};
K(M) := {x(β, R) | R is a transient Markov policy};
K(S) := {x(β, R) | R is a transient stationary policy};

K(D) := {x(β, R) | R is a transient deterministic policy};

P :=

x

∣

∣

∣

∣

∣

∣

∑

(i,a){δij − pij(a)}xia = βj, j ∈ S
xia ≥ 0, (i, a) ∈ S × A

.

Theorem 9.16

K(D) ⊆ K(S) = K(M) = K = P , where K(D) is the closed convex hull of the finite set of

vectors K(D).

Proof

The equality K = K(M) follows directly from Theorem 1.1. Furthermore, it is obvious that

K(D) ⊆ K(S) ⊆ K(M) ⊆ K. Since P is a polyhedron, Theorem 4.7 implies K(D) ⊆ P = K(S)

and consequently, K(D) ⊆ P = K(S) ⊆ K(M) = K. Therefore, it is sufficient to show that

K(M) ⊆ P . Take any transient Markov policy R = (π1, π2, . . .). We have seen in the proof of

Theorem 4.14 that x(R) is a feasible solution of (4.15), i.e. x(R) ∈ P .

The next example shows that K(D) 6= P is possible and that anomalies may occur when we allow

general initial distributions.

Example 9.7

S = {1, 2}; A(1) = {1, 2}, A(2) = {2}; p11(1) = 1, p12(1) = 0; p11(2) = 0, p12(2) = 1; p21(1) = 0,

p22(1) = 1
2 . First, take β1 = β2 = 1. There is only one transient deterministic policy f∞ and this

policy has f(1) = 2, f(2) = 1. For this policy, we have x11(f) = 0, x12(f) = 1
2 , x21(f) = 2. The

set P is given by:

P =

x

∣

∣

∣

∣

∣

∣

∣

∣

x12 = 1
2

− x12 + 1
2x21 = 1

2

x11, x12, x21 ≥ 0

= {x | x11 ≥ 0, x12 = 1
2 , x21 = 2}.

K(D) = {x | x11 =, x12 = 1
2 , x21 = 2}.

Next, take β1 = 0, β2 = 1. Then, the set P becomes:

P =

x

∣

∣

∣

∣

∣

∣

∣

∣

x12 = 0

− x12 + 1
2x21 = 1

x11, x12, x21 ≥ 0

= {x | x11 ≥ 0, x12 = 0, x21 = 2}.

Since x12 = 0 for all feasible solutions, it is natural to choose in state 1 action 1 with probability

1. However, this policy is not transient.

448 CHAPTER 9. OTHER TOPICS

Because the above difficulties, we make the following assumption for this section.

Assumption 9.2

The initial distribution β has strictly positive components, i.e., βj > 0, j ∈ S and
∑

j βj = 1.

In order to solve problem (9.17) we consider the following linear program:

max

∑

(i,a)

ri(a)xi(a)

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a) {δij − pij(a)}xi(a) = βj, j ∈ S
∑

(i,a) c
k
i (a)xi(a) ≤ bk, k = 1, 2, . . . , m

xi(a) ≥ 0, (i, a) ∈ S × A

(9.18)

Theorem 9.17

(1) The linear program (9.18) is infeasible if and only if the CMDP (9.17) is infeasible.

(2) If the linear program (9.18) has an infinite optimal solution, then there exists no optimal

transient policy for the CMDP (9.18).

(3) If x is a finite optimal solution of program (9.18), then π∞(x), defined by (4.16), is a

stationary transient optimal policy for the CMDP (9.17).

(4) If R∗ is a transient optimal policy for the CMDP (9.17), then x(R∗) is a finite optimal

solution of program (9.18)

Proof

1. Because K = P (see Theorem 9.16), problem (9.17) is feasible if and only if problem (9.18) is

feasible.

2. If problem (9.18) has an infinite optimal solution, then also the unconstrained problem has

an infinite optimal solution. In Section 4.6 we have seen that in that case there does not exist

an optimal transient policy for problem (9.17).

3. Let x be a finite optimal solution of problem (9.18) and let π∞(x) be defined by (4.16).

Since, by Theorem 4.7, there is a bijection between the set of transient stationary policies and

the feasible solutions of (4.15), π∞(x) is a feasible policy for (9.17). Let R be an arbitrary

feasible policy for problem (9.17). Then, v(β, R) =
∑

(j,a) rj(a)xja(β, R) ≤∑(j,a) rj(a)xja

and ck(β, R) =
∑

(j,a) c
k
j (a)xja(β, R) ≤ bk, 1 ≤ k ≤ m. Hence, π∞(x) is an optimal policy

for (9.17).

4. This property follows directly from ck(β, R∗) =
∑

(j,a) c
k
j (a)xja(β, R∗) ≤ bk for 1 ≤ k ≤ m

and v(β, R∗) =
∑

(j,a) rj(a)xja(β, R∗) ≥ v(β, R) =
∑

(j,a) rj(a)xja(β, R) for all transient

policies R.

Algorithm 9.3 Construction of an optimal stationary policy for the CMDP (9.17)

Input: Instance of an MDP, an initial distribution β with βj > 0, j ∈ S and
∑

j βj = 1,

immediate costs cki (a), (i, a) ∈ S × A and bounds bk for k = 1, 2, . . . , m.

Output: Either the statement that problem (9.17) is infeasible or an optimal stationary policy

π∞ of problem (9.17).

9.2. ADDITIONAL CONSTRAINTS 449

1. Solve the linear program (9.18).

2. if program (9.18) is infeasible then begin problem (9.17) is infeasible; go to step 3 end

else begin if program (9.18) has an infinite solution then

begin problem (9.17) is infeasible; go to step 3 end

else if program (9.18) has optimal policy x then

begin the stationary policy π∞, defined by πia := xia
P

a xia
for all

(i, a) ∈ S×A, is an optimal stationary policy for problem (9.17)

end

end

3. STOP

9.2.4 Infinite horizon and total rewards for transient MDPs

In this section we discuss transient MDP, i.e.
∑∞

t=1 PR{Xt = j, Yt = a | X1 = i} < ∞ for all

i ∈ S, (j, a) ∈ S × A and all policies R. With this assumption there are no problems as exhibit

in Example 9.7. Therefore, we may allow any initial distribution β. The constrained problem is

in this case

supR {v(β, R) | ck(β, R) ≤ bk, k = 1, 2, . . . , m}. (9.19)

Quite similar to the proofs of Theorem 9.12 and Theorem 9.13, the following results can be shown,

where K,K(M), K(S) and P are similar defined as in the previous section 9.2.3.

Theorem 9.18

K = K(M) = K(S) = K(D) = P , where K(D) is the closed convex hull of the finite set of

vectors K(D).

Theorem 9.19

(1) The linear program (9.18) is infeasible if and only if the CMDP (9.19) is infeasible.

(2) If x is an optimal solution of program (9.18), then π∞, defined by πia :=
xi(a)

P

a xi(a) if
∑

a xi(a) > 0 and arbitrarily if
∑

a xi(a) = 0, is a stationary optimal policy for (9.19).

The following algorithm solves the CMDP (9.19).

Algorithm 9.4 Construction of an optimal stationary policy for the CMDP (9.19)

Input: Instance of an MDP, an initial distribution β, immediate costs cki (a), (i, a) ∈ S ×A and

bounds bk for k = 1, 2, . . . , m.

Output: Either the statement that problem (9.19) is infeasible or an optimal stationary policy

π∞ of problem (9.19).

450 CHAPTER 9. OTHER TOPICS

1. Solve the linear program (9.18).

2. if program (9.18) is infeasible then begin problem (9.19) is infeasible; go to step 3 end

else begin if program (9.18) has optimal solution x then

begin the stationary policy π∞, defined by πia :=
xi(a)

P

a xi(a) if
∑

a xi(a) > 0

and arbitrarily if
∑

a xi(a) = 0, is a stationary optimal policy for

problem (9.19);

go to step 3

end

end

3. STOP

9.2.5 Finite horizon

In this section, we consider a nonstationary MDP, where besides the immediate rewards rt
i(a)

there are also certain costs ck,t
i (a) for (i, a) ∈ S × A 1 ≤ t ≤ T and for k = 1, 2, . . . , m. Given

initial distribution β, let the total expected reward and the total expected costs for policy R be

denoted by vT (β, R) and cT (β, R), i.e.

vT (β, R) :=
∑T

t=1

∑

i βi ·
∑

(j,a) PR{Xt = j, Yt = a | X1 = i} · rt
j(a);

cTk (β, R) :=
∑T

t=1

∑

i βi ·
∑

(j,a) PR{Xt = j, Yt = a | X1 = i} · ck,t
j (a), 1 ≤ k ≤ m.

The constrained problem is, given some real numbers bk, k = 1, 2, . . . , m

supR {vT (β, R) | cTk (β, R) ≤ bk, k = 1, 2, . . . , m}. (9.20)

We shall use the transformation of Section 4.8. In this way, the finite horizon nonstationary MDP

is considered as a transient stationary MDP. Therefore, we can use the results of the previous

section 9.2.4. We introduce variables xi,t(a) with as interpretation the total expected frequencies

for which (Xt, Yt) = (i, a), given a policy R and some initial distribution β. Then,

vT (β, R) =
∑T

t=1

∑

i,a r
t
i(a)xi,t(a); c

T
k (β, R) =

∑T
t=1

∑

i,a c
k,t
i (a)xi,t(a), 1 ≤ k ≤ m.

Hence, in order to solve (9.20) the linear programming problem, derived from (9.18), becomes:

max
∑T

t=1

∑

(i,a) r
t
i(a)xi,t(a)

subject to
∑

a xj,1(a) = βj, j ∈ S
∑

a xj,t(a) −
∑

(i,a) p
t−1
ij (a)xi,t−1(a) = 0, j ∈ S, 2 ≤ t ≤ T

xT+1 − ∑

(i,a) xi,T (a) = 0
∑T

t=1

∑

i,a c
k,txi,txi,t(a) ≤ bk, k = 1, 2, . . . , m

xi,t(a) ≥ 0, (i, a) ∈ S ×A, 1 ≤ t ≤ T

9.2. ADDITIONAL CONSTRAINTS 451

By applying Theorem 9.19, we obtain the following result.

Theorem 9.20

(1) The above linear program is infeasible if and only if the CMDP (9.20) is infeasible.

(2) If x is an optimal solution of the above linear program, then R∗ = (π1, π2, . . . , πT) is an

optimal policy, where πt
ia :=

xi,t(a)
P

a xi,t(a)
if
∑

a xi,t(a) > 0 and arbitrarily if
∑

a xi,t(a) = 0.

Remark

From the computational point of view we propose the following approach:

1. Use the special simplex algorithm of Section 4.8 (Algorithm 4.7) to compute an unconstrained

optimal solution and a dual feasible solution.

2. Use the dual simplex method to compute an optimal solution for the constrained problem.

9.2.6 Infinite horizon and average rewards

Consider a similar problem as in the discounted case, but with average rewards, with respect to

immediate rewards ri(a), and costs, with respect to immediate costs cki (a), (i, a) ∈ S × A, for

k = 1, 2, . . . , m. Let β be an arbitrary initial distribution. For any policy R, let the average

reward and the average k-th cost function with respect to the initial distribution β be defined by

φ(β, R) := lim infT→∞
1
T

∑T
t=1

∑

j∈S βj ·
∑

(i,a) PR{Xt = i, Yt = a | X1 = j} · ri(a)

and

ck(β, R) := lim infT→∞
1
T

∑T
t=1

∑

j∈S βj ·
∑

(i,a) PR{Xt = i, Yt = a | X1 = j} · cki (a),

respectively. A policy R is a feasible policy for a CMDP with average rewards and costs if

ck(R) ≤ bk, k = 1, 2, . . . , m. An optimal policy R∗ for this criterion is a feasible policy that

maximizes φ(β, R), i.e.

φ(β, R∗) = supR {φ(β, R) | ck(β, R) ≤ bk, k = 1, 2, . . . , m}. (9.21)

For any policy R, any initial distribution β and any T ∈ N, we denote the expected state-action

frequencies in the first T periods by

xβ,T
ia (R) :=

1

T

T
∑

t=1

∑

j∈S

βj · PR{Xt = i, Yt = a | X1 = j}, (i, a) ∈ S ×A. (9.22)

By X(β, R) we denote the set of all limit points of the vectors {xβ,T (R), T = 1, 2, . . .}. These

limit points x(β, R) are limit points in the S ×A-dimensional vector space of vectors xβ,T (R)

with components xβ,T
ia (R), (i, a) ∈ S×A. Any xβ,T (R) satisfies

∑

(i,a) x
β,T
ia (R) = 1 and therefore

also
∑

(i,a) xia(β, R) = 1 for all x(β, R) ∈ X(β, R).

452 CHAPTER 9. OTHER TOPICS

For π∞ ∈ C(S) we have Pπ∞{Xt = i, Yt = a | X1 = j} =
{

P t−1(π)
}

ji
· πia for all (i, a) and

consequently, limT→∞ xβ,T
ia (π∞) =

∑

j∈S βj ·
{

P ∗(π)
}

ji
·πia, i.e. X(β, π∞) consists of one element,

namely x(β, π), where xia(β, π) :=
{

βTP ∗(π)
}

i
· πia, (i, a) ∈ S ×A. Let the policy set C1 be the

set of convergent policies, defined by C1 := {R | X(β, R) consists of one element}. Hence,

C(S) ⊆ C1. Furthermore, define the vector sets L, L(M), L(C), L(S) and L(D) by

L := {x(β, R) ∈ X(β, R) | R is an arbitrary policy};
L(M) := {x(β, R) ∈ X(β, R) | R is a Markov policy};
L(C) := {x(β, R) ∈ X(β, R) | R is a convergent policy};

L(S) := {x(β, R) ∈ X(β, R) | R is a stationary policy};
L(D) := {x(β, R) ∈ X(β, R) | R is a deterministic policy}.

General case

In the general case the Markov chain P (f) for any f∞ ∈ C(D) may be irreducible, unichain or

multichain. We will show that L = L(M) = L(C) = L(S) = L(D). Therefore, we require that

there exists a deterministic optimal policy with respect to the average rewards φ(R), defined by

φj(R) := lim sup
T→∞

1

T

T
∑

t=1

∑

(i,a)

PR{Xt = i, Yt = a | X1 = j} · ri(a), j ∈ S. (9.23)

Lemma 9.15

Let f∞ ∈ C(D) be an optimal policy with respect to the average rewards φ(R). Then, f∞ is also

an optimal policy with respect to the average rewards φ(R).

Proof

From Theorem 1.1 it follows that it is sufficient to prove that φ(f∞) ≥ φ(R) for all Markov

policies R. Let R = (π1, π2, . . .) be an arbitrary Markov policy. Since the value vector φ is

superharmonic (cf. Theorem 5.17), there exists a vector u ∈ R
N such that φi ≥

∑

j pij(a)φj and

φi +ui ≥ ri(a)+
∑

j pij(a)uj for all (i, a) ∈ S×A. Hence, φ ≥ P (πt)φ and φ+u−P (πt)φ ≥ r(πt)

for t = 1, 2, Consequently,
∑T

t=1 P (π1)P (π2) · · ·P (πt−1)r(πt) ≤ ∑T
t=1 P (π1)P (π2) · · ·P (πt−1) · {φ+ u − P (πt)u}

≤ T · φ+ u − P (π1)P (π2) · · ·P (πT)u, T ∈ N.

Since 1
T {u− P (π1)P (π2) · · ·P (πT)u} → 0 for T →∞, we can write

φj(R) = lim supT→∞
1
T

∑T
t=1{P (π1)P (π2) · · ·P (πt−1)r(πt)}j

≤ lim supT→∞
1
T {T · φ+ u− P (π1)P (π2) · · ·P (πT)u}j = φj = φj(f

∞), j ∈ S.

9.2. ADDITIONAL CONSTRAINTS 453

Theorem 9.21

L = L(M) = L(C) = LS) = L(D).

Proof

The proof has the same structure as the proof as Theorem 9.12. The equality L = L(M) follows

directly from Theorem 1.1. Furthermore, it is obvious that L(D) ⊆ L(S) ⊆ L(C) ⊆ L. We first

show that L ⊆ L(D). Suppose the contrary. Then, there exists a policy R such that x(β, R) ∈ L
and x(β, R) /∈ L(D). Since L(D) is a closed convex set, it follows from the Separating Hyperplane

Theorem, that there are coefficients ri(a), (i, a) ∈ S ×A, such that

∑

i,a

xia(β, R)ri(a) >
∑

i,a

xiari(a) for all x ∈ L(D). (9.24)

Consider the MDP with immediate rewards ri(a), (i, a) ∈ S × A. We have seen in Chapter 5

that there exists an average optimal policy f∞ ∈ C(D) with respect to φ(R). By Lemma 9.15,

f∞ is also average optimal with respect to φ(R). Because x(β, R) ∈ L, there exists a sequence

{Tk, k = 1, 2, . . .} such that xia(β, R) = limk→∞ xβ,Tk

ia (R), (i, a) ∈ S ×A. Hence,

∑

(i,a) ri(a)xia(β, R) =
∑

(i,a) ri(a) · limk→∞ xβ,Tk

ia (R)

= limk→∞
1
Tk

∑Tk

t=1

∑

j∈S βj ·
∑

(i,a) PR{Xt = i, Yt = a | X1 = j} · ri(a)
≤ ∑

j∈S βj · lim supk→∞
1
Tk

∑Tk

t=1

∑

(i,a) PR{Xt = i, Yt = a | X1 = j} · ri(a)
=

∑

j∈S βj · φ(R) ≤∑j∈S βj · φ(f∞) =
∑

(i,a) ri(a)xia(β, f
∞),

which contradicts (9.24), completing the proof that L ⊆ L(D). Since L(D) ⊆ L(S) ⊆ L(C) ⊆ L,

we obtain L(S) = L(D).

From L(C) ⊆ L = L(M) ⊆ L(S) = L(D), it remains to show that L(D) ⊆ L(M) ∩ L(C). Take

any x ∈ L(D). Let C(D) = {f∞1 , f∞2 , . . . , f∞n }. Then, xia =
∑n

k=1 pk xia(β, f
∞
k), (i, a) ∈ S × A

for certain pk ≥ 0 with
∑n

k=1 pk = 1. By Theorem 1.1, there exists a policy R ∈ C(M) satisfying
∑

j∈S βj · PR{Xt = i, Yt = a | X1 = j} =
∑

j∈S βj ·
∑n

k=1 pk Pf∞
k
{Xt = i, Yt = a | X1 = j},

for all (i, a) ∈ S ×A and t = 1, 2, Hence,

xia =
∑n

k=1 pk xia(β, f
∞
k)

=
∑n

k=1 pk limT→∞
1
T

∑T
t=1

∑

j∈S βj · Pf∞
k
{Xt = i, Yt = a | X1 = j}

= limT→∞
1
T

∑T
t=1

∑

j∈S βj · PR{Xt = i, Yt = a | X1 = j}
= xia(β, R), (i, a) ∈ S × A.

Therefore, x = x(β, R) ∈ L(M), and x = limT→∞ xβ,T (R) ∈ L(C), which completes the proof of

the theorem.

Analogously to the discounted case we introduce a polyhedron, namely

Q :=

x

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a){δij − pij(a)}xia = 0, j ∈ S
∑

a xja +
∑

(i,a){δij − pij(a)}yia = βj, j ∈ S
xia, yia ≥ 0, (i, a) ∈ S ×A

.

454 CHAPTER 9. OTHER TOPICS

Hence, Q is the projection (on the x-space) of the feasible solutions (x, y) of the dual linear

program (5.29) for the computation of an average optimal policy.

Theorem 9.22

L = Q.

Proof

Theorem 9.21 implies that it is sufficient to show that L(D) = Q. For π∞ ∈ C(S), we have

xia(β, π) =
{

βTP ∗(π)
}

i
· πia, (i, a) ∈ S ×A. Then, with yπ defined by (5.36), we have shown in

Theorem 5.19 that (xπ, yπ) is a feasible solution of dual linear program (5.29) (it can easily be

checked that the proof of Theorem 5.19 is also valid when βj = 0 for some j ∈ S).

Hence, L(D) ⊆ L(S) ⊆ Q. Since Q is the projection of a polyhedron, Q is also a polyhedron and

consequently L(D) ⊆ Q. If x ∈ Q, then it follows from the definition of Q that xia ≥ 0 for all

(i, a) ∈ S×A and
∑

(j,a) xja =
∑

j βj = 1. Therefore, Q is a polytope, i.e. a bounded polyhedron.

Hence, Q is the closed convex hull of a finite number of extreme points, and consequently it is

sufficient to show that any extreme point of Q belongs to L(D).

Let x∗ be an arbitrary extreme point of Q and let Q∗ be the closed convex hull of the extreme

points of Q that are different from x∗. Then, x∗ /∈ Q∗ and, by the Separating Hyperplane

Theorem, there are coefficients ri(a), S ×A, such that

∑

i,a

ri(a)x
∗
ia >

∑

i,a

ri(a)xia for all x ∈ Q∗. (9.25)

From (9.25) it follows that any optimal solution (x, y) of

max

∑

(i,a)

ri(a)xi(a)

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a) {δij − pij(a)}xi(a) = 0, j ∈ S
∑

a xj(a) +
∑

(i,a) {δij − pij(a)}yi(a) = βj, j ∈ S
xi(a), yi(a) ≥ 0, (i, a) ∈ S ×A

(9.26)

satisfies x = x∗. Let f∞∗ ∈ C(D) be an average optimal policy for the MDP with immediate

rewards ri(a), S × A. Then, by Theorem 5.20, (xf , yf) - defined by (5.35) and (5.36) - is an

optimal solution of (9.26). Hence, x∗ = xf ∈ C(D), which completes the proof.

Example 9.8

From the Theorems 9.21 and 9.22 it follows that any extreme piint of Q is an element of L(D).

This example will show that the converse statement is not true, in general. Furthermore, this

example shows that L(S) 6= Q is possible and that Q can be a real subset of

Q0 :=

x

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a){δij − pij(a)}xia = 0, j ∈ S
∑

(i,a) xia = 1

xia ≥ 0, (i, a) ∈ S ×A

.

9.2. ADDITIONAL CONSTRAINTS 455

Consider the following MDP: S = {1, 2, 3}; A(1) = {1, 2}, A(2) = {1, 2}, A(3) = {1};
p11(1) = 0, p12(1) = 1, p13(1) = 0; p11(2) = 0, p12(2) = 0, p13(2) = 1;

p21(1) = 0, p22(1) = 1; p23(1) = 0; p21(2) = 1, p22(2) = 0; p23(2) = 0;

p31(1) = 0, p32(1) = 0, p33(1) = 1. Take β1 = β2 = β3 = 1
3 .

Any stationary policy π∞ induces a Markov chain with P (π) =

0 π1 1− π1

π2 1− π2 0

0 0 1

.

For the computation of P ∗(π) and xπ we distinguish between the following three cases.

Case 1: π1 = 1:

P ∗(π) =

π2
1+π2

1
1+π2

0
π2

1+π2

1
1+π2

0

0 0 1

and

xπ
1 (1) = 2

3 · π2
1+π2

; xπ
1 (2) = 0;

xπ
2 (1)) = 2

3 · 1−π2
1+π2

; xπ
2 (2) = 2

3 · π2
1+π2

;

xπ
3 (1) = 1

3 .

Case 2: π1 6= 1 and π2 = 0:

P ∗(π) =

0 π1 1− π1

0 1 0

0 0 1

and

xπ
1 (1) = 0; xπ

1 (2) = 0;

xπ
2 (1) = 1

3 · (1 + π1); x
π
(2) = 0;

xπ
3 (1) = 1

3 · (2− π1).

Case 3: π1 6= 1 and π2 6= 0:

P ∗(π) =

0 0 1

0 0 1

0 0 1

and

xπ
1 (1) = 0; xπ

1 (2) = 0;

xπ
2 (1) = 0; xπ

2 (2) = 0;

xπ
3 (1) = 1.

Since in each case xπ
1 (1) = xπ

2 (2), xπ
1 (2) = 0, xπ

1 (1) + xπ
1 (2) + xπ

2 (1) + xπ
2 (2) + xπ

3 (1) = 1, we can

describe L(S) in the following space with the nonnegative variables x11, x21 and x31:

L(S) = {2x11+x21 = 2
3 ; x31 = 1

3}∪{x11 = 0; x21+x31 = 1, 1
3 ≤ x31 ≤ 2

3}∪{x11 = x21 = 0; x31 = 1}.
The four deterministic policies correspond to π1 = 1, π2 = 1; π1 = 1, π2 = 0; π1 = 0, π2 = 1

and π1 = 0, π2 = 0, respectively. The corresponding elements of L(S) are:

x
f1
1 (1) = 1

3 , x
f1
2 (1) = 0, x

f1
3 (1) = 1

3 ; x
f2
1 (1) = 0, x

f2
2 (1) = 2

3 , x
f2
3 (1) = 1

3 ,

xf3
1 (1) = 0, xf3

2 (1) = 0, xf3
3 (1) = 1; xf4

1 (1) = 0, xf4
2 (1) = 1

3 , x
f4
3 (1) = 2

3 .

Q is the closed convex hull of xf1, xf2 , xf3 and xf4. Hence x := 1
4{xf1 + xf2 + xf3 + xf4} ∈ Q

and x11 = 1
12 , x21 = 1

4 , x31 = 7
12 and it can easily verified that x is not an element of L(S).

Since Q is the closed convex hull of xf1, xf2, xf3 and xf4 , we have

Q =

x11 + x12 + x21 + x22 + x31 = 1

x12 = 0; x11 = x22; x31 ≥ 1
3

x11, x12, x21, x22, x31 ≥ 0

and Q0 =

x11 + x12 − x22 = 0

− x11 + x22 = 0

− x12 = 0

x11 + x12 + x21 + x22 + x31 = 1

.

Since x∗, defined by x∗11 := 1
2 , x

∗
12 := 0, x∗21 := 0, x∗22 := 1

2 , x
∗
31 := 0 belongs to Q0 and not to

Q, i.e. Q is a real subset of Q0.

456 CHAPTER 9. OTHER TOPICS

In order to solve the CMDP (9.21) we consider the linear program

max

∑

(i,a)

ri(a)xi(a)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a) {δij − pij(a)}xi(a) = 0, j ∈ S
∑

a xj(a) +
∑

(i,a) {δij − pij(a)}yi(a) = βj, j ∈ S
∑

(i,a) c
k
i (a)xi(a) ≤ bk, k = 1, 2, . . . , m

xi(a), yi(a) ≥ 0, (i, a) ∈ S ×A

.

(9.27)

Theorem 9.23

(1) Problem (9.21) is feasible if and only if problem (9.27) is feasible.

(2) The optima of (9.21) and (9.27) are equal.

(3) If R is optimal for problem (9.21), then x(β, R) is optimal for (9.27).

(4) Let (x, y) be an optimal solution of problem (9.27) and let x =
∑n

k=1 pkx(β, fk), where

pk ≥ 0 and
∑n

k=1 pk = 1 and f∞1 , f∞2 , . . . , f∞n are the stationary policies of C(D).

Let R ∈ C(M) be the policy of Theorem 1.1 that satisfies
∑

j βj · PR{Xt = i, Yt = a | X1} =
∑

j βj ·
∑

k pk · Pf∞
k
{Xt = i, Yt = a | X1} = βj}

for all (i, a) ∈ S ×A and all t ∈ N. Then, R is an optimal solution of problem (9.21).

Proof

The theorems 9.21 and 9.22 imply that Q = L(C). Moreover, φ(β, R) =
∑

i,a xia(β, R)ri(a) for

any R ∈ C1. By these observations, the parts (1), (2) and (3) are straightforward. For the proof

of part (4) we can similarly as in the proof of Theorem 9.21 show that x = x(β, R) and R ∈ C1.

Therefore, φ(β, R) =
∑

i,a xia(β, R)ri(a) =
∑

i,a xiari(a) = optimum of problem (9.27). Hence,

R is an optimal policy for problem (9.21).

To compute an optimal policy of problem (9.21) from an optimal solution (x, y) of the linear

program (9.27), we first have to express x as x =
∑n

k=1 pkx(β, fk), where pk ≥ 0 and
∑n

k=1 pk = 1.

Next, we have to determine the policy R = (π1, π
2, . . .) ∈ C(M) such that this policy satisfies

∑

j βj · PR{Xt = i, Yt = a | X1} =
∑

j βj ·
∑

k pk · Pf∞
k
{Xt = i, Yt = a | X1} = βj} for all

(i, a) ∈ S × A and all t ∈ N. The decision rules πt, t ∈ N, can be determined by formula (1.8) in

Theorem 1.1.

Algorithm 9.5 Construction of an optimal policy R ∈ L(M)∩ L(C) for CMDP problem (9.21)

Input: Instance of an MDP, an initial distribution β, immediate costs cki (a), (i, a) ∈ S ×A and

bounds bk for k = 1, 2, . . . , m.

Output: Either the statement that (9.21) is infeasible or an optimal policy R ∈ L(M) ∩ L(C)

of problem (9.21).

1. Solve the linear program (9.27).

2. if program (9.27) is infeasible then begin problem (9.21) is infeasible; go to step 7 end

else begin if program (9.28) has optimal solution (x, y) then go to step 3 end

9.2. ADDITIONAL CONSTRAINTS 457

3. for all f∞ ∈ C(D) do compute P ∗(f) (assume C(D) = {f∞1 , f∞2 , · · · , f∞n })

4. xk
ia :=

{

∑

j βj{P ∗(fk)}ji if a = fk(i)

0 if a 6= fk(i)
, i ∈ S, k = 1, 2, . . . , n.

5. Determine pk, k = 1, 2, . . . , n as feasible solution of the following linear system (this com-

putation can be performed by the Phase I technique of the simplex method)

∑n
k=1 pkx

k
ia = xia a ∈ A(i), i ∈ S

∑n
k=1 pk = 1

pk ≥ 0 k = 1, 2, . . . , n

6. R := (π1, π2, . . .), where πt is defined by

πt
ia :=

P

j βj

P

k pk{P t−1(fk)}ji·δafk(i)
P

j βj

P

k pk{P t−1(fk)}ji
if
∑

j βj
∑

k pk{P t−1(fk)}ji 6= 0

arbitrary if
∑

j βj

∑

k pk{P t−1(fk)}ji = 0,

is an optimal policy for problem (9.21).

7. STOP

Example 9.9

Consider the following MDP: S = {1, 2, 3}; A(1) = {1, 2}, A(2) = {1}, A(3) = {1, 2};
r1(1) = r1(2) = 0; r2(1) = 1; r3(1) = r3(2) = 0;

p11(1) = 0, p12(1) = 1, p13(1) = 0; p11(2) = 0, p12(2) = 0, p13(2) = 1;

p21(1) = 0, p22(1) = 1; p23(1) = 0; p31(1) = 0, p32(2) = 0; p33(2) = 1;

p31(2) = 0, p32(2) = 1, p33(2) = 0. Take β1 = 1
4 , β2 = 3

16 , β3 = 9
16 .

As constraint we have bounds for the value x12(β, R): 1
4 ≤ x12(β, R) ≤ 1

2 .

If we apply Algorithm 9.5 we have to solve the following linear program:

maximize x2(1) subject to

x1(1) + x1(2) = 0

− x1(1) − x3(2) = 0

− x1(2) + x3(2) = 0

x1(1) + x1(2) + y1(1) + y1(2) − y3(2) = 1
4

x2(1) − y1(1) + y3(2) = 3
16

x3(1) + x3(2) − y1(2) = 9
16

x2(1) ≤ 1
2

− x2(1) ≤ −1
4

x1(1), x1(2), x2(1), x3(1), x3(2) ≥ 0

with optimal solution x1(1) = 0, x1(2) = 0, x2(1) = 1
2 , x3(1) = 1

2 , x3(2) = 0; y1(1) = 0, y1(2) = 1
4 ,

y3(2) = 5
16 .

There are four deterministic policies:

f1(1) = 1, f1(2) = 1, f1(3) = 1; f2(1) = 1, f2(2) = 1, f2(3) = 2;

f3(1) = 2, f3(2) = 1, f3(3) = 1; f4(1) = 2, f4(2) = 1, f4(3) = 2.

458 CHAPTER 9. OTHER TOPICS

The corresponding stationary matrices are:

P ∗(f1) =

0 1 0

0 1 0

0 0 1

; P ∗(f2) =

0 1 0

0 1 0

0 1 0

; P ∗(f3) =

0 0 1

0 1 0

0 0 1

; P ∗(f4) =

0 1 0

0 1 0

0 1 0

.

The vectors x1, x2, x3, x4 are:

x1
11 = 0; x1

12 = 0; x1
21 = 7

16 ; x1
31 = 9

16 ; x1
32 = 0. x2

11 = 0; x2
12 = 0; x2

21 = 1; x2
31 = 0; x2

32 = 0.

x3
11 = 0; x3

12 = 0; x3
21 = 3

16 ; x3
31 = 13

16 ; x3
32 = 0. x4

11 = 0; x4
12 = 0; x4

21 = 1; x4
31 = 0; x4

32 = 0.

For the numbers p1, p2, p3, p4 ≥ 0 such that
∑4

k=1 pk = 1 and p1x
1 + p2x

2 + p3x
3 + p4x

4 = x

we obtain: p1 = 8
9 , p2 = 1

9 , p3 = 0, p4 = 0.

Since P t(f1) =

0 1 0

0 1 0

0 0 1

and P t(f2) =

0 1 0

0 1 0

0 1 0

for all t ∈ N, we obtain

R = (π1, π2, . . .) with πt
11 = 1, t ∈ N; πt

21 = 1, t ∈ N; πt
31 =

{

8
9 t = 1

1 t ≥ 2
; πt

32 =

{

1
9 t = 1

1 t ≥ 2
.

Remark

Algorithm 9.5 is unattractive for practical problems. The number of calculations is prohibitive.

Moreover, the use of Markov policies is inefficient in practice. Therefore, in the next pages we

discuss the problem of finding an optimal stationary policy, if one exists.

For any feasible solution (x, y) of (9.27) we define a stationary policy π∞ by

πia :=

xi(a)
xi

i ∈ Sx

yi(a)
yi

i ∈ Sy

arbitrary if i /∈ Sy ∪ Sx

(9.28)

where xi :=
∑

a xi(a), yi :=
∑

a yi(a), Sx := {x | xi > 0} and Sy := {y | xi = 0, yi > 0}.
Notice that, since βj = 0 is allowed for one or more j ∈ S, it is possible that Sx ∪ Sy 6= S.

Lemma 9.16

If (x, y) is an optimal solution of (9.27) and xi(a) = πia · {βTP ∗(π)}i, (i, a) ∈ S ×A, where π is

defined by (9.28), then π∞ is an optimal solution of (9.21).

Proof

Since ck(β, π∞) = βTP ∗(π)ck(π) =
∑

i {βTP ∗(π)}i
∑

a c
k
i (a)πia =

∑

(i,a) c
k
i (a)xi(a) ≤ bk for all

1 ≤ k ≤ m, the stationary policy π∞ is a feasible solution of (9.21). Moreover, by Theorem 9.23,

part (2), we have φ(β, π∞) = βTP ∗(π)r(π) =
∑

(i,a) ri(a)xi(a) = optimum (9.27) = optimum

(9.21), i.e. π∞ is an optimal solution of (9.21).

The next example shows that for an optimal solution (x, y) of (9.27), the policy π∞, where π is

defined by (9.28), is not an optimal solution of (9.21), even in the case that (9.21) has a stationary

optimal policy.

9.2. ADDITIONAL CONSTRAINTS 459

Example 9.10

Consider the model of Example 9.9, but now with the constraint x21(β, R) ≤ 1
4 . The linear

program (9.27) for this constrained problem is

maximize x2(1) subject to

x1(1) + x1(2) = 0

− x1(1) − x3(2) = 0

− x1(2) + x3(2) = 0

x1(1) + x1(2) + y1(1) + y1(2) − y3(2) = 1
4

x2(1) − y1(1) + y3(2) = 3
16

x3(1) + x3(2) − y1(2) = 9
16

x2(1) ≤ 1
4

x1(1), x1(2), x2(1), x3(1), x3(2) ≥ 0

with optimal solution x1(1) = 0, x1(2) = 0, x2(1) = 1
4 , x3(1) = 3

4 , x3(2) = 0; y1(1) = 0,

y1(2) = 1
4 , y3(2) = 1

16 and with optimum value 1
4 . The corresponding stationary policy π∞

satisfies π12 = π21 = π31 = 1.

This policy is not optimal, because φ(β, π∞) = 3
16 <

1
4 , the optimum of the linear program.

Consider the stationary policy with π11 = 1
4 , π12 = 3

4 , π21 = π31 = 1. For this policy we obtain

x21(β, π
∞) = 1

4 and φ(β, π∞) = 1
4 , the optimum value of the linear program. So, this policy is

feasible and optimal.

In order to apply Lemma 9.16 we have to compute the stationary matrix P ∗(π). The determina-

tion of the stationary matrix can be executed in polynomial time (see Algorithm 5.5). However,

if xi(a)
xi

= yi(a)
yi

for all a ∈ A(i), i ∈ {j | xj > 0, yj > 0}, which is for instance the case if

{j | xj > 0, yj > 0} = ∅, then the policy π∞, where π is defined by (9.28), is an optimal policy

for problem (9.21) as the next lemma shows.

Lemma 9.17

If
xi(a)

xi
=

yi(a)
yi

for all a ∈ A(i), i ∈ {j | xj > 0, yj > 0}, then the stationary policy π∞, where π

is defined by (9.28), is an optimal policy for problem (9.21).

Proof

The condition xi(a)
xi

= yi(a)
yi

for all a ∈ A(i), i ∈ {j | xj > 0, yj > 0} implies that yi(a)
yi

= πia for

all a ∈ A(i), i ∈ {j | yj > 0}, i.e. yi(a) = πia · yi for all a ∈ A(i), i ∈ S. Hence, we can write

βj = xj +
∑

(i,a) {δij − pij(a)}πia · yi = xj +
∑

i yi{δij − pij(π)}, j ∈ S.

So (x, y) satisfies, in vector notation, xT = xTP (π) and xT + yT {I −P (π)} = βT . Consequently,

xT = xTP ∗(π) and xTP ∗(π) = βTP ∗(π). So, xT = βTP ∗(π), i.e. x satisfies the conditions of

Lemma 9.16.

If the conditions of Lemma 9.17 are not satisfied, we can try to find - for the same x - another

y, say y, such that (x, y) is feasible for (9.27) - and consequently also optimal - and satisfies the

460 CHAPTER 9. OTHER TOPICS

conditions of Lemma 9.17. To achieve this, we need
yi(a)

yi
= πia, a ∈ A(i), i ∈ {j | xj > 0, yj > 0},

which is equivalent to yi(a) = yi · πia, a ∈ A(i), i ∈ {j | yj > 0}. Hence, y has to satisfy the

linear system in the y-variables (x is fixed)

∑

i/∈Sx

∑

a {δij − pij(a)}yi(a) +
∑

i∈Sx
{δij − pij(π)}yi = βj − xj, j ∈ S

yi(a) ≥ 0, i /∈ Sx, a ∈ A(i); yi ≥ 0, i ∈ Sx

(9.29)

The feasibility of system (9.29) can be checked by the so-called phase I of the simplex method.

Example 9.11

Consider the model of Example 9.10. The optimal solution does not satisfy xi(a)/xi = yi(a)/yi

for all a ∈ A(i), i ∈ {j | xj > 0, yj > 0}, because x3(2)/x3 = 0 and y3(2)/y3 = 1. The

system (9.29) becomes y1(1) + y1(2) = 4
16 ; −y1(1) = − 1

16 ; −y1(2) = − 3
16 ; y1(1), y1(2) ≥ 0.

This system has the solution y1(1) = 1
16 , y1(2) = 3

16 . Hence, the stationary policy π∞ with

π11 = 1
4 , π12 = 3

4 , π21 = π31 = 1 is an optimal policy for problem (9.21).

Remark

If the x-part of problem (9.27) is unique and (9.29) is infeasible, then problem (9.21) has no

optimal stationary policy, namely:

Suppose that (9.21) has an optimal stationary policy, say π∞. Then, (xπ, yπ), defined by (5.35)

and (5.36), is a feasible solution for problem (9.27) and
∑

(i,a) ri(a)x
π
i (a) = βTP ∗(π)r(π) =

optimum (9.21). Hence, (xπ, yπ) is an optimal solution of problem (9.27). Consequently, xπ = x.

Then, yπ is a feasible solution of system (9.29), which is contradictory to the assumption that

(9.29) is infeasible.

Example 9.12

Consider the model of Example 9.9. We have seen that x1(1) = 0, x1(2) = 0, x2(1) = 1
2 , x3(1) =

1
2 , x32 = 0; y1(1) = 0, y1(2) = 1

4 , y3(2) = 5
16 is an optimal solution. It can easily be verified

that the x-part of the solution is unique. The system (9.21) is: y1(1) + y1(2) = 4
16 ; −y1(1) =

− 5
16 ; −y1(2) = 1

16 ; y1(1), y1(2) ≥ 0. The system is infeasible and therefore the problem has no

stationary optimal policy.

Unichain case

For this case we will show that L(S) = Q, which implies L = L(M) = L(C) = L(S) = L(D) = Q.

In order to show L(S) = Q we need the following two lemmas.

Lemma 9.18

For every triple (j, a, R), where j ∈ S, a ∈ A(j) and R a convergent policy, we have

xja(β, R) = limα↑1 (1− α)
∑∞

t=1 α
t−1 ·∑i βi · PR{Xt = j, Yt = a | X1 = i}.

9.2. ADDITIONAL CONSTRAINTS 461

Proof

Let R be a convergent policy and let x(β, R) = limT→∞ xT (β, R). Take a fixed pair (j, a) ∈ S×A.

Then, xja(β, R) = limT→∞
1
T

∑T
t=1 wt, where wt :=

∑

i βi · PR{Xt = j, Yt = a | X1 = i}. Since

|wt| is bounded by 1 for all t, the power series
∑∞

t=1 wtα
t−1 has radius of convergence at least 1.

The series
∑∞

t=1 α
t−1 has radius of convergence 1. Hence, we can write

(1− α)−1 ·∑∞
t=1 wt α

t−1 = {∑∞
t=1 α

t−1} · {∑∞
t=1 wt α

t−1} =
∑∞

t=1 {
∑t

s=1 ws}αt−1.

Since (1− α)−2 =
∑∞

t=1 t α
t−1, we obtain

xja(β, R)− (1− α)
∑∞

t=1 α
t−1 ·∑i βi · P{Xt = j, Yt = a | X1 = i} =

(1− α)2
∑∞

t=1

{

xja(β, R)− 1
t

∑t
s=1 ws

}

t αt−1.

Choose ε > 0 arbitrary. Since xja(β, R) = limT→∞
1
T

∑T
t=1 wt, there exists an integer Tε such

that |xja(β, R)− 1
T

∑T
t=1 wt| ≤ 1

2ε for all T > Tε. Hence,

|(1− α)2
∑Tε

t=1

{

xja(β, R)− 1
t

∑t
s=1 ws

}

t αt−1| ≤ (1− α)2M ·∑Tε

t=1 Tε α
t−1 ≤ 1

2ε

for α sufficiently close to 1 and M ≥ max1≤t≤Tε |xja(β, R)− 1
t

∑t
s=1 ws|. Furthermore, we have

|(1− α)2
∑∞

t=Tε+1

{

xja(β, R)− 1
t

∑t
s=1 ws

}

t αt−1| ≤ (1− α)2
∑∞

t=Tε+1
1
2ε t α

t−1 ≤ 1
2ε.

Hence, xja(β, R) = limα↑1 (1− α)
∑∞

t=1 α
t−1 ·∑i βi · PR{Xt = j, Yt = a | X1 = i}.

Lemma 9.19

If x(β, π∞) is continuous in π, then L(S) = Q.

Proof

Since L(S) ⊆ L(C), it is sufficient to show that L(C) ⊆ L(S). Take any x(β, R) ∈ L(C). From

Theorem 9.12 it follows that for any discount factor α ∈ [0, 1) there exists a stationary policy π∞α
such that xα(β, R) = xα(β, π∞α). Choose a fixed pair (j, a) ∈ S × A and let the reward function

r on S × A be defined by ri(b) :=
{ 1 if i = j and b = a;

0 elsewhere.

Then, βT vα(π∞α) = xα
ja(β, π

∞
α) and βTφ(π∞α) = xja(β, π

∞
α) for all α ∈ [0, 1). Hence, we can write

by Lemma 9.18

xja(β, R) = limα↑1 (1−α) ·xα
ja(β, R) = limα↑1 (1−α) ·xα

ja(β, π
∞
α) = limα↑1 (1−α) ·βT vα(π∞α).

Consider a sequence {αk, k = 1, 2, . . .} such that αk ↑ 1 and παk
→ π. Since for any i ∈ S the

sequence {(1−αk)v
αk

i (π∞αk
), k = 1, 2, . . .} is dominated by the sequence {(1−αk)v

αk

i , k = 1, 2, . . .}
and since limk→∞ {(1− αk)vαk

i = φi, there exists a limit point, say x, of the sequence of vectors

{(1− αk)vαk

i (π∞αk
), k = 1, 2, . . .}. Therefore, we may assume that

xi = limk→∞ (1− αk)v
αk

i (π∞αk
), i ∈ S, (9.30)

implying, by Lemma 9.18,

βTx =
∑

i

βi · lim
k→∞

(1− αk)vαk

i (π∞αk
) = lim

k→∞
(1− αk) β

Tvαk(π∞αk
) = xja(β, R). (9.31)

Since x(β, π∞) is continuous in π we can write for παk
→ π,

462 CHAPTER 9. OTHER TOPICS

xja(β, π
∞) = limk→∞ xja(β, π

∞
αk

) = limk→∞ (1− αk){
∑∞

t=1 α
t−1} · βTP ∗(π∞αk

)r(παk
).

Because P ∗ = P ∗P t for any stationary matrix P ∗ and any t ∈ N, we obtain

xja(β, π
∞) = limk→∞ (1− αk){

∑∞
t=1 α

t−1} · βTP ∗(π∞αk
)P t−1(π∞αk

)r(παk
)

= limk→∞ βTP ∗(π∞αk
)(1− αk)

∑∞
t=1 α

t−1P t−1(π∞αk
)r(παk

)

= limk→∞
{

x(π∞αk
)
}T

(1− αk)v
αk(π∞αk

) =
{

x(π∞)
}T
x = βTP ∗(π)x.

Since vαk(π∞αk
) = r(π∞αk

) + αP (π∞αk
)vαk(π∞αk

), we can also write

(1− αk)vαk(π∞αk
) = (1− αk)r(π∞αk

) + αP (π∞αk
)(1− αk)v

αk(π∞αk
).

Letting k →∞, then - by (9.30) - we obtain x = P (π)x and consequently, x = P ∗(π)x. Finally,

we have xja(β, R) = limk→∞ (1 − αk)βTvαk(π∞αk
) = βTx = βTP ∗(π)x = xja(β, π). Since the

stationary policy π is independent of the choice of the pair (j, a), we have shown x(β, R) ∈ L(S).

Theorem 9.24

L(S) = Q = Q0, where Q0 is defined in Example 9.8.

Proof

In order to show L(S) = Q, by Lemma 9.19, it is sufficient to show that x(β, π∞) is continuous

in π. Let π∞(k), k = 1, 2, . . . and π∞(0) be stationary policies such that π(0) = limk→∞ π(k).

By the unichain property the stationary distribution p∗
(

π(k)
)

of the Markov chain P
(

π(k)
)

is

the unique solution of the linear system

{

∑

i {δij − pij

(

π(k)
)

}xi = 0
∑

i xi = 1
(9.32)

Since π(k)→ π(0) for k →∞, we also have P
(

π(k)
)

→ P
(

π(0)
)

for k →∞. Consequently, any

limit point of {p∗
(

π(k)
)

, k = 1, 2, . . .} is a solution of (9.32) with k = 0, i.e. is equal to p∗
(

π(0)
)

.

Hence, xia

(

β, π∞(k)
)

= p∗i
(

π(k)
)

· πia(k) → p∗i
(

π(0)
)

· πia(0) = xia

(

β, π∞(0)
)

, i.e. x(β, π∞) is

continuous in π.

Since Q ⊆ Q0, for the proof of Q = Q0, it is sufficient to show that Q0 ⊆ L(S). Take any x ∈ Q),

i.e.
∑

(i,a) {δij − pij(a)}xia = 0, j ∈ S, ∑(i,a) xia = 1 and xia ≥ 0, (i, a) ∈ S × A.

Set πia :=
{

xia
P

a xia
a ∈ A(i), i ∈ Sx := {i | ∑a xia > 0};

arbitrary otherwise.
Then, xia = xi · πia, where

xi :=
∑

(i,a) xia, for all (i, a) ∈ S ×A. Therefore,
{

∑

i {δij − pij

(

π
)

}xi = 0;
∑

i xi = 1.

Hence, xTP (π) = xT , xT e = 1 and x ≥ 0, i.e. x is a stationary distribution of P (π). By

the unichain assumption the stationary distribution is unique, so xi = p∗i (π) for all i ∈ S, and

consequently, xia = p∗i (π) · πia for all (i, a) ∈ S ×A. Therefore, x ∈ L(S).

By these results an optimal stationary policy for the CMDP in the unichain case can be computed

by the following algorithm.

9.2. ADDITIONAL CONSTRAINTS 463

Algorithm 9.6 Construction of a stationary optimal policy π∞ for CMDP problem (9.21)

Input: Instance of a unichain MDP, immediate costs cki (a), (i, a) ∈ S × A and bounds bk for

k = 1, 2, . . . , m.

Output: Either the statement that (9.21) is infeasible or an optimal stationary policy π∞.

of problem (9.21).

1. Solve the linear program

max

∑

(i,a)

ri(a)xi(a)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a) {δij − pij(a)}xi(a) = 0, j ∈ S
∑

(i,a) xi(a) = 1
∑

(i,a) c
k
i (a)xi(a) ≤ bk, k = 1, 2, . . . , m

xi(a) ≥ 0, (i, a) ∈ S ×A

. (9.33)

2. if program (9.33) is infeasible then begin problem (9.21) is infeasible; go to step 4 end

else begin if program (9.28) has optimal solution x then go to step 3 end

3. π∞, where πia :=

{

xi(a)
P

a xi(a) a ∈ A(i), i ∈ Sx := {i | ∑a xi(a) > 0}
arbitrary otherwise

is an optimal sta-

tionary policy.

4. STOP

Theorem 9.25

The stationary policy π∞ obtained by Algorithm 9.6 is an optimal policy for problem (9.21).

Proof

From the proof of Theorem 9.24 it follows that xi = p∗i (π), i ∈ S. Consequently, x = x(β, π∞).

Therefore, π∞ is feasible for (9.21). Moreover, φ(β, π∞) =
∑

(i,a) ri(a)xi(a) = optimum (9.33).

From Theorem 9.24 it follows that there exists a stationary optimal policy of problem (9.21), say

π∞∗ . Let x∗ = x(β, π∞∗). Then, x∗ is a feasible solution of program (9.33) and consequently,

optimum (9.21) = φ(β, π∞∗) =
∑

(i,a) ri(a)x
∗
i (a) ≤

∑

(i,a) ri(a)xi(a) = φ(β, π∞).

Hence, π∞ obtained by Algorithm 9.6 is an optimal policy for problem (9.21).

Remark

If the MDP is irreducible, then any solution of the system
{

∑

i {δij − pij

(

π
)

}xi = 0
∑

i xi = 1
satisfies

xi > 0, i ∈ S. Since any optimal extreme solution of the CMDP has at most |S|+ m positive

variables, the optimal stationary policy π∞ is nondeterministic in at most m states.

464 CHAPTER 9. OTHER TOPICS

9.2.7 Constrained MDPs with sum of discounted rewards and different dis-

count factors

This section deals with an MDP which has m + 1 criteria. Each criterion is a sum of standard

expected discounted total rewards over infinite horizon with different discount factors and dif-

ferent one-step rewards. We consider the problem of optimizing one criterion under inequality

constraints on the other criteria. We prove that, given an initial state, if a feasible policy ex-

ists, then there exists an optimal ultimately deterministic policy R = (π1, π2, . . . , πT , f, f, . . .)

such that, for t = 1, 2, . . . , T , the Markov decision rule πt uses at most m actions more than a

deterministic Markov decision rule. Such a policy is called an (m, T)-policy.

We will formulate a linear programming algorithm for the approximate solution of this con-

strained MDP. Furthermore, for the multiple criteria problem with the m + 1 criteria, we show

that any point on the boundary of the performance region can be reached by an (m, T)-policy.

Since any Pareto optimal point belongs to the boundary, it follows that the performance of any

Pareto optimal policy can be obtained by an equivalent (m, T)-policy. We also show that, given

an initial state and a policy, there exists an (m+ 1, T)-policy with the same performance.

Several applications of MDPs in finance, project management, budget allocation and produc-

tion lead to more than one criterion, each of them has with its own discount factor. In the next

example we describe such application to a production system.

Example 9.13

Consider an unreliable production system consisting of two units, say 1 and 2. Unit k can fail

at each epoch with probability pk under the condition that it has been operating before (when

a unit fails in a certain epoch it fails forever). The system operates if at least one of the units

operates. Let cki (a), k = 1 or 2, be an operating cost for unit k, if its state is i and decision

a is chosen. Let α be the discount factor. Then, the discounted reward for unit k at time t is

αt−1 · (1− pk)
t−1 · ckXt

(Yt) = αt−1
k · ckXt

(Yt) with αk := α · (1− pk) for k = 1, 2.

The problem of minimizing the total discounted costs under constraints on the corresponding

costs for each unit is a constrained MDP with sum of discounted rewards and different discount

factors.

A Markov decision rule πt is of order m if πt
ia > 0 for at most N + m pairs (i, a) ∈ S × A. A

policy R is called an (m, T)-policy if R = (π1, π2, . . . , πT , f, f, . . .), where πt is a Markov decision

rule of order m for t = 1, 2, . . . , T and f is a deterministic decision rule.

Let u, v ∈ Rm+1. We say that u dominates v if u− v ∈ R
m+1
+ . Given a set U ⊆ Rm+1, a point

u ∈ U is called Pareto optimal in U if there is no v ∈ U which dominates u.

Given an initial state i and m+1 optimality criteria v0
i (R), v1

i (R), . . . , vm
i (R), let the (m+1)-

dimensional vector V (i, R) :=
(

v0
i (R), v1

i (R), . . . , vm
i (R)

)

characterize the performance of policy

R. Let U(i) := {V (i, R) | R ∈ C} be the performance region. A policy R is called Pareto optimal

if V (i, R) is Pareto optimal in U(i). We say that policy R1 dominates policy R2 at i if V (i, R1)

dominates V (i, R2) in U(i).

9.2. ADDITIONAL CONSTRAINTS 465

We are interested in the solution of the following constrained optimization problem, given the

numbers b1, b2, . . . , bm and initial state i, i.e. the problem

max {v0(i, R) | vl(i, R) ≥ bl, l = 1, 2, . . . , m}, (9.34)

where vl
i(R) =

∑K
k=1

∑∞
t=1 α

t−1
k

∑

j,a Pi,R{Xt = j, Yt = a} · rlk
j (a), l = 0, 1, . . . , m with rlk

j (a)

for all (j, a) ∈ S × A, the one-step rewards corresponding to criterion l and discount factor αk.

Notice that the unconstrained problem, i.e., max {v0(i, R)}, was considered in section 7.13.

Lemma 9.20

The performance region U(i) is a convex compact set.

Proof

Consider two elements of U(i), say V (i, R1) and V (i, R2). Let λ ∈ [0, 1]. By Theorem 1.1, there

exists a Markov policy R∗ such that

Pi,R{Xt = j, Yt = a} = λ · Pi,R1{Xt = j, Yt = a}+ (1− λ) · Pi,R2{Xt = j, Yt = a}
for all (j, a) ∈ S ×A and all t ∈ N. This provides straightforward the convexity of U(i).

Since |vl(i, R)| ≤ K·M
1−α for all l = 0, 1, . . . , m, with M := maxlk {maxj,a r

lk
j (a)} and α := maxk αk,

the set U(i) is bounded. Furthermore, we have for l = 0, 1, . . . , m,

vl(i, R) =
∑K

k=1 v
lk(i, R), where vlk(i, R) :=

∑∞
t=1 α

t−1
k

∑

j,a Pi,R{Xt = j, Yt = a} · rlk
j (a).

From the proof of Theorem 9.12 we know that for all k and l the set of |S × A|-dimensional

vectors xkl(R) with xkl
ja(R) :=

∑∞
t=1 α

t−1
k Pi,R{Xt = j, Yt = a} is closed.

Since vl(i, R) =
∑K

k=1

∑

j,a x
kl
ja(R) · rlk

j (a), the set vl(i, R) is also closed for all l = 0, 1, . . . , m.

Hence, U(i) is a closed set, concluding the proof that U(i) is a convex compact set.

Remark

Since for a given i ∈ S the set U(i) is a compact set, problem (9.34) has an optimal solution if

(9.34) is feasible. Since the set U(i) is also convex, an optimal policy is either Pareto optimal in

the set of feasible policies, or it is dominated by such a Pareto optimal policy.

We first consider a finite nonstationary horizon model with in period t and for the optimality

criterion l (0 ≤ l ≤ m) rewards rl,t(a), (j, a) ∈ S × A. The optimization problem in this case is

max {v0(i, R) | vl(i, R) ≥ bl, l = 1, 2, . . . , m}, (9.35)

where vl(i, R) :=
∑T

t=1

∑

j,a Pi,R{Xt = j, Yt = a} · rl,t
j (a), l = 0, 1, . . . , m. For this problem we

consider the following linear program, where the variable xt
ja can be interpreted as the state-action

probability, i.e. xt
ja := P{Xt = j, Yt = a | X1 = i}:

max

T
∑

t=1

∑

(j,a)

r0,t
j (a)xja

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

a x
1
ja = δij , j ∈ S

∑

a x
t
ja −

∑

l,a plj(a)x
t−1
la = 0, j ∈ S, t = 2, 3, . . . , T

∑T
t=1

∑

j,a r
l,t
j (a)xt

ja ≥ bl, l = 1, 2, . . . , m

xt
ja ≥ 0, (j, a) ∈ S ×A, t = 1, 2, . . . , T

.

(9.36)

466 CHAPTER 9. OTHER TOPICS

Theorem 9.26
(1) Problem (9.35) is feasible if and only if the corresponding LP problem is feasible.

(2) If x is an optimal basic solution of the linear program, then R∗ := (π1, π2, . . . , πT), where

πt
ja :=

xt
ja

P

a xt
ja

if
∑

a x
t
ja > 0

1 if
∑

a x
t
ja = 0 and a = aj, where aj ∈ A(j) is arbitrarily chosen

0 if
∑

a x
t
ja = 0 and a 6= aj

is an optimal Markov policy of order m.

Proof

In order to prove the theorem, we mention the following facts:

(1) a finite (non)stationary finite horizon model is equivalent to a transient nonstationary infinite

horizon model (see section 2.3);

(2) a transient infinite horizon model is equivalent to a contracting infinite horizon model

(see Theorem 4.8);

(3) a contracting infinite horizon model is equivalent to a discounted infinite horizon model

(see the last part of section 4.7).

If we apply the above transformations, we obtain an MDP with state space S, actions sets A,

transition probabilities p and one-step rewards r, defined by:

(i) S := S × {1, 2, . . . , T ∪ {0};
(ii) A(j, t) := A(j), j ∈ S, 1 ≤ t ≤ T ; A(0) := {0};
(iii) p(j,t)(k,t+1)(a) := 1

αpjk(a), j, k ∈ S, 1 ≤ t ≤ T − 1, a ∈ A(j); p(j,T)0(a) := ‘1, j ∈ S, a ∈ A(j);

p00(0) := 1 : all other probabilities equal 0;

(iv) rl
(j,t)(a) := rl,t

j (a), j ∈ S, 1 ≤ t ≤ T, a ∈ A(j); rl
0(0) := 0.

There is a natural one-to-one correspondence, given by πt
ja := π(j,t)(a) for all j, a, t, between ran-

domized Markov policies in the original finite horizon model and randomized stationary policies

in the new infinite horizon discounted model. For every m this mapping is also a one-to-one cor-

respondence between randomized Markov policies of order m in the original finite horizon model

and randomized stationary policies of order m in the new infinite horizon discounted model. This

correspondence preserves the values of the m+ 1 criteria.

The corresponding discounted optimization problem in the new discounted model is:

max {v0,α
(

(i, 1), R
)

| vl,α
(

(i, 1), R
)

≥ bl, l = 1, 2, . . . , m}, (9.37)

where vl,α
(

(i, 1), R
)

:=
∑∞

t=1 α
t−1
∑

(j,t)a P(i,l),R{Xt = (j, t), Y t = a} · rl
(j,t)(a), l = 0, 1, . . . , m

for some α ∈ [0, 1).

This optimization problem belongs to the model defined by (9.6) and can be solved by the linear

program (9.9). The linear program (9.9) becomes in the setting of the new infinite horizon

problem:

9.2. ADDITIONAL CONSTRAINTS 467

max

∑

(j,t),a

r0(j,t)(a)xj,t)(a)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

a x(j,1)(a) = δij, j ∈ S
∑

a x(j,t)(a)− α
∑

(l,t−1),a p(l,t−1)(j,t)(a)x(l,t−1)(a) = 0, j ∈ S, 2 ≤ t ≤ T
x0(0)− α∑(l,T),a p(l,T)0(a)x(l,T)(a) = 0

∑

(j,t),a r
l
(j,t)(a)x(j,t)(a) ≥ bl, l = 1, 2, . . . , m

x(j,t)(a) ≥ 0, (j, a) ∈ S × A, 1 ≤ t ≤ T ; x0(0) ≥ 0

(9.38)

If we write xt
ja instead of x(j,t)(a), then the objective function can be written as

∑

(j,t),a r
0
(j,t)(a)x

t
ja

and the first set of constraints as
∑

a x
1
ja = δij , j ∈ S. For the second set of constraints we

obtain
∑

a x
t
ja −

∑

l,a plj(a)x
t−1
la = 0, j ∈ S, t = 2, 3, . . . , T . The next constraint of (9.38) gives

x0(0)− α∑la x
T
la = 0. Notice that the value of x0(0) has no influence for the optimal solution,;

so, this constraint may be omitted. The last set of constraints becomes
∑T

t=1

∑

j,a r
l,t
j (a)xt

ja ≥ bl
for l = 1, 2, . . . , m. Hence, program (9.38) is the same linear program as program (9.35) and from

Theorem 9.13 and the second remark after the proof of Theorem 9.13 it follows that:

(1) Problem (9.35) is feasible if and only if the corresponding linear program (9.36) is feasible.

(2) If x is an optimal basic solution of the linear program, then R∗ := (π1, π2, . . . , πT), where

πt
ja :=

xt
ja

P

a xt
ja

if
∑

a x
t
ja > 0

1 if
∑

a x
t
ja = 0 and a = aj, where aj ∈ A(j) is arbitrarily chosen

0 if
∑

a x
t
ja = 0 and a 6= aj

is an optimal Markov policy of order m.

Theorem 9.26 implies the correctness of the following algorithm for the computation of an optimal

randomized Markov policy of order m for a finite horizon model with constraints.

Algorithm 9.7 Construction of an optimal Markov policy of order m for the constrained finite

horizon problem (9.35)

Input: Instance of a nonstationary MDP, immediate rewards cl,tj (a), (j, a) ∈ S ×A,
l = 0, 1, . . . , m, 1 ≤ t ≤ T and bounds bl for l = 1, 2, . . . , m.

Output: Either the statement that (9.35) is infeasible or an optimal Markov policy of order m

for problem (9.35)

1. Solve the linear program (9.36).

2. if program (9.36) is infeasible then begin problem (9.35) is infeasible; go to step 4 end

else begin if program (9.36) has optimal solution x then go to step 3 end

3. R∗ := (π1, π2, . . . , πT), where πt
ja for (j, a) ∈ S × A, 1 ≤ t ≤ T is defined by

πt
ja :=

xt
ja

P

a xt
ja

if
∑

a x
t
ja > 0

1 if
∑

a x
t
ja = 0 and a = aj, where aj ∈ A(j) is arbitrarily chosen

0 if
∑

a x
t
ja = 0 and a 6= aj

is an optimal Markov policy of order m.

4. STOP

468 CHAPTER 9. OTHER TOPICS

Next, we recall some properties of the unconstrained problem with sum of discounted rewards

and different discount factors, as discussed in section 7.13. The unconstrained problem is

maxR

{

K
∑

k=1

∞
∑

t=1

(αk)
t−1

∑

j,a

Pi,R{Xt = j, Yt = a} · rk
j (a)

}

. (9.39)

Assume, without loss of generality, that the discount factors satisfy α1 > α2 > · · · > αK . Let

vk
i (R) :=

∑∞
t=1 (αk)

t−1
∑

j,a Pi,R{Xt = j, Yt = a} · rk
j (a), k = 1, 2, . . . , K. Define the values

vk
j , j ∈ S, the action sets Ak(j), j ∈ S and the policy spaces Ck for k = 1, 2, . . . , K recursively as

follows:

v1
j := supR v

1
j (R), j ∈ S, the value of the problem with discount factor α1 and rewards r1l (a);

A1(j) := {a ∈ A(j) | v1
j = r1j (a) + α1 ·

∑

l pjl(a)v
1
l }, j ∈ S;

C1 is the set of policies whose actions are in the sets A1(j), j ∈ S.

Given the values vk
j , j ∈ S, the action sets Ak(j), j ∈ S and the policy space Ck, we define:

vk+1
j := supR∈Ck

vk+1
j (R), j ∈ S, the value of the problem with discount factor αk+1 and

rewards rk+1
l (a) and action sets Ak(l);

Ak+1(j) := {a ∈ Ak(j) | vk+1
j = rk+1

j (a) + αk+1 ·
∑

l pjl(a)v
k+1
l }, j ∈ S.;

Ck+1 is the set of policies whose actions are in the sets Ak+1(j), j ∈ S.

We have seen in Theorem 7.24 of section 7.13 that there exists an ultimately deterministic optimal

policy R∗ = (π1, π2, . . . , πT−1, f, f, . . .) for some finite T , where the deterministic rule f can be

chosen as arbitrary actions f(j) ∈ AK(j), j ∈ S.

A set of Markov policies C∗ is called a funnel if there exits a number T and action sets At(j),

j ∈ S, t = 1, 2, . . . , T + 1 such that R := (π1, π2, . . .) ∈ C∗ if the following conditions hold:

(1) for t = 1, 2, . . . , T : if πt
ja > 0 then a ∈ At(j), j ∈ S;

(2) for t ≥ T + 1: if πt
ja > 0 then a ∈ AT+1(j), j ∈ S.

Define a new MDP by:

- state space S := S × {1, 2, . . . , T} ∪ S

- action sets A(z) :=

{

At(j) if z = (j, t) for j ∈ S and 1 ≤ t ≤ T
AT+1(j) if z = j ∈ S

- transition probabilities pzz′ (a) :=

pjl(a) if z = (j, t), z′ = (l, t+ 1) for j, l ∈ S and 1 ≤ t ≤ T − 1

pjl(a) if z = (j, T), z′ = l for j, l ∈ S
pjl(a) if z = j ∈ S and z′ = l ∈ S

0 otherwise

- rewards rkz (a) :=

{

rk
j (a) if z = (j, t) for j ∈ S and 1 ≤ t ≤ T
rk
j (a) if z = j ∈ S

Notice that the set of policies for this model coincides with the funnel C∗. For any subset C′ of

the set C of all policies we define the following sets:

vlk(i, C′) := {vlk(i, R) | R ∈ C′} for l = 0, 1, . . . , m and k = 1, 2, . . . , K;

9.2. ADDITIONAL CONSTRAINTS 469

vl(i, C′) := {vl(i, R) | R ∈ C′} for l = 0, 1, . . . , m;

V (i, C′) := {V (i, R) | R ∈ C′}.
For the unconstrained problem (m = 0) we use the notation vk(i, C′) instead of the double indexed

v0k(i, C′) and v(i, C)′ for v0(i, C)′; in this case, the one-dimensional set V (i, C′) coincides with

the set v(i, C′).

Lemma 9.21

Consider the unconstrained problem of section 7.13: maxR v(i, R), where v(i, R) :=
∑K

k=1 v
k(i, R)

with vk(i, R) :=
∑∞

t=1 (αk)
t−1

∑

j,a Pi,R{Xt = j, Yt = a} · rk
j (a), k = 1, 2, . . . , K.

Let C∗ be a nonempty funnel and C0
∗ := {R0 ∈ C∗ | v(i, R0) = supR∈C∗ v(i, R)}.

Then, there is a nonempty funnel C′
∗ ⊆ C∗ such that:

(1) v(i, R′) = supR∈C∗ v(i, R) for all R′ ∈ C′
∗.

(2)
(

v1(i, C′
∗), v

2(i, C′
∗), . . . , v

K(i, C′
∗)
)

=
(

v1(i, C0
∗), v

2(i, C0
∗), . . . , v

K(i, C0
∗)
)

.

Proof

Consider the model (S, A, p, r) as defined above. Since the set of policies for this model coincides

with the funnel C∗, the value of this model with initial state (i, 1) equals supR∈C∗ v(i, R). From

the results of section 7.13 applied to the new model (S, A, p, r) it follows that there exists a T ′ ≥ T
and action sets A′

t(j), j ∈ S, t = 1, 2, . . . , T ′ + 1 such that:

(a) A′
t(j) ⊆ At(j) for j ∈ S and 1 ≤ t ≤ T ;

(b) A′
t(j) ⊆ AT+1(j) for j ∈ S and t = T + 1, T + 2, . . . , T ′ + 1;

(c) R = (π1, π2, . . .) ∈ C0
∗ if and only if πt

ja > 0 implies a ∈ A′
t(j) for t = 1, 2, . . . , T ′ and

a ∈ A′
T ′+1(j) for t ≥ T ′ + 1.

The number T ′ and the sets A′
t(j), j ∈ S, 1 ≤ t ≤ T ′ + 1, define a funnel C′

∗ and, by (a) and (b),

C′
∗ ⊆ C0

∗ . Then, by (c), positive probabilities in decision rules correspond to actions from the sets

A′
t(j) for all j and t. Hence,

(

v1(i, C′
∗), v

2(i, C′
∗), . . . , v

K(i, C′
∗)
)

=
(

v1(i, C0
∗), v

2(i, C0
∗), . . . , v

K(i, C0
∗)
)

.

The following lemma deals with the constrained problem (9.34), so that V (i, R) is now a vector

in Rm+1.

Lemma 9.22

For any funnel C∗, the set V (i, C∗) is convex and compact.

Proof

For any funnel C∗, there exists an MDP such that there is a one-to-one correspondence between

C∗ and the set of policies in the new model. This model is similar to the model (S, A, p, r) with

the only difference that the reward functions are now depending on two indices: rlkj (a) instead of

rk
j (a). By Lemma 9.20, the performance region V (i, C∗) is convex and compact.

470 CHAPTER 9. OTHER TOPICS

Next, we show that, if problem (9.34) has a feasible solution, then for some T there exists an

optimal (m, T)-policy R = (π1, π2, . . . , πT , f, f, . . .).

We remind the reader some definitions and properties from convex analysis. A convex subset

W of a convex set U is called extreme if any representation u3 = λu1 + (1−λ)u2 with 0 < λ < 1,

u1, u2 ∈ U and u3 ∈W is only possible if u1, u2 ∈W . A subset W of U is called exposed if there

is a supporting hyperplane H of U such that W = H ∩ U . Extreme and exposed subsets other

that U are called proper. Any exposed subset of a convex set is extreme, but the converse may

not hold (see Stoer and Witzgall [284]).

Lemma 9.23

Let C∗ be a funnel and let V be an exposed subset of V (i, C∗). Then, there exists a funnel C′
∗

such that V = V (i, C′
∗).

Proof

Let
∑m

l=0 bmum = b be a supporting hyperplane of the convex compact set V (i, C′
∗) which contains

V and let
∑m

l=0 bmum ≤ b for every u = (u0, u1, . . . , um) ∈ V (i, C∗). Then,

V =
{

u ∈ V (i, C∗) |
∑m

l=0 bmum = max{∑m
l=0 bmum | u ∈ V (i, C∗)}

}

=
{

u ∈ V (i, C∗) |
∑m

l=0 bmum = max{∑m
l=0 bmV (i, R) | R ∈ C∗}

}

Therefore, u ∈ V if and only if u =
∑m

l=0 bmV (i, R0), where R0 is an optimal policy for the

unconstrained problem with optimality criterion
∑m

l=0 bmV (i, R). By Lemma 9.21, V = V (i, C′
∗)

for some funnel C′
∗ ⊆ C∗.

Corollary 9.3

Let V be an exposed subset of U(i). Then, there exists a funnel C∗ such that V = V (i, C′
∗).

Proof

The set C of all policies is a funnel defined by T := 0 and A1(j) := A(j), j ∈ S.

Lemma 9.24

Let V be a proper extreme subset of U(i). Then, there exists a funnel C∗ such that V = V (i, C∗).

Proof

The set C0 := C is clearly a funnel, defined by T := 0 and A1(j) := A(j), j ∈ S, which satisfies

U(i) = V (i, C0). V 0 := V (i, C0) and assume that, for some j ∈ N0, we have a funnel Cj such

that V is a proper extreme subset of V j := V (i, Cj). By Lemma 9.22, the set V j is convex and

compact. Let V j+1 be is a proper extreme subset of the convex and compact set V j = V (i, Cj)

such that V ⊆ V j. Then, by Lemma 9.23, there exists a funnel Cj+1 such that V j+1 = V (i, Cj+1).

If V j+1 = V , the lemma is proved for C∗ := Cj+1.

If V j+1 6= V , we increase j by 1 and repeat the construction. By Proposition (3.6.5) and (3.6.3)

of Stoer and Witzgall [284], we have dim(V) ≤ dim(V j+1) < dim(V j). Hence, after a finite

number of steps we obtain V j+1 = V .

9.2. ADDITIONAL CONSTRAINTS 471

Corollary 9.4

Let u be an extreme point of U(i). Then, there exists an ultimately deterministic policy R such

that u = V (i, R).

Proof

If U(i) = u, then we have u = V (i, R) for any policy R. If U(i) 6= u, then u is a proper extreme

subset of U(i). By Lemma 9.24, u = V (i, C∗) for some funnel C∗. Let the funnel C∗ be generated

by T and the action sets At(j), j ∈ S, t = 1, 2, . . . , T + 1. Then, u = V (i, R) for any policy

R ∈ C∗. Since C∗ contains an ultimately deterministic policy R, the corollary is proved.

Define for two points u = (u0, u1, . . . , um) and v = (v0, v1, . . . , vm) in Rm+ 1 the distance d(u, v)

by d(u, v) :=
∑m

l=0 |ui − vi| (L1-norm).

Lemma 9.25

Let V be either an exposed subset or a proper extreme subset of U(i). Then, there exists a policy

f∞ ∈ C(D) with the following property: for every ε > 0 there exists T ∈ N such that for any

u ∈ V there exists an element v ∈ V satisfying d(u, v) ≤ ε and v = V (i, R) for some policy

R = (π1, π2, . . . , πT , f, f, . . .).

Proof

By the lemmas 9.23 and 9.24, V = V (i, C∗) for some funnel C∗. Let C∗ be generated by T∗ ∈ N0

and the action sets At(j), j ∈ S, t = 1, 2, . . . , T∗ + 1 and let f∞ be such that f(j) ∈ AT∗+1(j)

for all j ∈ S.

Define α := max1≤k≤K αk and M := max {|rlk
j (a)| | 0 ≤ l ≤ m; 1 ≤ k ≤ K; (j, a) ∈ S × A.

Note that α ∈ [0, 1). If two policies R1 = (π1, π2, . . .) and R2 = (σ1, σ2, . . .) are such that

πt = σt for t = 1, 2, . . . , n, then, |V l(i, R1) − V l(i, R2)| ≤ 2KM · αn

1−α for all l = 0, 1, . . . , m.

Hence, |V (i, R1) − V (i, R2)| ≤ 2(m + 1)KM · αn

1−α . Given ε > 0, choose T ≥ T∗ such that

2(m+ 1)KM · αT

1−α ≤ ε. Then, for any two policies R1 = (π1, π2, . . .) and R2 = (σ1, σ2, . . .) such

that πt = σt for t = 1, 2, . . . , T , we have d
(

V (i, R1), V (i, R2)
)

≤ ε.
Take any u ∈ V and consider a policy R1 = (σ1, σ2, . . .) ∈ C∗ such that u = V (i, R1). Define

the policy R = (π1, π2, . . .) by πt := σt for t = 1, 2, . . . , T and πt := f for t ≥ T + 1, and define

v := V (i, R). Since R ∈ C∗, we have v ∈ V and, furthermore, we have d(u, v) ≤ ε. Therefore, the

conditions (1) and (2) are satisfied.

Theorem 9.27

Let V be either an exposed subset or a proper extreme subset of U(i). Then, for any u ∈ V there

exist a Markov policy R = (π1, π2, . . .), a deterministic policy f∞ and an integer T such that

u = V (i, R) and πt = f for every t ≥ T + 1.

Proof

Take any u ∈ V . Since any intersection of extreme sets is an extreme set and any intersection

of closed sets is a closed set, there exists a minimal closed extreme subset W of U(i) containing

472 CHAPTER 9. OTHER TOPICS

u. This set W is the intersection of all closed extreme subsets of U(i) containing u. If V is an

exposed set, it is extreme (see Stoer and Witzgall [284], but it is possible that V = U(i).

Let dim(W) = n ≤ m + 1. By Caratheodorys theorem, u is a convex combination of n + 1

extreme points u1, u2, . . . , un+1 of W . The minimality of W implies that the convex hull of

{u1, u2, . . . , un+1} is a simplex and u is an inner point of this simplex.

We select ε > 0 small enough so that if {v1, v2, . . . , vn+1} ⊆ W and each vj belongs to the ε-

neighborhood of uj for j = 1, 2, . . . , n + 1. Then, the following property holds: the convex hull

of {v1, v2, . . . , vn+1} is a simplex and u belongs to this simplex, say u =
∑n+1

j=1 λjv
j for some λ

with λj ≥ 0 for all j and
∑n+1

j=1 λj = 1.

W is either a proper extreme subset of U(i) or W = V = U(i) and W is an exposed subset. By

Lemma 9.25, there exists a policy f∞ ∈ C(D), an integer T and policies Rp = (π1p, π2p, . . .) such

that vj = V (i, Rj) and πtp = f for all t ≥ T + 1 and p = 1, 2, . . . , n+ 1.

Hence, u =
∑n+1

j=1 λjV (i, Rj). By Theorem 1.1, there exists a Markov policy R = (π1, π2, . . .)

such that u = V (i, R) and, because the policies Rj have identical decision rules from stage T +1,

πt = f for t ≥ T + 1.

Corollary 9.5

Let u be a Pareto optimal point of U(i). Then, there exists a Markov policy R = (π1, π2, . . .), a

deterministic policy f∞ and an integer T such that u = V (i, R) and πt = f for every t ≥ T + 1.

Proof

We consider two situations: (1) dim
(

U(i)
)

≤ m and (2) dim
(

U(i)
)

= m+ 1.

If dim
(

U(i)
)

≤ m, then U(i) is an exposed set and the result follows from Theorem 9.27.

If dim
(

U(i)
)

= m + 1, then the Pareto optimal point u belongs to the boundary of U(i) and,

consequently, u belongs to some proper extremal subset of U(i). Also in this case the result

follows from Theorem 9.27.

Theorem 9.28

If problem (9.34) is feasible, then there exists an optimal (m, T)-policy.

Proof

Assume that problem (9.34) is feasible. From the remark after Lemma 9.20 it follows that there

exists an optimal policy, say R∗. Furthermore, it follows from this remark that there exists a

Pareto optimal point u ∈ U(i) such that either u = V (i, R∗) or u dominates V (i, R∗). Any policy

R such that V (i, R) = u is optimal. By Corollary 9.5, there exists a Markov policy a Markov

policy R = (σ1, σ2, . . .), a deterministic policy f∞ and an integer T such that u = V (i, R) and

σt = f for every t ≥ T + 1.

In order to find an optimal (m, T)-optimal one has to solve a finite horizon problem with nonsta-

tionary one-step rewards
∑K

k=1 α
t−1
k rlk(a), (j, a) ∈ S ×A, 0 ≤ l ≤ m, for t = 1, 2, . . . , T − 1 and

∑K
k=1 {αT−1

k rlk(a) + αT
k

∑

s pjs(a)v
lk
s (f∞)}, (j, a) ∈ S × A, 0 ≤ l ≤ m, for t = T .

9.2. ADDITIONAL CONSTRAINTS 473

Let (π1, π2, . . . , πT) be a randomized Markov policy of order m, optimal for this finite horizon

model (see Algorithm 9.7 for the computation of such policy). Then, R = (π1, π2, . . . , πT , f, f, . . .)

is an optimal (m, T)-policy.

Next, we shall prove that, given any point u∗ on the boundary of the performance set U(i),

there exists an (m, T)-policy R∗ such that V (i, R∗) = u∗. This result implies that for any Pareto

optimal policy there exists an equivalent (m, T)policy. We also show that for any policy there

exists an equivalent (m, T)-policy. The proofs are based on Theorem 9.28 and the following

lemma.

Lemma 9.26

Let U ⊆ R
m+1 be convex and compact, and let u∗ on the boundary of U . Then, there exist

constants alp, l, p = 0, 1, . . . , m and constants bl, l = 1, 2, . . . , m, such that u∗ is the unique

solution of the problem

max

m
∑

p=0

a0pup

∣

∣

∣

m
∑

p=0

alpup ≥ bl, l = 1, 2, . . . , m; (u0, u1, . . . , um) ∈ U

. (9.40)

Proof

Let
∑m

p=0 dpup = b be a supporting hyperplane H0 of U which contains the point u∗ and also

satisfies
∑m

p=0 dpup ≤ b for all u = (u0, u1, . . . , um) ∈ U . We consider for l = 1, 2, . . . , m the

hyperplanes Hl, defined by
∑m

p=0 alpup = bl such that ∩m
l=0Hl = {u∗}. Then, u∗ is a vertex of

the polyhedron

U∗ := {u | ∑m
p=0 alpup ≥ bl, l = 1, 2, . . . , m;

∑m
p=0 dpup ≤ b}.

Let
∑m

p=0 a0pup = b0 be a hyperplane that supports U∗ at u∗ and satisfies
∑m

p=0 a0pup < b0 for

all u ∈ U∗\{u∗} (this hyperplane exists because u∗ is a vertex of U∗). Hence, u∗ is the unique

solution of (9.40).

Theorem 9.29

Given any u∗ on the boundary of U(i), there exist an (m, T)-policy R∗ such that V (i, R∗) = u∗.

Proof

Apply Lemma 9.26 with U = U(i). Then, u∗ is the unique solution of (9.40). Since we have
∑m

p=0 alpv
p(i, R) =

∑K
k=1

∑m
p=0 alpv

pk(i, R), also
∑m

p=0 alpv
p(i, R) =

∑K
k=1 v

lk(i, R) = vl(i, R),

where vlk(i, R) is the expected discounted reward with discount factor αk and one-step rewards

rlk
j (a) :=

∑m
p=0 alpr

lk
j (a), (j, a) ∈ S × A for all l, k. If we apply Theorem 9.27 to this new MDP

model, we obtain the existence of an optimal (m, T)-policy R∗. By the uniqueness of u∗, we

obtain V (i, R∗) = u∗.

Corollary 9.6

If R is a Pareto optimal policy, there exists an optimal (m, T)-policy.

474 CHAPTER 9. OTHER TOPICS

Proof

Any Pareto optimal policy of a convex and compact set belongs to the boundary. Now, the

corollary follows from Theorem 9.29.

Lemma 9.27

Let U ⊆ R
m+1 be convex and compact. Then, for any u∗ ∈ U there exist constants alp,

l = 0, 1, . . . , m+ 1, p = 0, 1, . . . , m and constants bl, l = 1, 2, . . . , m+ 1, such that u∗ is

the unique solution of the problem

max

m
∑

p=0

a0pup

∣

∣

∣

m
∑

p=0

alpup ≥ bl, l = 1, 2, . . . , m+ 1; (u0, u1, . . . , um) ∈ U

. (9.41)

Proof

We consider the hyperplane H , defined by
∑m

p=0 am+1,pup = bm+1, such that u∗ belongs to this

plane. Let U∗ := U ∩ H . Then, U∗ is convex and compact and u∗ belongs to the boundary of

U∗. Apply Lemma 9.26 to the set U∗ and the point u∗.

Corollary 9.7

For any policy R there exists an optimal (m+ 1, T)-policy R∗ with V (i, R∗) = V (i, R).

Proof

The proof is similar to the proof of Theorem 9.29, but we apply Lemma 9.27 instead of Lemma

9.26.

The following example illustrates that m+ 1 cannot be replaced with m in Collorally 9.7.

Example 9.14

LetK = 1, m = 0, α1 = 0.5; S = {1};A(1) = {1, 2}; p11(1) = p11(2) = 1; r01
1 (1) = 0, r01

1 (2) = 1.

Then, U1 = [0, 2]. If R is a (0, T)-policy, then there all decision rules are deterministic and

therefore V1(R) is a rational number for all (0, T)-policies. Hence, if V1(R) is an irrational number,

at least one decision rule is randomized and we need a (1, T)-policy to obtain this performance.

We close this section with an algorithm for an approximate solution of problem (9.34). We

say that, given ε > 0, a policy R∗ is ε-optimal for problem (9.34) if this policy is feasible and

v0(i, R∗) ≥ v0(i, R)− ε for all feasible policies R. A policy R∗ is called approximately ε-optimal if

R∗ is ε-optimal and vl(i, R)≥ bl−ε for all l = 1, 2, . . . , m. We remark that that an approximately

ε-optimal policy may be infeasible. However, from a practical point of view, it is sufficient to find

an approximately ε-optimal policy for some small positive ε.

9.2. ADDITIONAL CONSTRAINTS 475

Algorithm 9.8

Construction of an ε-optimal or approximately ε-optimal (m, T)-policy for problem (9.34)

Input: Instance of an MDP, a tolerance ε > 0, integersm andK, discount factors αk, 1 ≤ k ≤ K,

bounds bl for l = 1, 2, . . . , m and immediate rewards rlk
j (a), (j, a) ∈ S ×A, 0 ≤ l ≤ m,

1 ≤ k ≤ K.

Output: Either a ε-optimal or an approximately ε-optimal (m, T)-policy for problem (9.34).

1. Select an arbitrary policy f∞ ∈ C(D).

2. Select T ∈ N such that K·L·αT

1−α ≤ ε,
where α := max1≤k≤K αk and L := M −min{rlk

j

(

f(j)
)

| 0 ≤ l ≤ m; 1 ≤ k ≤ K; j ∈ S}
with M := max{|rlk

j (a) | 0 ≤ l ≤ m; 1 ≤ k ≤ K; (j, a) ∈ S × A}.

3. Apply Algorithm 9.7 to the finite horizon problem (9.35), where the one-step rewards are
∑K

k=1 α
t−1
k rlk(a), (j, a) ∈ S × A, 0 ≤ l ≤ m, for t = 1, 2, . . . , T − 1 and

∑K
k=1 {αT−1

k rlk(a) + αT
k

∑

s pjs(a)v
lk
s (f∞)}, (j, a) ∈ S ×A, 0 ≤ l ≤ m, for t = T .

4. If the finite horizon problem is feasible, let (π1, π2, . . . , πT) be an optimal Markov policy

of order m, obtained by Algorithm 9.7. The policy R∗ := (π1, π2, . . . , pT , f, f, . . .) is an

ε-optimal (m, T)-policy (STOP).

5. If the finite horizon problem is infeasible, consider a similar finite horizon problem with the

constants bl in the right-hand-side of (9.34) replaced by bl − ε for l = 1, 2, . . . , m.

6. If the new finite horizon problem is feasible, let (π1, π2, . . . , πT) be an optimal Markov

policy of order m, obtained by Algorithm 9.7 applied to this new problem. The policy

R∗ := (π1, π2, . . . , pT , f, f, . . .) is an approximately ε-optimal (m, T)-policy (STOP).

7. If the new finite horizon problem is infeasible, there does not exist an approximately ε-

optimal (m, T)-policy (STOP).

9.2.8 Constrained discounted MDPs with two discount factors

In this section we consider an MDP, where the objectives are linear combinations of discounted

rewards, each with a different discount factor. For the special case where a standard discounted

reward function is to be maximized, subject to a constraint on another standard discounted

reward function but with a different discount factor, we provide an implementable algorithm for

computing an optimal policy.

476 CHAPTER 9. OTHER TOPICS

Example 9.15

Consider the problem of managing a computer facility with many users. The objective is to

provide acceptable service, while spending as little as possible. The state i encodes information

about the number of users and about available computer resources that influence the performance

of the system, such as RAM memory, computation power, disk space, etc.

Consider the simple case in which the only available decision is to add a gigabyte of disk

space. Suppose that the cost per gigabyte of disk storage at time t = 1 is c. The price of disk

space decreases over time and let α1 ∈ [0, 1) denote the rate of decrease per time unit.

Let ci(a) be a combined measure of performance, when the state is i and action a is chosen. To

model the fact that demands from computer performance as a whole increase at an exponential

rate, we let α2 ∈ [0, 1) be the ratio between required performances at consecutive decision epochs.

Then, maintaining ’adequate performance’ in the long run may be modeled by the requirement

that, for some appropriate constant B, Ei,R {
∑∞

t=1 α
t−1
2 cXt(Yt)} ≥ B. Combining the different

criteria we arrive at the following optimization problem

min
{

Ei,R {
∞
∑

t=1

αt−1
1 c · Yt}

∣

∣

∣ Ei,R {
∞
∑

t=1

αt−1
2 cXt(Yt)} ≥ B

}

. (9.42)

In this section we are interested in solving the following constrained optimization problem, given

some bound B:

max
{

Ei,R {
∞
∑

t=1

αt−1
1 r1Xt

(Yt)}
∣

∣

∣ Ei,R {
∞
∑

t=1

αt−1
2 r2Xt

(Yt)} ≥ B
}

, (9.43)

where α1 6= α2 (for the case α1 = α2 we refer to section 9.2.2). Denote Ei,R {
∑∞

t=1 α
t−1
1 r1Xt

(Yt)}
and Ei,R {

∑∞
t=1 α

t−1
1 r2Xt

(Yt)} by v1(i, R) and v2(i, R), respectively. Notice that in problem (9.43)

the initial state i is fixed.

Suppose that problem (9.43) is feasible. The problem of optimizing vk(i, R) is for each k = 1, 2

a standard discounted MDP. So, checking maxR v
2(i, R) ≥ B can be easily verified by solving a

discounted MDP. Let Ak(j) for k = 1 or k = 2 be the set of conserving actions in state j for

the corresponding problem; these are the actions that achieve the maximum in the optimality

equation. We know from the general theory of discounted MDPs that maxR v
k(i, R) is obtained

for any policy that takes actions from Ak(j), j ∈ S. Call a policy R∗ (1,2)-lexicographic-optimal

at state i if v1(i, R∗) = maxR v
1(i, R) and v2(i, R∗) = maxR∈C1 v2(i, R), where C1 is the subset of

policies that takes actions fromA1(j), j ∈ S. Similarly, we define the notion of (2,1)-lexicographic-

optimality.

The computation of an (1,2)-lexicographic-optimal policy proceeds as follows. First, compute

A1(j) for all j ∈ S. Then, solve the problem of maximizing v2(i, R) over C1, i.e. the discounted

MDP with discount factor α2, action setsA1(j), j ∈ S and one-step rewards r2j (a), (j, a) ∈ S×A1.

Let A1,2 be the set of conserving actions in this restricted MDP.

9.2. ADDITIONAL CONSTRAINTS 477

Theorem 9.30
(1) If a (1,2)-lexicographic-optimal policy R∗ is such that v2(i, R∗) ≥ B, then R∗ is an optimal

policy for problem (9.43).

(2) If maxR v
2(i, R) = B, then a (2,1)-lexicographic-optimal policy R∗ is an optimal policy for

problem (9.43).

Proof

(1) Since an optimal policy R∗ for maxR v
1(i, R) satisfies, by assumption, the constraint of

problem (9.43), it is an optimal policy for problem (9.43).

(2) By the hypothesis of this part of the theorem, only policies with actions in A2(j), j ∈ S, are

feasible. By the properties of standard discounted MDPs a (2,1)-lexicographic-optimal policy

R∗ provides the maximum value among all feasible policies.

We now consider the cases that not occur in Theorem 9.30. Therefore, we define for any 0 < λ < 1

and any R ∈ C the vector wλ(R) by

wλ(R) := λv1(R) + (1− λ)v2(R). (9.44)

Assume that α1 > α2. Then, as shown in section 7.13, there exists an ultimately deterministic

optimal policy R∗ = (f1, f2, . . . , ft, f, f, . . .) for the problem maxRw
λ(R) (take as one-step-

rewards λr1j (a) + (1− λ)r2j (a)) such that f∞ is a (1,2)-lexicographic-optimal policy.

We recall from section 7.13 the following. Let vk be the value vector of the discounted problem

with discount factor αk and one-step-rewards rk
j (a), (j, a) ∈ S×A. Let vk be such that vk(R) ≥ vk

for all R ∈ C. Define S1, ε and T as follows:

S1 := {i ∈ S | A1(i) 6= A(i)};

ε :=

{

λ ·mini∈S1

{

v1
i −maxa∈A(i)\A1(i) {r1i (a) + α1 ·

∑

j pij(a)v
1
j}
}

if S1 6= ∅;
0 otherwise;

T :=

{

min
{

t ≥ 1
∣

∣

(

α1
α2

)t−1 ·maxi (v
2
i − v2

i) <
ε

1−λ

}

if ε > 0;

1 if ε = 0.

Then, we see that ε, and consequently also T , depends on λ, so we write ε(λ) and T (λ). Further-

more, we see that ε(λ) is increasing in λ and T (λ) decreasing in λ. The case α1 < α2 is similar.

Therefore, we have established the following result.

Theorem 9.31

There exists an ultimately deterministic optimal policy R∗ = (f1, f2, . . . , fT (λ), f, f, . . .) for the

problem maxRw
λ(R) such that:

(1) if α1 > α2, then f∞ is a (1,2)-lexicographic-optimal policy and T (λ) is decreasing in λ;

(2) if α1 < α2, then f∞ is a (2,1)-lexicographic-optimal policy and T (λ) is increasing in λ.

478 CHAPTER 9. OTHER TOPICS

As in section 9.2.7, define for a fixed initial state i the performance region U(i) as follows:

U(i) := {v1(i, R), v2(i, R) | R ∈ C}. Recall that u = (u1, u2) ∈ R2 is called Pareto optimal in

a set U ∈ R2 if v ∈ U and vi ≥ ui for i = 1, 2 imply v = u. We use the following well known

lemma.

Lemma 9.28

Let U ⊆ R
2 be convex and compact. Consider the following optimization problem

max {b1v1 + b2v2 | v ∈ U}. (9.45)

(1) if u ∈ U is Pareto optimal, then u is an optimal solution of (9.45) for some b ∈ R2
+

with b1 + b2 > 0;

(2) if u is an optimal solution of (9.45) for some b ∈ R2
+ with b1 > 0 and b2 > 0, then u

is Pareto optimal.

If the conditions (1) and (2) of Theorem 9.30 do not hold, the convexity of U(i) implies that the

optimal solution of (9.43) is obtained at a point v =
(

v1(i, R), v2(i, R)
)

with v2(i, R) = B and

moreover, the slope of the normal to any tangent hyperplane to U(i) at v is bounded away from

0 and ∞. But this implies that an optimal solution may be found by solving maxRw
λ(R), where

wλ(R) = λv1(R) + (1− λ)v2(R) for some 0 < λ < 1, say for λ = λ∗.

From Lemma 9.6 and Theorem 9.17 we also obtain the following results: (1) the sets U(i) are

compact for all i ∈ S; (2) if (9.43) is feasible, then there exists an optimal (1, T) policy.

The presence of a single constraint implies a single randomization. Property (2) says that an

optimal policy exists with in at most one state and at most one point in time a random action

is necessary, and furthermore, at most two actions need to be chosen with positive probability at

this time-state pair. Otherwise, the decision rules are deterministic.

Define vk(1, 2) and vk(2, 1) by vk(1, 2) := maxR {vk(i, R) | Ris (1,2)-lexicographic-optimal} and

vk(2, 1) := maxR {vk(i, R) | Ris (2,1)-lexicographic-optimal}, for k = 1, 2. We have already

mentioned that the computation of each vk(1, 2) and vk(2, 1), for k = 1, 2, can be done by the

solution of two standard discounted MDPs.

Lemma 9.29

If the condition of Theorem 9.30 (1) does not hold, i.e. v2(i, R) < B for any (1,2)-lexicographic-

optimal policy, then if λ0 is such that (λ0, 1−λ0) is the normal to the line that connects the points
(

v1(1, 2), B
)

and
(

v1(2, 1), v2(2, 1)
)

in the (v1, v2)-space, is a lower bound on λ∗.

Proof

Since v2(1, 2) < B, the point
(

v1(1, 2), B
)

is outside U(i). The point
(

v1(2, 1), v2(2, 1)
)

is on the

boundary of U(i). From the convexity of U(i) it follows that the boundary of U(i) must cross the

horizontal line v2 = B at a point (v1, v2) with v1 < v1(1, 2). Let λ0 be such that (λ0, 1− λ0) is

the normal to the line that connects the points
(

v1(1, 2), B
)

and
(

v1(2, 1), v2(2, 1)
)

. Then, from

the geometry in the (v1, v2)-space it follows that λ0 ≤ λ∗.

9.2. ADDITIONAL CONSTRAINTS 479

The bound λ0 suggest the following algorithm.

Algorithm 9.9 Computation of a (1, T)-policy

Input: Instance of an MDP, two discount factors α1 and α2, where α1 6= α2, a bound B and

two sets of immediate rewards r1j (a) and r1j (a), (j, a) ∈ S ×A.

Output: An optimal (1, T)-policy for problem (9.43).

1. Compute v1(1, 2), v2(1, 2), v1(2, 1) and v2(2, 1) by solving the corresponding MDPs.

2. Compute λ0 ∈ (0, 1) such that (λ0, 1−λ0) is the normal to the line that connects the points
(

v1(1, 2), B
)

and
(

v1(2, 1), v2(2, 1)
)

.

3. Compute T = T (λ0) as in the steps 1 until 4 of Algorithm 7.7.

4. Using Algorithm 9.7, compute an optimal randomized Markov policy (π1, π2, . . . , πT) of

order 1.

5. Let R∗ := (π1, π2, . . . , πT , f, f, . . .), where f∞ is a (1,2)-lexicographic-optimal policy.

Theorem 9.32

If α1 > α2, then the policy R∗, obtained by Algorithm 9.9, is an optimal (1, T)-policy for problem

(9.43).

Proof

Since, by Theorem 9.31, T (λ) is decreasing in λ, it follows from λ0 ≤ λ∗ that T (λ0) ≥ T (λ∗).

Therefore, policy R∗, obtained by Algorithm 9.9, is an optimal (1, T)-policy for problem (9.43).

For the case α1 < α2, we need an upper bound λ1 on λ∗. The search algorithm below provides

such upper bound.

Algorithm 9.10 Computation of λ1 ≥ λ∗
Input: Instance of an MDP, two discount factors α1 and α2, where α1 6= α2, a bound B and

two sets of immediate rewards r1j (a) and r1j (a), (j, a) ∈ S ×A.

Output: λ1 satisfying λ1 ≥ λ∗.

1. Compute v1(1, 2), v2(1, 2), v1(2, 1) and v2(2, 1) by solving the corresponding MDPs.

2. Compute λ1 ∈ (0, 1) such that (λ1, 1−λ1) is the normal to the line that connects the points
(

v1(1, 2), v2(1, 2)
)

and
(

v1(2, 1), v2(2, 1)
)

.

3. Compute an optimal policy f∞1 for the problem maxRw
λ1(R), where wλ1(R) is defined in

(9.44).

4. if v2(i, f∞) ≥ B then STOP

else begin λ1 := λ1+1
2 ; go to step 3 end

480 CHAPTER 9. OTHER TOPICS

Remark

Algorithm 9.10 terminates in a finite number of steps. This follows from the property that,

if v2(i, f∞1) < B, the slope of the normal to any tangent hyperplane to U(i) at
(

v1(1, 2), B
)

is bounded away from 0 and ∞. Since, by Theorem 9.31, T (λ) is increasing in λ, it follows

from λ1 ≥ λ∗ that T (λ1) ≥ T (λ∗). Therefore, the policy R∗, obtained by Algorithm 9.9 with the

adaptations to take λ1 instead of λ0 in steps 2 and 3 and in step 5 that f∞ is a (2,1)-lexicographic-

optimal policy, is an optimal (1, T)-policy for problem (9.43).

To conclude, we have established the following finite algorithm for computing an optimal (1, T)-

policy for problem (9.43).

Algorithm 9.11 Computation of an optimal (1, T)-policy for problem (9.43)

Input: Instance of an MDP, two discount factors α1 and α2, where α1 6= α2, a bound B and

two sets of immediate rewards r1j (a) and r1j (a), (j, a) ∈ S ×A.

Output: An optimal (1, T)-policy for problem (9.43).

1. Compute a (1,2)-lexicographic-optimal policy f∞∗ ∈ C(D).

2. if v2(i, f∞∗) ≥ B then begin f∞∗ is an optimal (1, T)-policy for problem (9.43); STOP end

else go to step 3

3. Compute a (2,1)-lexicographic-optimal policy f∞∗ ∈ C(D).

4. if v2(i, f∞∗) = B then begin f∞∗ is an optimal (1, T)-policy for problem (9.43); STOP end

else go to step 5

5. if α1 > α2 then

begin compute an optimal (1, T)-policy for problem (9.43) by Algorithm 9.9; STOP end

else go to step 6

6. Compute λ1 ≥ λ∗ by Algorithm 9.10.

7. Use Algorithm 9.9, with λ1 instead of λ0 in steps 2 and 3 and in step 5 that f∞ is a

(2,1)-lexicographic-optimal policy, in order to compute an optimal (1, T)-policy for problem

(9.43).

8. STOP.

9.3 Multiple objectives

For some problems we may have several sorts of rewards or costs, which we may not be able

to optimize simultaneously. Assume that we want to maximize some utility for an m-tuple

of immediate rewards, say utilities uk(R) and immediate rewards rk
i (a), (i, a) ∈ S × A, for

9.3. MULTIPLE OBJECTIVES 481

k = 1, 2, . . . , m. For each k one can find an optimal policy Rk, i.e. uk
i (Rk) ≥ uk

i (R), i ∈ S, for

all policies R. However, in general, Rk 6= Rl if k 6= l, and there does not exist one policy which

is optimal for all m rewards simultaneously for all starting states. Therefore, we consider the

utility function with respect a given initial distribution β. Given this initial distribution β and a

policy R, we denote the utilities by uk(β, R). The goal in multi-objective optimization is to find

an β-efficient solution, i.e. a policyR∗ such that there exists no other policy R satisfying

uk(β, R) ≥ uk(β, R∗) for all k and uk(β, R) > uk(β, R∗) for at least one k.

We shall consider multiple objectives for both discounted rewards and average rewards. In order

to solve these problems, we shall use multi-objective linear programming. Therefore, we first

present some properties of multi-objective linear programming.

9.3.1 Multi-objective linear programming

In this section we shall derive some result for the general multi-objective linear program

max{Rx | Ax = b; x ≥ 0}, (9.46)

where R ∈ R
p×n, x ∈ R

n, A an m× n matrix and b ∈ R
m. We define the following sets:

X := {x ∈ Rn | Ax = b; x ≥ 0}, the space of feasible solutions.

Y := {y = Rx ∈ R
p | x ∈ X}, the space of the values of the objective functions.

For x1, x2 ∈ X we say that x1 is dominated by x2 if Rx2 ≥ Rx1 and Rx2 6= Rx1. Let D(x) be

the subset of X consisting of the points that are dominated. We say that x1 is efficient if there

is no x2 ∈ X such that x2 dominates x1. The set of efficient points of X is denoted by E(X).

Obviously D(X) and E(X) is a partition of X , i.e. D(X)∪E(X) = X and D(X)∩ E(X) = ∅.

Lemma 9.30

Suppose that x1, x2 ∈ X and x1 ∈ D(X). Then, the half-closed interval [x1, x2) ∈ D(X), where

[x1, x2) := {x ∈ X | x = λx1 + (1− λ)x2, 0 < λ ≤ 1}.

Proof

Since x1 ∈ D(X), there is an element x3 ∈ X such that Rx3 ≥ Rx1 and Rx3 6= Rx1. Let

x4 ∈ [x1, x2), say x4 = λ∗x1+(1−λ∗)x2 for some 0 < λ∗ ≤ 1. Define x5 by x5 := λ∗x3+(1−λ∗)x2.

Then, x4, x5 ∈ X and Rx5 −Rx4 = λ∗(Rx3 −Rx1) ≥ 0 and Rx5 − Rx4 6= 0.

Corollary 9.8

The set D(X) is convex.

Theorem 9.33

Assume that X is bounded. Let Ext(X) be the set of extreme efficient points of X . Then,

E(X)⊆ Ext(X), where Ext(X) is the closed convex hull of Ext(X).

482 CHAPTER 9. OTHER TOPICS

Proof

Suppose that x cannot be written as a convex combination of points of Ext(X). It suffices to

show that x ∈ D(X).

Let Xext be the finite set of extreme points of X . By the assumption there is at least one point

x1 ∈ D(X) ∩Xext and a scalar λ1 ∈ [0, 1) such that x =
∑r

k=1 λkx
k with

∑r
k=1 λk = 1, λk ≥ 0,

1 ≤ k ≤ r and xk ∈ Ext(X), 1 ≤ k ≤ r.
If λk = 1 for some 1 ≤ k ≤ r, then x = x1 and clearly x ∈ D(X).

If λk < 1 for all 1 ≤ k ≤ r, then r ≥ 2 and x = λ1x
1 +

∑r
j=2 λj ·

∑r
k=2

λk
Pr

j=2 λj
xk. Set

λ := λ1, y
1 := x1 and y2 :=

∑r
k=2

λk
Pr

j=2 λj
xk. Then. x = λy1 + (1− λ)y2, 0 ≤ λ < 1, y1, y2 ∈ X

and y1 ∈ D(X). Hence, by Lemma 9.30, x ∈ D(X).

Theorem 9.34

x∗ ∈ E(X) if and only if the linear program

max{eT z | Ax = b; Rx− z = Rx∗; x, z ≥ 0} (9.47)

has an optimal solution (x0, z0) with z0 = 0.

Proof

A feasible solution of x∗ of (9.46) is efficient if and only if there is no x with Ax = b; x ≥ 0 and

Rx > Rx∗. Hence, x∗ is efficient if and only if there is no (x, z) with Ax = b; x ≥ 0, z > 0

and Rx − z = Rx∗. Note that the system Ax = b; x ≥ 0, z ≥ 0; Rx − z = Rx∗ has a feasible

solution x = x∗, z = 0. Therefore, x∗ is efficient if and only if the system Ax = b; x ≥ 0, z ≥ 0;

Rx − z = Rx∗ has only feasible solutions (x, z) with z = 0, i.e. x∗ is efficient if and only if the

linear program (9.47) has an optimal solution (x0, z0) with z0 = 0.

The dual of the linear program (9.47) is

min{bTu+wTRx∗ | ATu +RTw ≥ 0; −w ≥ e}. (9.48)

Therefore, we can state the following result.

Theorem 9.35

x∗ ∈ E(X) if and only if the linear program (9.48) has an optimal solution (u∗, w∗) with

bTu∗ + (w∗)TRx∗ = 0.

Theorem 9.36

x∗ ∈ E(X) if and only if there exists a λ ∈ R
p with

∑p
k=1 λk = 1 and λk > 0, k = 1, 2, . . . , p

such that x∗ is an optimal solution of

max{λTRz | Ax = b; x ≥ 0}. (9.49)

9.3. MULTIPLE OBJECTIVES 483

Proof

⇒ Let x∗ be a feasible and efficient solution of (9.46). By Theorem 9.35 there exists an optimal

solution (u∗, w∗) of (9.48) with bTu∗ = −(w∗)TRx∗ and −w∗ ≥ e. Then, u∗ is also an optimal

solution of the linear program

min{bTu | ATu ≥ −RTw∗}. (9.50)

The dual program of (9.50) is

max{−(w∗)TRx | Ax = b; x ≥ 0}. (9.51)

x∗ is feasible for (9.49), u∗ is feasible for (9.50) and bTu∗ = −(w∗)TRx∗, implying that x∗ is

an optimal solution of program (9.51). Set λk := wk
Pp

i=1 wi
, ‘1 ≤ k ≤ p. Then,

∑p
k=1 λk = 1

and λk > 0, 1 ≤ k ≤ p (because −wk ≤ 1 for all k). Obviously, x∗ is also an optimal solution

of (9.49).

⇐ Suppose that x∗ is an optimal solution of (9.49) and not efficient. Then, there is a vector x

with Ax = b; x ≥ 0 and Rx > Rx∗. Hence, λTRx > λTRx∗, i.e. x∗ is not an optimal solution

of (9.49).

Remark

Since the linear problem (9.49) has an extreme optimal solution, the set X has an efficient basic

solution.

9.3.2 Discounted rewards

The linear program usually associated with the discounted reward criterion for immediate rewards

ri(a) is

max

∑

(i,a)

ri(a)xi(a)

∣

∣

∣

∣

∣

∣

∑

(i,a) {δij − αpij(a)}xi(a) = βj, j ∈ S
xi(a) ≥ 0, (i, a) ∈ S × A

(9.52)

with dual program

min

∑

j

βjvj

∣

∣

∣

∑

j{δij − αpij(a)}vj ≥ ri(a)for every (i, a) ∈ S ×A

. (9.53)

Define the utility vα(β, R) by

vα(β, R) :=

∞
∑

t=1

αt−1
∑

j∈S

βj ·
∑

(i,a)

PR{Xt = i, Yt = a | X1 = j} · ri(a). (9.54)

A policy R∗ is β-optimal if vα(β, R∗) = maxR v
α(β, R). Clearly, a discounted optimal policy is

β-optimal, but not conversely.

484 CHAPTER 9. OTHER TOPICS

Theorem 9.37

If x is an optimal solution of the linear program (9.52) and f∞ is such that xi

(

f(i)
)

> 0, i ∈ Sx,

where Sx := {j | ∑a xj(a) > 0}, then f∞ is a β-optimal policy.

Proof

Since vα is the smallest α-superharmonic vector (see Theorem 3.16), vα is an optimal solution of

program (9.53) (the solution is not necessarily unique because βj = 0 is allowed for some j ∈ S).

By the complementary property of linear programming, we have

∑

j

{δij − αpij

(

f(i)
)

}vα
j = ri

(

f(i)
)

, i ∈ Sx. (9.55)

Next, we show that the set Sx is closed in the Markov chain P (f). Suppose that Sx is not closed,

i.e. pkl(f) > 0 for some k ∈ Sx and l /∈ Sx. Since

0 =
∑

a xl(a) = βl + α
∑

(k,a) pkl(a)xk(a) ≥ pkl(f)xki
(

f(ki)
)

> 0,

we have a contradiction. Because Sx is closed and βl = 0, l /∈ Sx (this follows from the relation

0 =
∑

a xl(a) = βl + α
∑

(k,a) pkl(a)xk(a) ≥ 0), we may consider the process on Sx. Then, by

(9.55), {I − αP (f)}vα = r(f), implying vα(f∞) = {I − αP (f)}−1r(f) = vα on Sx. Hence,

vα(β, f∞) =
∑

j βjv
α
j (f∞) =

∑

j∈Sx
βjv

α
j (f∞) =

∑

j∈Sx
βjv

α
j =

∑

j βjv
α
j ≥ vα(β, R)

for all policies R.

Define the utilities vα
k (β, R) by

vα
k (β, R) :=

∞
∑

t=1

αt−1
∑

j∈S

βj ·
∑

(i,a)

PR{Xt = i, Yt = a | X1 = j} · rk
i (a).

Theorem 9.38

Take any λ ∈ R
m with λk > 0, k = 1, 2, . . . , m and let x be an optimal solution of the linear

program

max

∑

(i,a)

{

m
∑

k=1

λkr
k
i (a)

}

xi(a)

∣

∣

∣

∣

∣

∣

∑

(i,a) {δij − αpij(a)}xi(a) = βj, j ∈ S
xi(a) ≥ 0, (i, a) ∈ S ×A

.

(9.56)

Take f∞ such that xi

(

f(i)
)

> 0, i ∈ Sx, then f∞ a β-efficient policy.

Proof

From Theorem 9.37 it follows that f∞ is a β-optimal policy with respect to the immediate rewards

ri(a) =
∑m

k=1 λkr
k
i (a), (i, a) ∈ S × A, i.e. vα(β, f∞) ≥ vα(β, R) for all policies R. Since the

discounted rewards are linear in the immediate rewards, we have vα(β, R) =
∑m

k=1 v
α
k (β, R).

Suppose that f∞ is not β-efficient. Then, there exists a policy R such that
∑m

k=1 λkv
α
k (β, R) >

∑m
k=1 λkv

α
k (β, f∞).

On the other hand we have
∑m

k=1 λkv
α
k (β, f∞) = vα(β, f∞) ≥ vα(β, R) =

∑m
k=1 λkv

α
k (β, R),

implying a contradiction.

9.3. MULTIPLE OBJECTIVES 485

Remark

Suppose that we want to maximize lexicographically the functions vα
k (β, R) for k = 1, 2, . . . , m.

A policy R∗ which is lexicographically maximal with respect to vα
1 (β, R), vα

2 (β, R), . . . , vα
m(β, R)

is a lexicographically efficient policy.

To determine a lexicographically efficient policy, we compute an optimal solution, say x1, of the

linear program

max

∑

(i,a)

r1i (a)xi(a)

∣

∣

∣

∣

∣

∣

∑

(i,a) {δij − αpij(a)}xi(a) = βj, j ∈ S
xi(a) ≥ 0, (i, a) ∈ S ×A

. (9.57)

Next, we solve the following linear program with one additional constraint

max

∑

(i,a)

r2i (a)xi(a)

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a) {δij − αpij(a)}xi(a) = βj, j ∈ S
∑

(i,a) r
1
i (a)xi(a) =

∑

(i,a) r
1
i (a)x

1
i (a)

xi(a) ≥ 0, (i, a) ∈ S ×A

. (9.58)

Continuing in this way we stop either when we find a unique optimal solution xk for some

1 ≤ k ≤ m or when we have solved all m linear programs. Let x∗ be the finally obtained solution.

Then, a lexicographically efficient solution is the stationary policy π∞, defined by

πia :=

x∗i (a)/x
∗
i if x∗i > 0

arbitrary if x∗i = 0
for all (i, a) ∈ S ×A.

9.3.3 Average rewards

The average reward case is, as always, more cumbersome that the discounted reward case. The

linear program usually associated with the average reward criterion for immediate rewards ri(a)

is

max

∑

(i,a)

ri(a)xi(a)

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a) {δij − pij(a)}xi(a) = 0, j ∈ S
∑

a xj(a) +
∑

(i,a) {δij − pij(a)}yi(a) = βj, j ∈ S
xi(a), yi(a) ≥ 0, (i, a) ∈ S ×A

(9.59)

with dual program

min

∑

j

βjvj

∣

∣

∣

∣

∣

∣

∑

j{δij − pij(a)}vj ≥ 0 for every (i, a) ∈ S ×A
vi +

∑

j{δij − pij(a)}uj ≥ ri(a) for every (i, a) ∈ S ×A

. (9.60)

Define the utility φ(β, R) by

φ(β, R) := lim inf
T→∞

1

T

T
∑

t=1

∑

j∈S

βj ·
∑

(i,a)

PR{Xt = i, Yt = a | X1 = j} · ri(a).

A policy R∗ is β-optimal if φ(β, R∗) = maxR φ(β, R). Clearly, an average optimal policy is β-

optimal, but not conversely. For any feasible solution (x, y) of (9.59), we define xi, yi, i ∈ S and

Sx, Sy ⊆ S by xi :=
∑

a xi(a), yi :=
∑

a yi(a), Sx := {j | ∑a xj > 0}, Sy := {j | xj = 0, yj > 0}.

486 CHAPTER 9. OTHER TOPICS

In this subsection, for any R ∈ C1, the set of convergent policies, we use for convenience the

notation x(R) instead of x(β, R), i.e. for R ∈ C1, x(R) := limT→∞ xβ,T (R), where xβ,T (R) is

defined in (9.22).

Theorem 9.39

If R∗ ∈ C1 is a β-optimal policy, then
(

x(R∗), y∗
)

is an optimal solution of (9.59) for every y∗

such that
(

x(R∗), y∗
)

is a feasible solution of (9.59).

Proof

Take any feasible solution (x, y) of (9.59). Since, by Theorem 9.22, L = Q, we have x = x(R) for

some R ∈ C1 and there exists a vector y such that
(

x(R), y
)

is a feasible solution of (9.59). Fur-

thermore, φ(β, R) =
∑

(i,a) ri(a)xia(R) =
∑

(i,a) ri(a)xi(a). Because R∗ ∈ C1, there also exists a

vector y∗ such that
(

x(R∗), y∗
)

is a feasible solution of (9.59) and φ(β, R∗) =
∑

(i,a) ri(a)xia(R∗).

Because R∗ is a β-optimal policy, φ(β, R∗) ≥ φ(β, R), implying that
(

x(R∗), y∗
)

is an optimal

solution of (9.59) for every y∗ such that
(

x(R∗), y∗
)

is a feasible solution of (9.59).

With a given feasible solution (x, y) of (9.59), we can associate a stationary policy π∞(x, y)

defined by

πia(x, y) :=

xi(a)
xi

i ∈ Sx

yi(a)
yi

i ∈ Sy

arbitray i /∈ Sx ∪ Sy

(9.61)

where Sx := {i | ∑i xi(a) > 0}, Sy := {i | ∑i xi(a) = 0
∑

i yi(a) > 0}, xi :=
∑

i xi(a) and

yi :=
∑

i yi(a).

Theorem 9.40

If (x, y) is an optimal solution of (9.59) and π∞(x, y) is defined by (9.61), then π∞(x, y) is a

β-optimal policy.

Proof

Since the value vector φ is the smallest superharmonic vector, (v = φ, u) is an optimal solution

of program (9.60) for some vector u. By adding the second set of constraints of (9.59), we obtain
∑

(j,a) xj(a) =
∑

j β = 1, implying Sx 6= ∅. Let A+(i) := a ∈ A(i) | πia(x, y) > 0}, i ∈ S. From

the complementary slackness property of linear programming it follows that

φi +
∑

j

{δij − pij(a)}uj = ri(a), i ∈ Sx, a ∈ A+(i); (9.62)

∑

j

{δij − pij(a)}φj = 0, i ∈ Sy, a ∈ A+(i). (9.63)

The linear program (9.60) implies
∑

j {δij −pij(a)}φj ≥ 0, (i, a) ∈ S×A. Suppose that for some

k ∈ Sx and some ak ∈ A+(k), we have
∑

j {δkj − pkj(ak)}φj > 0.

Since πkak
(x, y) > 0, also xk(ak) > 0, so

∑

j {δkj − pkj(ak)}φj · xk(ak) > 0. Furthermore,
∑

j {δij − pij(a)}φj · xi(a) ≥ 0, (i, a) ∈ S × A. Hence,
∑

i,a

∑

j {δij − pij(a)}φj · xi(a) > 0.

9.3. MULTIPLE OBJECTIVES 487

On the other hand, this result is contradictory to the constraints of program (9.60) from which

follows that
∑

i,a

∑

j {δij − pij(a)}φj · xi(a) =
∑

j

{∑

i,a {δij − pij(a)}xi(a)
}

φj = 0.

This contradiction implies that
∑

j {δij − pij(a)}φj = 0 for all i ∈ Sx, a ∈ A+(i). With (9.64), it

follows that
∑

j

{δij − pij(a)}φj = 0 for all i ∈ Sx ∪ Sy, a ∈ A+(i). (9.64)

Next, we show that Sx is closed under P
(

π(x, y)
)

, i.e. pij(π(x, y) = 0, i ∈ Sx, j /∈ Sx. Suppose

that pkl

(

π(x, y)
)

> 0 for some k ∈ Sx, l /∈ Sx. Since pkl

(

π(x, y)
)

=
∑

a pkl(a)πka(x, y), there ex-

ists an action ak such that pkl(ak) > 0 and πkak
(x, y) > 0. From the constraints of program (9.59)

it follows that 0 =
∑

a xl(a) =
∑

(i,a) pil(a)xi(a) ≥ pkl(ak)xk(ak) > 0, implying a contradiction.

Consider the Markov chain on Sx. From (9.64) and (9.62) it follows that on Sx we obtain

φ = P
(

π(x, y)
)

φ, implying φ = P ∗(π(x, y)
)

φ, and φ+ {I − P
(

π(x, y)
)

}u = r
(

π(x, y)
)

.

Hence, on Sx we have

φ = P ∗(π(x, y)
){

r
(

π(x, y)
)

− {I − P
(

π(x, y)
)

}u
}

= P ∗(π(x, y)
)

r
(

π(x, y)
)

= φ
(

π∞(x, y)
)

.

So, we have shown that

φi = φi

(

π∞(x, y)
)

, i ∈ Sx. (9.65)

We shall now show that Sx ∪Sy is also closed under P
(

π(x, y)
)

. Since Sx is closed, it is sufficient

to show that pkl

(

π(x, y)
)

= 0, k ∈ Sy, l /∈ Sx∪Sy. Suppose that pkl

(

π(x, y)
)

> 0 for some k ∈ Sy

and l /∈ Sx ∪ Sy. Then.

0 =
∑

a xl(a) +
∑

a yl(a) = βl +
∑

(i,a) pil(a)yi(a) ≥
∑

a pkl(a)yk(a)

=
∑

a pkl(a)πka(x, y)yk = pkl(a)
(

π(x, y)
)

yk > 0,

So, we have a contradiction, which establishes that Sx ∪ Sy is closed.

Since Sx∪Sy is closed and since βj = 0 for all j /∈ Sx∪Sy, the stochastic process with β as initial

distribution, will never enter any of the states outside Sx ∪ Sy. Hence, it is sufficient to consider

the process on the closed set Sx ∪ Sy. By the relation (9.64), we have φ = P
(

π∞(x, y)
)

φ, which

implies

φ = P ∗(π∞(x, y)
)

φ. (9.66)

Assume that S1 is an ergodic set outside Sx, i.e. S1 ⊆ Sy. Adding the second set of the constraints

of (9.59) that correspond to S1 yields
∑

j∈S1
βj =

∑

j∈S1
yj −

∑

j∈S1

∑

(i,a) pij(a)yi(a)

=
∑

j∈S1
yj −

∑

j∈S

∑

i,a pij(a)yi(a) +
∑

j /∈S1

∑

(i,a) pij(a)yi(a)

=
∑

j∈S1
yj −

∑

j∈S

∑

i∈S1

∑

a pij(a)yi(a)−
∑

j∈S

∑

i/∈S1

∑

a pij(a)yi(a)

+
∑

j /∈S1

∑

i∈S1

∑

a pij(a)yi(a) +
∑

j /∈S1

∑

i/∈S1

∑

a pij(a)yi(a)

=
∑

j∈S1
yj −

∑

j∈S

∑

i∈S1

∑

a pij(a)yi(a)−
∑

j∈S

∑

i/∈S1

∑

a pij(a)yi(a)

+
∑

j /∈S1

∑

i/∈S1

∑

a pij(a)yi(a)

=
∑

j∈S1
yj −

∑

i∈S1
yi −

∑

j∈S

∑

i/∈S1

∑

a pij(a)yi(a) +
∑

j /∈S1

∑

i/∈S1

∑

a pij(a)yi(a)

= −∑j∈S1

∑

i/∈S1

∑

a pij(a)yi(a) ≤ 0.

488 CHAPTER 9. OTHER TOPICS

Hence, βi = 0 for all i ∈ Ry, where Ry := {i ∈ Sy | i is recurrent in the Markov chain P
(

π(x, y)
)

},
and

∑

a pij(a)yi(a) = 0 for all i /∈ Ry and j ∈ Ry. Then, for i ∈ Sy\Ry and j ∈ Ry, we have

pij

(

π(x, y)
)

= 0, which implies that p∗ij(
(

π(x, y)
)

= 0 for all i /∈ Ry and j ∈ Ry. Consequently,

for all for all i ∈ Sy\Ry,

φi

(

π∞(x, y)
)

=
∑

j p
∗
ij

(

π(x, y)
)

rj
(

π(x, y)
)

=
∑

j∈Sx
p∗ij
(

π(x, y)
)

rj
(

π(x, y)
)

=
∑

j∈Sx
p∗ij
(

π(x, y)
){

φj +
∑

k{δjk − pjk

(

π(x, y)
)

}uk

}

=
∑

j∈Sx
p∗ij
(

π(x, y)
)

φj = φi.

So, we have shown that

φi = φi

(

π∞(x, y)
)

, i ∈ Sy\Ry. (9.67)

Because βi = 0 for all i ∈ Ry and by (9.65) and (9.67), we obtain
∑

i βi · φi

(

π∞(x, y)
)

=
∑

i/∈Ry
βi · φi

(

π∞(x, y)
)

=
∑

i/∈Ry
βi · φi =

∑

i βi · φi,

i.e. π∞(x, y) is β-optimal.

Theorem 9.41

If (x, y) is an extreme optimal solution of the linear program (9.59) and f∞ is such that

xi

(

f(i)
)

> 0, i ∈ Sx; yi

(

f(i)
)

> 0, i ∈ Sy, then f∞ is a β-optimal policy.

Proof

Similarly to the corresponding part in the proof of Theorem 5.18 (the proof is left to the reader

as Exercise 9.6) it can be shown that

φi +
∑

j {δij − pij

(

f(i)
)

}uj = ri
(

f(i)
)

, i ∈ Sx
∑

j {δij − pij

(

f(i)
)

}φj = 0 , i ∈ Sx ∪ Sy

(9.68)

We first show that Sx is closed in the Markov chain P (f). Suppose that pkl

(

f(k)
)

> 0 for some

k ∈ Sx, l /∈ Sx. From the constraints of (9.59) it follows that

0 =
∑

a xl(a) =
∑

i,a pil(a)xi(a) ≥ pkl

(

f(k)
)

xk

(

f(k)
)

> 0,

implying a contradiction.

We now show that Sx ∪ Sy is also closed. Suppose that pkl(f) > 0 for some k ∈ Sx ∪ Sy and

l /∈ Sx ∪ Sy. Then,

if k ∈ Sx: 0 =
∑

a xl(a) =
∑

i,a pil(a)xi(a) ≥ pkl(f)xk

(

f(k)
)

> 0;

if k ∈ Sy: 0 =
∑

a xl(a) +
∑

a yl(a) = βl +
∑

i,a pil(a)yi(a) ≥ pkl(f)yk

(

f(l)
)

> 0.

In both cases we have a contradiction: Sx ∪ Sy is closed in the Markov chain P (f).

Next, we show that the states of Sy are transient in the Markov chain P (f). Suppose that Sy

has an ergodic state. Since Sx and Sx ∪ Sy are closed, the set Sy contains an ergodic class,

say J = {j1, j2, . . . , jm}. Since (x, y) is an extreme solution and yj

(

f(j)
)

> 0, j ∈ J, the

corresponding columns in (9.59) are linearly independent. Because these columns have zeros in

the first N rows, the second parts of these vectors are also independent vectors. Since for j ∈ J

9.3. MULTIPLE OBJECTIVES 489

and k /∈ J, we have δjk − pjk

(

f(j)
)

= 0 − 0 = 0, the vectors bi, 1 ≤ i ≤ m, where bi has

components δjik − pjik

(

f(ji)
)

, k ∈ J, are also linear independent.

However,
∑m

k=1 b
i
k =

∑m
k=1 {δjijk

− pjijk

(

f(ji)
)

} = 1 − 1 = 0, i = 1, 2, . . . , m, which contradicts

the independence of b1, b2, . . . , bm.

Consider the Markov chain on the closed Sx ∪ Sy. From (9.68) it follows that φ = P (f)φ, and

consequently we have φ = P ∗(f)φ. Since that states of Sy are transient, the columns of P ∗(f)

corresponding to Sy are zero-vectors. Hence, also by (9.68),

{P ∗(f)r(f)}i =
∑

j p
∗
ij(f)rj(f) =

∑

j∈Sx
p∗ij(f)rj(f)

=
∑

j∈Sx
p∗ij(f)

{

φj + uj − {P (f)u}j
}

=
{

P ∗(f){φ+ u− P (f)u}
}

i
= {P ∗(f)φ}i = φi, i ∈ Sx ∪ Sy.

Hence,

φ(β, f∞) =
∑

i βi{P ∗(f)r(f)}i =
∑

i∈Sx∪Sy
βi{P ∗(f)r(f)}i =

∑

i∈Sx∪Sy
βiφi

=
∑

i βiφi = φ(β, φ) ≥ φ(β, R) for all policies R.

Let φk(β, R) be the average reward for immediate rewards rk
i (a), (i, a) ∈ S × A, 1 ≤ k ≤ m,

given initial distribution β and policy R, i.e.

φk(β, R) := lim inf
T→∞

1

T

T
∑

t=1

∑

j∈S

βj ·
∑

(i,a)

PR{Xt = i, Yt = a | X1 = j} · rk
i (a). (9.69)

Let E(C) be the set of all β-efficient policies, i.e.

E(C) :=

{

R∗

∣

∣

∣

∣

∣

there does not exist a policy R such that φk(β, R) ≥ φk(β, R∗)

for k = 1, 2, . . . , m and φk(β, R) > φk(β, R∗) for at least one k

}

. (9.70)

Our aim is to characterize E(C) and, equally importantly, the set E0(C) which is the image in

the objective space, i.e.

E0(C) := {(φ1, φ2, . . . , φm) | there exists a policy R ∈ E(C) such that φk(β, R) ≥ φk, 1 ≤ k ≤ m}.
(9.71)

Note that for every R ∈ C1 we know from Theorem 9.21 and Theorem 9.22 that there exists a

x ∈ Q such that x(R) = x. Hence, we have for every k = 1, 2, . . . , m and every R ∈ C!,

φk(β, R) =
∑

(i,a)

rk
i (a)xia(R) =

∑

(i,a)

rk
i (a)xia for some x ∈ Q. (9.72)

Consider the m×n-dimensional matrix R, where n :=
∑N

i=1 |A(i)|, whose rows are r1, r2, . . . , rm,

treated as n-dimensional vectors with components rk
i (a), the rewards of the m single-objective

MDPs. With the above multi-objective MDP we shall associate the following multi-objective

linear program (MOLP)

max{Rx | x ∈ Q}. (9.73)

By (9.72), the values
∑

(i,a) r
k
i (a)xia, 1 ≤ k ≤ m of the objectives of the multi-objective linear

program correspond to the payoffs φk(β, R), ≤ k ≤ m, where R and x satisfy x(R) = x, of the

multi-objective MDP.

490 CHAPTER 9. OTHER TOPICS

For every λ ∈ R
m
+ with

∑m
k=1 λk = 1 we can associate a weighted MDP, denoted by MDP(λ),

which is identical to the original MDP, but whose rewards are rλ
i (a) :=

∑m
k=1 λkr

k
i (a), (i, a) ∈

S×A. The average rewards in MDP(λ), given initial distribution β, are denoted as φλ(β, R. The

linear program for MDP (λ) becomes

max{λTRx | x ∈ Q}. (9.74)

Let XY := {(x, y) | (x, y) is feasible for (9.59)} and let E(XY) be the set of all efficient points

for MOLP. Also define X and E(X) by X := {x | (x, y) is feasible for (9.59) for some y} and

E(X) := {x | (x, y) ∈ E(XY) for some y}. By Theorem 9.34, we have the following result.

Theorem 9.42

(x∗, y∗) ∈ E(XY) if and only if there exists λ ∈ R
m with

∑m
k=1 λk = 1 and λk > 0, k = 1, 2, . . . , m

such that (x∗, y∗) is an optimal solution of (9.74).

Lemma 9.31

Let λ ∈ Rm with
∑m

k=1 λk = 1 and λk > 0, k = 1, 2, . . . , m, and let R∗ be a β-optimal policy of

MDP (λ). Then, R∗ ∈ E(C).

Proof

Suppose R∗ /∈ E(C), i.e. there exists a policyR such that φk(β, R) ≥ φk(β, R∗) for all k and with a

strict inequality for at least one k. Hence,
∑m

k=1 λkφk(β, R) >
∑m

k=1 λkφk(β, R∗). From Theorem

9.22 it follows that there exists x(R) ∈ Q such that φk(β, R) =
∑

(i,a) r
k
i (a)xia(R), 1 ≤ k ≤ m.

A similar result holds for R∗. Therefore, we can write

φλ(β, R) =
∑m

k=1 λkφk(β, R) >
∑m

k=1 λkφk(β, R∗) = φλ(β, R∗),

which leads to a contradiction of the β-optimality of policy R∗ in MDP (λ).

Corollary 9.9

Let λ ∈ R
m with

∑m
k=1 λk = 1 and λk > 0, k = 1, 2, . . . , m, and let (x, y) be an extreme optimal

solution of the linear program (9.59). Then, the policy f∞ satisfying xi

(

f(i)
)

> 0, i ∈ Sx;

yi

(

f(i)
)

> 0, i ∈ Sy, is a β-efficient policy.

Proof

From Theorem 9.41 it follows that f∞ is a β-optimal policy for MDP (λ). Applying Lemma 9.31

yields the result.

Theorem 9.43

(1) If (x∗, y∗) ∈ E(XY) and x∗ = x(R∗) for some R∗ ∈ C1, then R∗ ∈ E(C).

(2) If R∗ ∈ E(C) ∩ C1, then
(

x(R∗), y
)

∈ E(XY) for all y such that
(

x(R∗), y
)

∈ E(XY).

9.3. MULTIPLE OBJECTIVES 491

Proof

(1) By Theorem 9.42, there exists λ ∈ R
m with

∑m
k=1 λk = 1 and λk > 0, k = 1, 2, . . . , m, such

that λTRx∗ ≥ λTRx for all x ∈ X . Hence, by (9.72), φλ(β, R) ≥ φλ(β, R) for all R ∈ C1, i.e.

R∗ is β-optimal in MDP (λ). By Lemma 9.31, R∗ ∈ E(C).

(2) Since, by Theorem 9.21 and Theorem 9.22, x(R∗) ∈ X , there exists y with
(

x(R∗), y
)

∈ XY .

Suppose that
(

x(R∗), y
)

/∈ E(XY) for some y such that
(

x(R∗), y
)

∈ XY . Then, there

exists (x, y) ∈ XY such that Rx ≥ Rx(R∗), i.e.
∑

(i,a) r
k
i (a)xi(a) ≥

∑

(i,a) r
k
i (a)xia(R∗) for

k = 1, 2, . . . , m with strict inequality for at least one k. Again, by Theorem 9.21 and Theorem

9.22, there exists a policy R ∈ C1 such that x = x(R). Hence, by (9.72), φk(β, R) ≥ φk(β, R∗)

for k = 1, 2, . . . , m with strict inequality for at least one k. This implies R∗ /∈ E(C), which

yields the desired contradiction.

The next lemma shows that the relation between stationary policies and feasible solutions of

(9.59) preserves the property of efficiency.

Lemma 9.32

(1) If (x∗, y∗)∈E(XY), then π∞(x∗, y∗) ∈ E(C), where π∞(x∗, y∗) is defined in (9.61).

(2) If π∞ ∈ E(C) ∩ C(S), then
(

x(π), y(π)
)

∈ E(XY), where
(

x(π), y(π)
)

is defined in

(5.35) and (5.36).

Proof

(1) By Theorem 9.42, there exists λ ∈ R
m with

∑m
k=1 λk = 1 and λk > 0, k = 1, 2, . . . , m such

that (x∗, y∗) is an optimal solution of (9.74). By Theorem 9.40, π∞(x∗, y∗) is a β-optimal

solution of MDP (λ). Then, by Lemma 9.31, π∞(x∗, y∗) ∈ E(C).

(2) This part follows directly from part (2) of Theorem 9.43).

Lemma 9.33

For every R ∈ E(C) there exists a policy R1 ∈ C1 ∩ C(M) such that φk(β, R) = φk(β, R1) for

k = 1, 2, . . . , m.

Proof

Note that, by (9.22) and Theorem 9.22, there exists x(R) ∈ X such that

φk(β, R) = lim infT→∞
1
T

∑T
t=1

∑

j∈S βj ·
∑

(i,a) PR{Xt = i, Yt = a | X1 = j} · rk
i (a)

= lim infT→∞
∑

(i,a) x
β,T
ia (R) · rk

i (a) ≤ ∑

(i,a) xia(R) · rk
i (a).

Since x(R) = x(R1) for some R1 ∈ C1 ∩C(M) (see Theorem 1.1 and Theorem 9.21, we have

φk(β, R) ≤∑(i,a) xia(R1) · rk
i (a) = φk(β, R1).

Because R ∈ E(C) a strict inequality is impossible. Therefore, we have φk(β, R) = φk(β, R1) for

k = 1, 2, . . . , m.

The next theorem characterizes the set E(C) of efficient policies.

492 CHAPTER 9. OTHER TOPICS

Theorem 9.44

A policy R∗ ∈ E(C) if and only if there exists λ ∈ R
m with

∑m
k=1 λk = 1 and λk > 0 for

k = 1, 2, . . . , m such that R∗ is a β-optimal policy for MDP (λ).

Proof

⇒ Take any policy R∗ ∈ E(C). By Lemma 9.33, we may assume R∗ ∈ E(C) ∩C1. Then, by

Theorem 9.43
(

x(R∗), y
)

∈ E(XY) for all y such that
(

x(R∗), y
)

∈ XY . Now, Theorem 9.42

implies that there exists λ ∈ R
m with

∑m
k=1 λk = 1 and λk > 0, k = 1, 2, . . . , m such that

(

x(R∗), y
)

is optimal for (9.74). Hence, λTRx(R∗) ≥ λTRx for all x ∈ X . Take any policy R.

Then, by an argument as in the proof of Lemma 9.33, φk(β, R) ≤∑(i,a) r
k
i (a)xia(R) for

k = 1, 2, . . . , m for some x(R) ∈ X . Therefore, by (9.72),

φλ(β, R∗) = λTRx(R∗) ≥ λTRx(R) ≥ φλ(β, R),

i.e. R∗ is β-optimal for MDP (λ).

⇐ This part follows directly from Lemma 9.31.

Corollary 9.10

If β∗j > 0, j ∈ S, and R∗ ∈ E(C) with respect to φk(β
∗, R∗), 1 ≤ k ≤ m, then R∗ ∈ E(C) with

respect to φk(β, R∗), 1 ≤ k ≤ m, for all initial distributions β.

Proof

By Theorem 9.44, R∗ is β∗-optimal for MDP (λ), where λ ∈ R
m with

∑m
k=1 λk = 1 and λk > 0

for k = 1, 2, . . . , m. Since β∗j > 0, j ∈ S, it follows from the general theory of MDPs with average

rewards that R∗ is average optimal for all initial states simultaneously, i.e. φλ
i (R∗) ≥ φλ

i (R) for

all i ∈ S and all R ∈ C. Hence, for all initial distributions β, φλ(β, R∗) ≥ φλ(β, R) for all R ∈ C.

Then, again by Theorem 9.44, R∗ ∈ E(C) with respect to φk(β, R∗), 1 ≤ k ≤ m, for all initial

distributions β.

Let Ext(XY) := {(xl, yl, 1 ≤ l ≤ p} be the set of efficient extreme points of XY . For any point

(x, y) ∈ XY define the family Cxy(D) of all deterministic policies f∞ such that

xi

(

f(i)
)

> 0, i ∈ Sx; yi

(

f(i)
)

> 0, i ∈ Sy; f(i) an arbitrary action if i /∈ Sx ∪ Sy.

Now, let Fext :=
⋃p

l=1 Cxlyl(D). The next theorem shows that Fext constitutes the set of all

efficient deterministic policies.

Theorem 9.45

Fext = E(C) ∩C(D).

Proof

Let f∞ ∈ Fext. By definition, f∞ ∈ C(D) and f∞ ∈ Cxlyl(D) for some 1 ≤ l ≤ p. Because

(xl, yl) ∈ Ext(XY), by Theorem 9.42, (xl, yl) is an optimal solution of (9.74) for some λ ∈ R
m

with
∑m

k=1 λk = 1 and λk > 0 for k = 1, 2, . . . , m. Now, by Theorem 9.41, f∞ is β-optimal for

MDP (λ). Hence, by Theorem 9.44, f∞ ∈ E(C). So, we have shown that Fext ⊆ E(C) ∩C(D).

9.3. MULTIPLE OBJECTIVES 493

Next, take any f∞ ∈ E(C)∩C(D). In order to prove that f∞ ∈ Fext we have to show that there

exists an efficient extreme point (xl, yl) with xl
i

(

f(i)
)

> 0, i ∈ Sxl and yl
i

(

f(i)
)

> 0, i ∈ Syl .

Let
(

x(f), y(f)
)

be constructed by (5.35) and (5.36). Then, by Theorem 5.21,
(

x(f), y(f)
)

is

is an extreme point of XY (it can easily be checked that the proof of Theorem 5.21 remains

valid for any β ≥ 0). Now, we shall prove that
(

x(f), y(f)
)

∈ E(XY). Suppose not, then there

exists (x, y) ∈ XY such that
∑

(i,a) r
k
i (a)xia ≥

∑

(i,a) r
k
i (a)xia(f) for all 1 ≤ k ≤ m with a

strict inequality for at least one k. Then, for any λ ∈ R
m with

∑m
k=1 λk = 1 and λk > 0 for

k = 1, 2, . . . , m, we obtain λTRx > λTRx(f). Since, by Theorem 9.22, x = x(R) for some R ∈ C1,

we have

φλ(β, R) = λTRx(R) > λTRx(f) = φλ(β, f∞),

contradicting the hypothesis that f∞ ∈ E(C). Since xia(f) and yia(f) are strictly positive only

if a = f(i), f∞ ∈ Fext.

Lemma 9.34

Let Ext(X) be the set of efficient extreme points of X . Then, if x∗ ∈ Ext(X), there exists

f∞∗ ∈ Fext such that x∗ = x(f∗).

Proof

By Theorem 9.21 and Theorem 9.22, x = x(f∗) for some f∞ ∈ C(D). By Theorem 9.45, we have

to show that f ∈ E(C). Since any
(

x(f∗), y
)

∈ XY has a value of the objective function that is

independent of y,
(

x(f∗), y(f∗)
)

∈ E(XY). Then, by Theorem 9.43 part (1), f∞ ∈ E(C).

Given a point x∗ ∈ Ext(X), Lemma 9.34 guarantees the existence of a deterministic policy

f∞∗ ∈ Fext. How can we construct such f∞∗ ? We know that x∗ = x(f∗) = βTP ∗(f∗).

Since x∗i (a) =
{ x∗i

(

f∗(i)
)

, i ∈ Sx∗ , a = f∗(i)

0 i ∈ Sx∗ , a 6= f∗(i)
the choice of f∗(i) on Sx∗ is obvious. In order to

find f∗(i) for i /∈ Sx∗ , we have to examine the set F∗ := {f∞ ∈ C(D) | f(i) = f∗(i), i ∈ Sx∗}. If

{βTP ∗(f)}i = 0 for all i /∈ Sx∗ for some f∞ ∈ F∗, then f∞ is a policy that satisfies x∗ = x(f).

Let Ext(X) = {x1, x2, . . . , xp}. For each xk let f∞k be found via the above construction. Define

F ∗
ext := {f∞1 , f∞2 , . . . , f∞p } ⊆ Fext; F

∗
ext is called the set of basic efficient policies.

Theorem 9.46

Let F ∗
ext = {x1, x2, . . . , xp} be the set of basic efficient policies. Take (φ1, φ2, . . . , φp} ∈ E0(C)

arbitrarily, where E0(C) is defined in (9.71). Then, there exists µj , 1 ≤ j ≤ p, with
∑p

j=1 µj = 1

and µj ≥ 0 for j = 1, 2, . . . , p, such that φk =
∑p

j=1 µjφk(β, f
∞
j) for k = 1, 2, . . . , m.

Proof

By Lemma 9.33, the definition of E0(C) and (9.72), there exists R1 ∈ C1 ∩E(C) such that

φk = φk(β, R1) =
∑

(i,a) r
k
i (a)xia(R1) for k = 1, 2, . . . , m.

Hence, by Theorem 9.44 part (2), we obtain
(

x(R1), y
)

∈ E(XY) for all y with
(

x(R1), y
)

∈ XY .

Now, by Theorem 9.33,

494 CHAPTER 9. OTHER TOPICS

x(R1) =
∑p

j=1 µjx(fj) for some µ ∈ R
p with µj , 1 ≤ j ≤ p, and µj ≥ 0 for j = 1, 2, . . . , p.

Therefore,

φk =
∑p

j=1 µj
∑

(i,a) r
k
i (a)xia(fj) =

∑p
j=1 µjφk(β, f

∞
j) for k = 1, 2, . . . , m.

We shall also introduce the concept of uniform efficient policies. A policy R∗ is called uniform

efficient if there does not exists a policy R such that φk
j (R) ≥ φk

j (R∗) for all j ∈ S and all

1 ≤ k ≤ m, with strict inequality holding for some k and some j. The following theorem shows

that a uniform efficient deterministic policy always exists.

Theorem 9.47

Let f∞∗ be an optimal policy for MDP (λ) with λ such that
∑m

k=1 λk = 1 and λk > 0 for

k = 1, 2, . . . , m. Then, f∞∗ is a uniform efficient policy.

Proof

Suppose that there exists a policy R such that φk
j (R) ≥ φk

j (f
∞
∗) for all j ∈ S and all 1 ≤ k ≤ m,

with strict inequality holding for some k∗ and some j∗. Take βj > 0 for all j ∈ S and
∑

j βj = 1.

Then, we have

m
∑

k=1

λkφ
k(β, R) =

m
∑

k=1

λk

∑

j

βjφ
k
j (R) >

m
∑

k=1

λk

∑

j

βjφ
k
j (f

∞
∗) =

m
∑

k=1

λkφ
k(f∞∗). (9.75)

By Theorem 1.1, we may assume that R ∈ C1. Then, φk(β, R) =
∑

(i,a) xia(R)rk
i (a), and conse-

quently,

φλ(β, R) =
∑

(i,a)

xia(R)rλ
i (a) >

∑

(i,a)

xia(f∗)r
λ
i (a) = φλ(β, f∞∗). (9.76)

which contradicts the optimality of f∞∗ for MDP (λ).

Lemma 9.35

Let R∗ be β-efficient for some β with βj > 0 for all j ∈ S and
∑

j βj = 1. Then, R∗ is uniform

efficient.

Proof

Suppose that there exists a policy R such that φk
j (R) ≥ φk

j (f
∞
∗) for all j ∈ S and all 1 ≤ k ≤ m,

with strict inequality holding for some k∗ and some j∗. Take βj > 0 for all j ∈ S and
∑

j βj = 1.

Then, we have

φk(β, R) ≥ φk(β, R∗) for all 1 ≤ k ≤ m and with strict inequality holding for k∗. (9.77)

which implies that R∗ is not a β-efficient policy.

The shall present two examples. The first examples shows that if βj = 0 for some j ∈ S, then

Lemma 9.35 no longer holds. The second example shows that a uniform policy is not always

β-efficient, even when βj > 0 for all j ∈ S.

9.3. MULTIPLE OBJECTIVES 495

Example 9.16

Consider the following multi-objective MDP with k = 2.

Let S = {1, 2}; A(1) = {1, 2}, A(2) = {1}; p11(1) = 1, p12(1) = 0; p11(2) = 1, p12(2) = 0;

p21(1) = 0, p22(1) = 1; r11(1) = 3, r11(2) = 3, r12(1) = 2; r21(1) = 1, r21(2) = 3, r22(1) = 2.

Take β1 = 0, β2 = 1. There are two deterministic policies: f∞1 with f1(1) = 1, f1(2) = 1 and

f∞2 with f2(1) = 2, f2(2) = 1. The average rewards are:

φ1
1(f

∞
1) = 3; φ1

2(f
∞
1) = 2; φ2

1(f
∞
1) = 1; φ2

2(f
∞
1) = 2; φ1(β, f

∞
1) = 2; φ2(β, f

∞
1) = 2;

φ1
1(f

∞
2) = 3; φ1

2(f
∞
2) = 2; φ2

1(f
∞
2) = 1; φ2

2(f
∞
2) = 2; φ1(β, f

∞
2) = 2; φ2(β, f

∞
2) = 2.

Hence, f∞1 is β-efficient, because φk(β, R) = 2 for k = 1, 2 and for all policies R, but not uniform

efficient, because φk
j (f

∞
2) ≥ φk

j (f∞1) for all j ∈ S and for k = 1, 2 and φ2
1(f

∞
2 > φk

1(f
∞
1 .

Example 9.17

Consider the following multi-objective MDP with k = 2.

Let S = {1, 2}; A(1) = A(2) = {1, 2}; p11(1) = 1, p12(1) = 0; p11(2) = 1, p12(2) = 0;

p21(1) = 0, p22(1) = 1; p21(1) = 0, p22(1) = 1; r11(1) = 5, r11(2) = 4, r12(1) = 5, r12(2) = 7;

r21(1) = 5, r21(2) = 7, r22(1) = 7, r22(2) = 5. Take β1 = β2 = 1
2 .

Consider the MDP (λ) with λ1 = λ2 = 1
2 . Then. rλ

1 (1) = 5, rλ
1 (2) = 11

2 , r
λ
2 (1) = 6, rλ

2 (2) = 6.

It is easy to verify that the deterministic policy f∞1 with f1(1) = 1, f1(2) = 1 is an optimal policy

for MDP (λ). Hence, by Theorem 9.47, f∞1 is uniform efficient.

Let f∞2 be such that f2(1) = 2, f2(2) = 2. Then, φ1(β, f
∞
2) = 11

2 and φ2(β, f
∞
2) = 6. Because

φ1(β, f
∞
1) = 5 and φ2(β, f

∞
1) = 9

2 , f∞1 is not β-efficient. Therefore, a uniform policy is not always

β-efficient, even when βj > 0 for all j ∈ S.

In the unichain case, the next theorem shows that the concept uniform efficient is equivalent with

β-efficient for any initial distribution β.

Theorem 9.48

In the unichain case, a policy R∗ is uniform efficient if and only if R∗ is β-efficient for any initial

distribution β.

Proof

In the unichain case the average reward is independent of the initial distribution. Therefore, we

use the notation φk(R) in stead of φk(β, R) for the average reward with respect to rewards rk
i (a).

Hence, the concept of a β-efficient policy is independent of β, i.e. a policy R∗ is β-efficient is

there does not exists a policy R such that φk(R) ≥ φk(R∗), 1 ≤ k ≤ m with strict inequality for

some k. A policy is uniform efficient if there does not exists a policy R such that φk
j (R) ≥ φk

j (R∗)

for j ∈ S and all k = 1, 2, . . . , m, with strict inequality holding for some k and some j. Because,

in the unichain case, the average reward is independent of the initial state, the two definition are

equal.

496 CHAPTER 9. OTHER TOPICS

Remark

Suppose that we want to maximize lexicographically the functions φk(β, R) for k = 1, 2, . . . , m.

A policy R∗ which is lexicographically maximal with respect to φ1(β, R), φ2(β, R), . . . , φm(β, R)

is a lexicographically efficient policy.

To determine a lexicographically efficient policy, we compute an optimal solution, say (x1, y1) of

the linear program

max

∑

(i,a)

r1i (a)xi(a)

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a) {δij − pij(a)}xi(a) = 0, j ∈ S
∑

a xj(a) +
∑

(i,a) {δij − pij(a)}yi(a) = βj, j ∈ S
xi(a), yi(a) ≥ 0, (i, a) ∈ S ×A

.

(9.78)

Next, we solve the following linear program with one additional constraint

max

∑

(i,a)

r2i (a)xi(a)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a) {δij − pij(a)}xi(a) = 0, j ∈ S
∑

a xj(a) +
∑

(i,a) {δij − pij(a)}yi(a) = βj, j ∈ S
∑

(i,a) r
1
i (a)xi(a) =

∑

(i,a) r
1
i (a)x

1
i (a)

xi(a), yi(a) ≥ 0, (i, a) ∈ S × A

.

(9.79)

Continuing in this way we stop either when we find for some 1 ≤ k ≤ m an optimal solution

(xk, yk) in which xk is unique or when we have solved all m linear programs. Let (x, y) be the

finally obtained solution. Then, as shown in Section 9.2.6, we can construct a convergent Markov

policy R such that x(R) = x. This policy is obviously a lexicographically efficient solution.

9.4 The linear program approach for average rewards revisited

We consider in this section linear programming for MDPs with average rewards and with respect

to an arbitrary fixed initial distribution β. So, we allow βj = 0 for some states j. We first present

an interpretation of the y-variables of the linear program. We then show for constrained MDPs

that the linear program can be obtained from an equivalent unconstrained Lagrange formulation

of the optimization problem. This shows the connection between the linear program approach.

For any policy R the average reward with respect to an arbitrary fixed initial distribution β

is denoted by φ(β, R) and defined by

φ(β, R) := lim inf
T→∞

1

T

T
∑

t=1

∑

j∈S

βj ·
∑

(i,a)

PR{Xt = i, Yt = a | X1 = j} · ri(a).

The optimization problem is to find the value φ(β) and a β-optimal policy R∗, where φ(β) and

R∗ have to satisfy

φ(β) = sup
R

φ(β, R) = φ(β, R∗) =
∑

i

βiφi. (9.80)

In order to find the value and a β-optimal policy we consider the dual pair of linear programs

(9.59) and (9.60). Note that, because βj = 0 is allowed for some states j, φ is an optimal solution

9.4. THE LINEAR PROGRAM APPROACH FOR AVERAGE REWARDS REVISITED 497

of (9.60), but not necessarily unique. Furthermore, since it may occur that in states j with βj = 0,

we have
∑

a xj(a) =
∑

a yj(a) = 0, for a feasible solution (x, y) of (9.59), and consequently also
∑

(i,a) pij(a)yi(a) = 0.

For any π∞ ∈ C(S) we define x(π) and y(π), as in (5.35) and (5.36), by

xia(π) := {βTP ∗(π)}i · πia, (i, a) ∈ S × A
yia(π) := {βTD(π) + γTP ∗(π)}i · πia, (i, a) ∈ S × A

(9.81)

where γ is defined as in (5.36). Similar as in Theorem 5.19 it can be shown that
(

x(π), y(π)
)

is a

feasible solution of (9.59). Given a feasible solution (x, y) of (9.59), we define a stationary policy

π∞(x, y) by (9.61).

Theorem 9.49

The correspondence between the stationary policies and the feasible solutions of program (9.59)

preserves the optimality property , i.e.

(1) If π∞ is a β-optimal policy, then
(

x(π), y(π)
)

is an optimal solution of (9.59) and the

optimal value of (9.59) equals φ(β).

(2) If (x, y) is an optimal solution of (9.59), then the stationary policy π∞(x, y) is a β-optimal

policy.

Proof

(1) If π∞ is a β-optimal policy, then,
∑

(i,a) ri(a)xia(π) =
∑

(i,a) ri(a){βTP ∗(π)}i · πia = {βTP ∗(π)}iri(π) = βTφ(π∞) = φ(β),

i.e. part (1) of the theorem holds.

(2) This result is shown in Theorem 9.40.

Given some x(R) ∈ L (for a definition of L see section 9.2.6) and, we define the biased total

occupation yT (R) for any T ∈ N by

yT
ja(R) :=

T
∑

t=1

{

∑

i∈S

βi · P{Xt = j, Yt = a | X1 = i} − xja(R)
}

, (j, a) ∈ S ×A. (9.82)

Define the average biased occupation yT
ja(R) by

yT
ja(R) :=

1

T

T
∑

t=1

yt
ja(R), (j, a) ∈ S ×A. (9.83)

Let {Tn} be a subsequence of {1, 2, . . .} along which xja(R) = limn→∞ xTn

ja (R), (j, a) ∈ S × A.

Pick a further subsequence {tn} of {Tn} along which some (possibly infinite) limit y(R) of {ytn(R)}
exists, i.e. yja(R) = limn→∞ ytn

ja(R) for all (j, a) ∈ S×A. Let Y
(

x(R)
)

denote the set of all such

limit points. We call any y(R) ∈ Y (R) a deviation measure. The following lemma relates the

quantities x(R) and y(R) to the decision variables of the linear program (9.59).

498 CHAPTER 9. OTHER TOPICS

Lemma 9.36

Given x(R) ∈ L and y(R) ∈ Y
(

(x(R)
)

such that yja(R) is finite for all (j, a) ∈ S × A, then
(

x(R), y(R)
)

satisfies the constraints of the linear program (9.59), except the requirement yi(a) ≥ 0

for all (i, a) ∈ S ×A.

Proof
∑

a Pβ,R{Xt = j, Yt = a} = Pβ,R{Xt = j} =
∑

(i,a) Pβ,R{Xt−1 = i, Yt−1 = a} · pij(a) for t ≥ 2.

By averaging we obtain

1
T−1

∑T
t=2

∑

a Pβ,R{Xt = j, Yt = a} = 1
T−1

∑T
t=2

∑

(i,a) Pβ,R{Xt−1 = i, Yt−1 = a} · pij(a), T ≥ 2.

Taking a sequence {Tn} such that xja(R) = limn→∞ xTn

ja (R for all (j, a) ∈ S × A, gives
∑

a xja(R) =
∑

(i,a) pij(a)xia(R) for all j ∈ S,

i.e. x(R) satisfies
∑

(i,a) {δij − pij(a)}xia(R) = 0 for all j ∈ S, the first set of equalities of (9.59).

Furthermore, we can write for T ≥ 2 and all j ∈ S,
∑T

t=2

∑

a

{

Pβ,R{Xt = j, Yt = a} − xja(R)
}

=
∑T

t=2

∑

(i,a)

{

Pβ,R{Xt−1 = i, Yt−1 = a} · pij(a)−
∑

a xja(R)
}

=
∑T

t=2

∑

(i,a)

{

Pβ,R{Xt−1 = i, Yt−1 = a} · pij(a)−
∑

(i,a) pij(a)xia(R)
}

=
∑T

t=2

∑

(i,a) pij(a)
{

Pβ,R{Xt−1 = i, Yt−1 = a} − xia(R)
}

=
∑

(i,a) pij(a)y
T−1
ia (R).

For t = 1, we have
∑

a

{

Pβ,R{Xt = j, Yt = a} − xja(R)
}

= βj −
∑

a xja(R). Hence, for T ≥ 2,

we obtain
∑T

t=1

∑

a

{

Pβ,R{Xt = j, Yt = a} − xja(R)
}

= βj −
∑

a xja(R) +
∑

(i,a) pij(a)y
T−1
ia (R).

Therefore, for T = 2, 3, . . . and all j ∈ S,
∑

a xja(R) +
∑

a
1

T−1

∑T
t=2 y

t
ja(R)−∑(i,a) pij(a) · 1

T−1

∑T
t=2 y

t−1
ia (R) = βj.

Taking a subsequence for which the average biased occupation converges to y(R), we obtain
∑

a xja(R) +
∑

a yja(R)−∑(i,a) pij(a)yia(R) = βj for all j ∈ S,

i.e.
(

x(R), y(R)
)

satisfies the set of equalities of (9.59). Clearly, xja(R) ≥ 0 for all (j, a) ∈ S×A.

The next corollary certifies the name deviation measure for an element y(R) ∈ Y (R).

Corollary 9.11

Given x(R) ∈ L and y(R) ∈ Y
(

x(R)
)

such that yja(R) is finite for all (j, a) ∈ S × A, then
∑

(j,a) yja(R) = 0.

Proof
∑

(j,a) yja(R) =
∑

(j,a)

{

limn→∞
1

Tn

∑Tn

t=1

∑t
s=1

{

Pβ,R{Xt = j, Yt = a} − xja(R)
}

}

= limn→∞
1

Tn

∑Tn

t=1

∑t
s=1

{
∑

(j,a) Pβ,R{Xt = j, Yt = a} −∑(j,a) xja(R)
}

= limn→∞
1

Tn

∑Tn

t=1

∑t
s=1(1− 1) = 0.

9.4. THE LINEAR PROGRAM APPROACH FOR AVERAGE REWARDS REVISITED 499

For
(

x(R), y(R)
)

to be a feasible solution of (9.59), we need to satisfy yja(R) ≥ 0 for all (j, a).

If xja(R) = 0, then, by (9.82), yT
ja(R) ≥ 0 for all T ≥ 1, and consequently, yT

ja(R) ≥ 0 for all

T ≥ 1, implying yja(R) ≥ 0.

If xja(R) > 0, then, set ŷja(R) := yja(R)− c · xja(R), where c := mini,a

{ yia(R)
xia(R)

∣

∣ xia(R) > 0
}

.

Then, ŷja(R) ≥ 0 for all (i, a) ∈ S×A and
(

x(R), ŷ(R)
)

satisfies the constraints of (9.59), because
∑

(i,a) {δij − pij(a)}ŷia(R) =
∑

(i,a) {δij − pij(a)}yia(R)− c ·∑(i,a) {δij − pij(a)}xja(R)

=
∑

(i,a) {δij − pij(a)}yia(R)− c · 0 =
∑

(i,a) {δij − pij(a)}yia(R).

Remark

Given a feasible solution (x, y) of (9.59), we can construct, by Algorithm 9.5, a policy R such

that x = x(R) and R ∈ L(M) ∩ L(C). Consequently,
(

x(R) = x, ŷ(R)
)

is a feasible solution of

(9.59). However, in general y 6= y(R); even y = y(R)+ γ ·x(R) for some γ is not true, in general,

as the next example shows.

Example 9.9 (continued)

The constraints of linear programming problem are

x1(1) + x1(2) = 0

− x1(1) − x3(2) = 0

− x1(2) + x3(2) = 0

x1(1) + x1(2) + y1(1) + y1(2) − y3(2) = 1
4

x2(1) − y1(1) + y3(2) = 3
16

x3(1) + x3(2) − y1(2) = 9
16

x1(1), x1(2), x2(1), x3(1), x3(2) ≥ 0

Consider the feasible solution (x, y), where x11 = 0, x12 = 0, x21 = 1
2 , x31 = 1

2 , x32 = 0; y11 = 0,

y12 = 1
4 , y21 = 0, y31 = 0, y32 = 5

16 . By Algorithm 9.5 we obtain the policy R = (π1, f∞), where

π1
11 = 1, π1

12 = 0, π1
21 = 1, π1

31 = 8
9 , π

1
32 = 1

9 and f(1) = f(2) = f(3) = 1.

It is easy to verify that x(R) = x and y11(R) = 1
4 , y12(R) = 0, y21(R) = − 5

16 , y31(R) = 0,

y32(R) = 1
16 . Notice that

∑

(i,a) yia(R) = 0. The constant c = − 5
16 and ŷ11(R) = 1

4 , ŷ12(R) = 0,

ŷ21(R) = − 5
16 , ŷ31(R) = 0, ŷ32(R) = 1

16 . It is easy to see that
(

x(R) = x, ŷ(R)
)

is a feasible

solution of the linear program, but ŷ(R) + γ · x(R) 6= y for every scalar γ.

Unlike the state-action frequencies xja(R), which sum up to 1 under any policy R, the deviation

measures are not bounded, in general. This is demonstrated in the following simple example with

only one state and two actions.

Example 9.18

Let S = {1}; A(1) = {1, 2}; p11(1) = 1, p11(2) = 1.

Let Rt be the policy that takes action 1 at time 1, 2, ,̇t and action 2 at time t+ 1, t+ 2,

Hence, x11(Rt) = 0 and x12(Rt) = 1 for any fixed t.

Since Pβ,Rt{Xs = 1, Ys = 1} =
{ 1 1 ≤ s ≤ t

0 s ≥ t+ 1
, we obtain y11(Rt) =

{ T 1 ≤ T ≤ t
t T ≥ t+ 1

.

Hence, yT
11(Rt)→ t for T →∞, implying y11(Rt) = t. Therefore, y11(Rt)is in general unbounded.

500 CHAPTER 9. OTHER TOPICS

Lemma 9.37

Assume that the MDP is unichained. Let R1 and R2 be two policies such that

(1) x(R1) = x(R2) for some x(R1) ∈ X(R1) and x(R2) ∈ X(R2);

(2)
yja(R1)

P

a yja(R1)
=

yja(R2)
P

a yja(R2)
, (j, a) ∈ S ×A for some finite y(R1) ∈ Y

(

x(R1)
)

and for some

finite y(R2) ∈ Y
(

x(R2)
)

.

Then, y(R1) = y(R2).

Proof

Let πja :=
yja(R1)

P

a yja(R1)
=

yja(R2)
P

a yja(R2)
, (j, a) ∈ S × A. Then, P (π) is unichained. Let xj(Rk) and

yj(Rk) be defined by xj(Rk) :=
∑

a xja(Rk) and yj(Rk) :=
∑

a yja(Rk) for j ∈ S and k = 1, 2.

Hence, {x(R1)}T + {y(R1)}T{I − P (π)} = βT and {x(R2)}T + {y(R2)}T{I − P (π)} = βT . By

subtraction and because x(R1) = x(R2), we have for y := y(R1)− y(R2), y
T{I − P (π)} = 0,

implying yT = yTP (π)∗. Since P (π)∗ has identical rows, say π∗, we obtain, y = (
∑

j yj) · π∗.
Because

∑

j yj =
∑

j yj(R1)−
∑

j yj(R2) =
∑

j,a yja(R1)−
∑

j,a yja(R2) = 0− 0 = 0, we have

shown that y(R1) = y(R2).

Next, we will consider the constrained MDP problem by a Lagrange approach. The constrained

MDP problem was formulated in (9.21) as

supR {φ(β, R) | ck(β, R) ≤ bk, k = 1, 2, . . . , m}. (9.84)

where φ(β, R) := lim infT→∞
1
T

∑T
t=1

∑

j∈S βj ·
∑

(i,a) PR{Xt = i, Yt = a | X1 = j} · ri(a) and

ck(β, R) := lim infT→∞ 1
T

∑T
t=1

∑

j∈S βj ·
∑

(i,a) PR{Xt = i, Yt = a | X1 = j} · cki (a)
= − lim infT→∞

1
T

∑T
t=1

∑

j∈S βj ·
∑

(i,a) PR{Xt = i, Yt = a | X1 = j} · {−cki (a)}
= −φk(β, R),

where φk(β, R) is, given initial distribution β and policy R, the average reward with respect to

immediate rewards rk
j (a) := −ckj (a) (j, a) ∈ S ×A. Hence, an equivalent formulation of (9.84) is

supR {φ(β, R) | − φk(β, R) ≤ bk, k = 1, 2, . . . , m}. (9.85)

Since L = L(C) (see Theorem 9.21), the problem is equivalent to

supx(R)∈L(C)

{

∑

(i,a)

rj(a)xja(R)
∣

∣

∣ −
∑

(i,a)

rk
j (a)xja(R) ≤ bk, k = 1, 2, . . . , m

}

. (9.86)

The Lagrange function for problem (9.86) becomes for any λ ∈ RM
+

L(β, R, λ) =
∑

(j,a) rj(a)xja(R)−∑m
k=1 λk · {−

∑

(i,a) r
k
j (a)xja(R)− bk}

=
∑

(j,a) {rj(a) +
∑m

k=1 λkr
k
j (a)}xja(R) +

∑m
k=1 λkbk

=
∑

(j,a)

{

rj(a) +
∑m

k=1 λk{rk
j (a) + bk}

}

xja(R),

the last equality because
∑

(i,a) xja(R) = 1. Therefore, supR L(β, R, λ) is the value of the

MDP with immediate rewards rj(a) := rj(a) +
∑m

k=1 λk{rk
j (a) + bk}, (j, a) ∈ S × A. Hence,

supR L(β, R, λ) is the optimum value of the following linear program

9.4. THE LINEAR PROGRAM APPROACH FOR AVERAGE REWARDS REVISITED 501

minu,v

∑

j

βjvj

∣

∣

∣

∣

∣

∣

∑

j{δij − pij(a)}vj ≥ 0, (i, a) ∈ S × A
vi +

∑

j

{

δij − pij(a)}uj ≥ ri(a), (i, a) ∈ S × A

.

i.e. the linear program minu,v
∑

j βjvj under the constraints
∑

j{δij − pij(a)}vj ≥ 0, (i, a) ∈ S ×A
vi +

∑

j

{

δij − pij(a)}uj −
∑m

k=1 λk{rk
j (a) + bk} ≥ ri(a), (i, a) ∈ S ×A

Therefore, minλ>0 supR L(β, R, λ) is the optimum value of the linear program

minu,v,λ
∑

j βjvj under the constraints
∑

j{δij − pij(a)}vj ≥ 0, (i, a) ∈ S ×A
vi +

∑

j

{

δij − pij(a)}uj −
∑m

k=1 λk{rk
j (a) + bk} ≥ ri(a), (i, a) ∈ S ×A

The dual program of this LP becomes

max

∑

(i,a)

ri(a)xi(a)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a) {δij − pij(a)}xi(a) = 0, j ∈ S
∑

a xj(a) +
∑

(i,a) {δij − pij(a)}yi(a) = βj, j ∈ S
−∑(i,a) {rk

j (a) + bk}xi(a) ≤ 0, k = 1, 2, . . . , m

xi(a), yi(a) ≥ 0, (i, a) ∈ S ×A

(9.87)

which is (again using
∑

(i,a) xi(a) = 1) exactly the linear program (9.27) for solving the con-

strained MDP, namely

max

∑

(i,a)

ri(a)xi(a)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a) {δij − pij(a)}xi(a) = 0, j ∈ S
∑

a xj(a) +
∑

(i,a) {δij − pij(a)}yi(a) = βj, j ∈ S
∑

(i,a) c
k
i (a)xi(a) ≤ bk, k = 1, 2, . . . , m

xi(a), yi(a) ≥ 0, (i, a) ∈ S ×A

.

(9.88)

We close this section by showing the following minimax result for the function L(β, R, λ).

Theorem 9.50

minλ>0 supR L(β, R, λ) = supR minλ>0 supR L(β, R, λ).

Proof

Since L = L(C), we may restrict the policy space to C1, the set for which X(R) consists of one

element. For R ∈ C1, we have L(β, R, λ) =
∑

(j,a)

{

rj(a) +
∑m

k=1 λk{rk
j (a) + bk}

}

xja(R) with

x(R) ∈ L(C) = Q, where Q is a convex polytope, and λ ∈
{

R+ ∪ {∞}
}m

, which set is convex

and a compactified space. It follows from the Minimax Theorem (see e.g. [187], p. 208) that the

min and sup can be interchanged, i.e. minλ>0 supR L(β, R, λ) = supRminλ>0 supR L(β, R, λ).

Remark

The derivation, by the Lagrange approach, of the linear program for the constrained MDP can

easily be applied for the discounted reward criterion and the total reward criterion with for the

last criterion as policy space the set of transient policies.

502 CHAPTER 9. OTHER TOPICS

9.5 Mean-variance tradeoffs

9.5.1 Formulations of the problem

In many areas of application, a decision maker may wish to incorporate his attitude toward risk or

variability when choosing a policy. One measure of risk is the variance of the rewards generated

by a policy. Frequently one considers tradeoffs between return and risk. Examples of this include

a dynamic investment model in which the investor may accept a lower than optimal return to

achieve reduced variability in return, and a queueing control model, in which the controller might

prefer a policy which results in greater but less variable waiting times. These mean-variance

tradeoffs may be analyzed in an MDP using the long-run state-action frequencies.

Given an initial distribution β and a policy R the long-run variance V (β, R) is defined by

V (β, R) = lim supT→∞
1
T

∑T
t=1

∑

i βi · Ei,R{rXt(Yt)− φ(β, R)}2

= lim supT→∞
1
T

∑T
t=1

∑

i βi ·
∑

j,a PR{Xt = j, Yt = a | X1 = i}{rj(a)− φ(β, R)}2
(9.89)

If R ∈ C1 the long-run state-action frequencies are unique and the long-run variance can be

written as

V (β, R) =
∑

j,a xja(R){rj(a)− φ(β, R)}2

=
∑

j,a xja(R)r2j(a)− 2
∑

j,a xja(R)rj(a)φ(β, R) +
∑

j,a xja(R)φ(β, R)2

=
∑

j,a xja(R)r2j(a)− φ(β, R)2

=
∑

j,a xja(R)r2j(a)− {
∑

j,a xja(R)rj(a)}2.

(9.90)

Example 9.19

Let S = {1, 2, 3}; A(1) = A(2) = {1}; A(3){1, 2}; p11(1) = p12(1) = 0, p13(1) = 1;

p21(1) = p22(1) = 0, p23(1) = 1; p31(1) = 1, p32(1) = p33(1) = 0; p31(2) = 0,

p32(2) = 1, p33(2) = 0; r1(1) = 0; r2(1) = 2; r3(1) = 8; r1(1) = 4. β1 = β2 = 1
4 , β3 = 1

2 .

There are two deterministic policies f∞1 with f(3) = 1 and f∞2 with f(3) = 2.

For these policies we obtain:

x11(f1) = 1
2 ; x21(f1) = 0; x31(f1) = 1

2 ; x32(f1) = 0; φ(β, f∞1) = 4; V (β, f∞1) = 16.

x11(f2) = 0; x21(f2) = 1
2 ; x31(f2) = 0; x32(f2) = 1

2 ; φ(β, f∞1) = 3; V (β, f∞1) = 1.
.

Observe that f∞1 is average optimal but has a considerably larger variance than f∞2 , so that a

risk averse decision maker may prefer f∞2 to f∞1 .

There are several ways to consider the mean-variance tradeoffs. Sobel ([278]) proposed to max-

imize the mean-standard deviation ratio with upper and lower bounds on the mean. This is

equivalent to minimizing the ratio of the variance and the square of the mean under the same

constraints. In policy space this concept is

min

{

V (β, R)

φ(β, R)2

∣

∣

∣

∣

∣

L ≤ φ(β, R) ≤ U
}

.

9.5. MEAN-VARIANCE TRADEOFFS 503

Using the state action frequencies, problem (9.91) becomes

min

∑

j,a r
2
j (a)xj(a)− {

∑

j,a rj(a)xj(a)}2
{∑j,a rj(a)xj(a)}2

∣

∣

∣

∣

∣

x ∈ Q; L ≤
∑

j,a

rj(a)xj(a) ≤ U

,

with polyhedron Q defined by

Q :=

x

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a){δij − pij(a)}xia = 0, j ∈ S
∑

a xja +
∑

(i,a){δij − pij(a)}yia = βj, j ∈ S
xia, yia ≥ 0, (i, a) ∈ S × A

.

This minimization program is equivalent to

max

−∑j,a r
2
j (a)xj(a)

{∑j,a rj(a)xj(a)}2

∣

∣

∣

∣

∣

x ∈ Q; L ≤
∑

j,a

rj(a)xj(a) ≤ U

. (9.91)

Kawai ([165]) has considered the problem of minimizing the variance subject a lower bounds on

the mean, i.e.

min{V (β, R) | φ(β, R) ≥ L}.

This problem becomes in the state-action space

min

∑

j,a

r2j (a)xj(a)−
{

∑

j,a

rj(a)xj(a)
}2
∣

∣

∣

∣

∣

x ∈ Q;
∑

j,a

rj(a)xj(a) ≥ L

,

which is equivalent to

max

−
∑

j,a

r2j (a)xj(a) +
{

∑

j,a

rj(a)xj(a)
}2
∣

∣

∣

∣

∣

x ∈ Q;
∑

j,a

rj(a)xj(a) ≥ L

. (9.92)

Filar, Kallenberg and Lee ([93]) proposed a variance-penalized version, i.e.

max{φ(β, R)− λ · V (β, R)} for some fixed penalty γ ≥ 0,

or in the x-space

max

∑

j,a

rj(a)xj(a)− λ
{

∑

j,a

r2j (a)xj(a)−
{

∑

j,a

rj(a)xj(a)
}2
} ∣

∣

∣
x ∈ Q

. (9.93)

9.5.2 A unifying framework

In [137] Huang and Kallenberg presented a framework that unifies and extends the approaches

posed above. This framework is formulated as a nonlinear program which can be solved by a

parametric linear programming problem. This solution method is at least as good as any known

504 CHAPTER 9. OTHER TOPICS

method for the particular problems (9.91), (9.92) and (9.93). This unifying framework considers

the nonlinear program

max

∑

j,a Bj(a)xj(a)

D
(

∑

j,a Rj(a)xj(a)
) + C

(

∑

j,a

Rj(a)xj(a)
)

∣

∣

∣

∣

∣

x ∈ Q; L ≤
∑

j,a

Rj(a)xj(a) ≤ U

,

(9.94)

with the following assumptions:

(A1) the functions D(·) and C(·) are convex;

(A2) either D(·) is a positive constant; or D(·) is positive and nondecreasing,

C(·) is nondecreasing and
∑

j,a Bj(a)xj(a) ≤ 0 for every x ∈ Q.

We now show that (9.91), (9.92) and (9.93) are special cases of 9.94).

(9.91): set Bj(a) := −r2j (a), Rj(a) := rj(a), C(y) := 0, D(y) := y2.

(9.92): set Bj(a) := −r2j (a), Rj(a) := rj(a), C(y) := y2, D(y) := 1 and U :=∞.

(9.93): set Bj(a) := rj(a)− λr2j (a), Rj(a) := rj(a)
√
λ, C(y) := y2, D(y) := 1,

L := −∞ and U :=∞.

9.5.3 Determination of an optimal solution

In order to solve (9.94)) we consider a parametric version of the linear program for average

rewards. The parametric objective function is
∑

i,a {Bi(a)+λRi(a)}xj(a). Hence, the parametric

linear program is

maximize{∑i,a {Bi(a) + λRi(a)}xi(a)}
subject to
∑

(i,a) {δij − pij(a)}xi(a) = 0, j ∈ S
∑

a xj(a) +
∑

(i,a) {δij − pij(a)}yi(a) = βj, j ∈ S
xi(a), yi(a) ≥ 0, (i, a) ∈ S ×A

(9.95)

It is well known (see e.g. Zoutendijk [341], p.165) that the optimum objective function of a para-

metric linear program is a piecewise linear convex function of the parameter λ, and that on each

interval of this piecewise linear convex function an optimal solution exists with is an extreme point

of the polytope of the constraints. Thus, there exists λ0 ≡ −∞ < λ1 < · · · < λm−1 < λm ≡ +∞
and extreme optimal solutions (xn, yn) for n = 1, 2, . . . , m. Let k + 1 and j + 1 be respectively

the smallest integers among 1, 2, . . . , m such that

∑

i,a

Ri(a)x
k+1
i (a) > U and

∑

i,a

Ri(a)x
j+1
i (a) ≥ L.

Furthermore, let µ, ν ∈ [0, 1] be such that

xU = µxk + (1− µ)xk+1 and xL = νxj + (1− ν)xj+1

satisfying
∑

i,a Ri(a)x
U
i (a) = U and

∑

i,a Ri(a)x
L
i (a) = L.

9.5. MEAN-VARIANCE TRADEOFFS 505

Set G(x) :=
∑

i,a Bi(a)xi(a), g(x) :=
∑

i,a Ri(a)xi(a) and V (x) :=
G(x)

D
(

g(x)
) +C

(

g(x)
)

for x ∈ X,
and set Gn := G(xn), gn := g(xn) and V n := V (xn) for n = 1, 2, . . . , m.

Theorem 9.51

(1) The nonlinear program (9.94) is feasible if and only if gm ≥ L and g1 ≤ U .

(2) If program (9.94) is feasible with optimum value Vopt and optimal solution xopt, then

Vopt = max
{

maxj+1≤n≤k V
(

xn
)

, V
(

xL
)

, V
(

xU
)

}

and xopt =

xn if V
(

xn
)

= Vopt

xL if V
(

xL
)

= Vopt

xU if V
(

xU
)

= Vopt

Proof

Part (1)

Since xn is optimal for (9.94) for λn−1 ≤ λ ≤ λn, we have

Gn + λgn ≥ G(x) + λg(x), λn−1 ≤ λ ≤ λn, x ∈ X for n = 1, 2, . . . , m. (9.96)

For n = 1, we obtain G1 +λg1 ≥ G(x)+λg(x), −∞ < λ ≤ λ1, x ∈ X . Hence, g1 ≤ g(x), x ∈ X .

Similarly, for n = m, we have Gm + λgm ≥ G(x) + λg(x), λm−1 ≤ λ < +∞, and consequently

gm ≥ g(x), x ∈ X . Therefore, gm < L or g1 > U implies infeasibility of the problem.

Conversely, if program (9.94) is feasible, we have g1 ≤ U and gm ≥ L.

Part (2)

We first show that g1 ≤ gopt ≤ gm, where gopt = g(xopt). Let Gopt = G(xopt). Again, specifying

(9.96) to the cases n = 1 and n = m gives for x = xopt:

G1 + λg1 ≥ Gopt + λgopt, −∞ < λ ≤ λ1; Gm + λgm ≥ Gopt + λgopt, λm−1 ≤ λ < +∞.

Letting λ→ −∞ in the first inequality and λ→ +∞ in the second estableshes

g1 ≤ gopt ≤ gm. (9.97)

Also by (9.96)

Gn+1 + λn+1gn+1 ≥ Gn + λn+1gn

Gn+1 + λngn+1 = Gn + λngn

→ (λn+1 − λn)(gn+1 − gn) ≥ 0,

implying

gn+1 ≥ gn, n = 1, 2, . . . , m− 1. (9.98)

From gm ≥ L, g1 ≤ U , (9.97) and (9.98) it follows that there exists an index 1 ≤ p ≤ m− 1 such

that gp ≤ gopt ≤ gp+1, such that exactly one of the following is true:

(a) L ≤ gp ≤ gopt ≤ gp+1 ≤ U ; (b) gp < g
(

xL
)

= L ≤ gopt ≤ gp+1 ≤ U ;

(c) L ≤ gp ≤ gopt ≤ U = g
(

xU
)

< gp+1; (d) gp < g
(

xL
)

= L ≤ gopt ≤ U = g
(

xU
)

< gp+1.

506 CHAPTER 9. OTHER TOPICS

Case d

In this case, we have j = k = p, and therefore Vopt = max
{

V
(

xL
)

, V
(

xU
)

}

. By (9.96) for n = p,

we obtain Gp+1 + λpgp+1 = Gp + λpgp ≥ G(x) + λpg(x), x ∈ X. Since xL and xU are convex

combinations of xp and xp+1, we also have

G
(

xL
)

+ λpg
(

xL
)

= G
(

xU
)

+ λpg
(

xU
)

= Gp+1 + λpgp+1 = Gp + λpgp ≥ G(x) + λpg(x), x ∈ X.
(9.99)

For two distinct real numbers y and z, let c(y, z) =
C(y)−C(z)

y−z and d(y, z) =
D(y)−D(z)

y−z .

We claim that

D
(

g(xU)
)

c
(

g(xL), g(xU)
)

− G(xL)

D
(

g(xL)
)d
(

g(xL), g(xU)
)

≥ λp (9.100)

if and only if

D
(

g(xL)
)

c
(

g(xL), g(xU)
)

− G(xU)

D
(

g(xU)
)d
(

g(xL), g(xU)
)

≥ λp. (9.101)

From (9.99) it follows that G(xU) = G(xL)+λp{g(xL)−g(xU)}. Since V (x) = G(x)

D
(

g(x)
)+C

(

g(x)
)

,

we have

V (xU)− V (xL) =
G(xU)

D
(

g(xU)
) +C

(

g(xU)
)

− G(xL)

D
(

g(xL)
) − C

(

g(xL)
)

= 1

D
(

g(xU)
)

{

G(xU) +D
(

g(xU)
)

C
(

g(xU)
)

− G(xL)D
(

g(xU)
)

D
(

g(xL)
) −D

(

g(xU)
)

C
(

g(xL)
)

}

=
g(xU)−g(xL)

D
(

g(xU)
)

{

G(xU)
g(xU)−g(xL)

+D
(

g(xU)
)

· C(g(xU))−C(g(xL))
g(xU)−g(xL)

− G(xL)D(g(xU))
D(g(xL)){g(xU)−g(xL)}

}

.

Since by (9.99)G
(

xU
)

= G
(

xL
)

−λp{g
(

xU
)

−g
(

xL
)

}, we can write
G(xU)

g(xU)−g(xL)
=

G(xL)
g(xU)−g(xL)

−λp.

Substituting this expression yields

V (xU)− V (xL) = g(xU)−g(xL)

D
(

g(xU)
)

{

G(xL)
g(xU)−g(xL)

− λp +D
(

g(xU)
)

c
(

g(xL), g(xU)
)

− G(xL)D(g(xU))
D(g(xL)){g(xU)−g(xL)}

}

= g(xU)−g(xL)

D
(

g(xU)
)

{

D
(

g(xU)
)

c
(

g(xL), g(xU)
)

− G(xL)
D(g(xL))

d
(

g(xL), g(xU)
)

− λp

}

.

Similarly, we can write

V (xU)− V (xL) =
G(xU)

D
(

g(xU)
) +C

(

g(xU)
)

− G(xL)

D
(

g(xL)
) − C

(

g(xL)
)

= 1

D
(

g(xL)
)

{

G(xU)D
(

g(xL)
)

D
(

g(xU)
) +D

(

g(xL)
)

C
(

g(xU)
)

−G(xL)−D
(

g(xL)
)

C
(

g(xL)
)

}

=
g(xU)−g(xL)

D
(

g(xL)
)

{

G(xU)D(g(xL))
D(g(xU)){g(xU)−g(xL)} +D

(

g(xL)
)

· C(g(xU))−C(g(xL))
g(xU)−g(xL)

− G(xL)
g(xU)−g(xL)

}

.

Substituting, again by (9.99), G
(

xL
)

= G
(

xU
)

+ λp{g
(

xU
)

− g
(

xL
)

}, gives

V (xU)− V (xL) =
g(xU)−g(xL)

D
(

g(xL)
)

{

G(xU)D(g(xL))
D(g(xU)){g(xU)−g(xL)} +D

(

g(xL)
)

c
(

g(xL), g(xU)
)

− G(xU)
g(xU)−g(xL)

− λp

}

= g(xU)−g(xL)

D
(

g(xL)
)

{

D
(

g(xL)
)

c
(

g(xL), g(xU)
)

− G(xU)
D(g(xU))

d
(

g(xL), g(xU)
)

− λp

}

.

Hence, (9.100) and (9.101) are equivalent if and only if D
(

g(xU)
)

and D
(

g(xL)
)

have the same

sign. By assumption (A2) this is true.

9.5. MEAN-VARIANCE TRADEOFFS 507

Next, we establish that Vopt = max
{

V
(

xL
)

, V
(

xU
)}

and xopt =
{ xL if V

(

xL
)

= Vopt;

xU if V
(

xU
)

= Vopt.
.

We distinguish between two cases:

(1) D
(

g(xL)
)

c
(

g(xL), g(xU)
)

− G(xU)
D(g(xU))

d
(

g(xL), g(xU)
)

≥ λp;

(2) D
(

g(xL)
)

c
(

g(xL), g(xU)
)

− G(xU)
D(g(xU))

d
(

g(xL), g(xU)
)

< λp.

Case (1):

We can write, using (9.99),

0 ≤ V (xopt)− V (xU) =
G(xopt)

D
(

g(xopt)
) + C

(

g(xopt)
)

− G(xU)

D
(

g(xU)
) −C

(

g(xU)
)

≤ C
(

g(xopt)
)

−C
(

g(xU)
)

+
G(xU)+λp{(g(xU)−g(xopt)}

D
(

g(xopt)
) − G(xU)

D
(

g(xU)
)

=
g(xopt)−g(xU)

D
(

g(xopt)
)

{

D
(

g(xopt)
)

c
(

g(xopt), g(x
U)
)

− G(xU)

D
(

g(xU)
)d
(

g(xopt), g(x
U)
)

− λp

}

.

Case (1a): D is a constant, i.e. d(·, ·)≡ 0, and by Case (1), c
(

g(xL), g(xU)
)

≥ λp

D .

The above inequality becomes: 0 ≤ V (xopt)−V (xU) ≤ {g(xopt)−g(xU)}
{

c
(

g(xopt), g(x
U)
)

− λp

D

}

.

The convexity of C implies c(y, z) ≤ c(x, z) for all x, y, z with x ≤ y ≤ z. Since we consider

Case d, we have g
(

xL
)

≤ g(xopt) ≤ g
(

xU
)

and therefore, c
(

g(xopt), g(x
U)
)

≤ c
(

g(xL), g(xU)
)

.

Consequently

0 ≤ V (xopt)− V (xU) ≤ {g(xopt))− g(xU)}
{

c
(

g(xL), g(xU)
)

− λp

D

}

≤ 0,

implying V (xopt) = V (xU) and xopt = xU .

Case (1b): D is not a constant and D
(

g(xL)
)

c
(

g(xL), g(xU)
)

− G(xU)
D(g(xU))

d
(

g(xL), g(xU)
)

≥ λp.

We have seen that

0 ≤ V (xopt)−V (xU) ≤ g(xopt)−g(xU)

D
(

g(xopt)
)

{

D
(

g(xopt)
)

c
(

g(xopt), g(x
U)
)

− G(xU)

D
(

g(xU)
)d
(

g(xopt), g(x
U)
)

−λp

}

.

Because C is convex and D is nondecreasing and convex:

c
(

g(xopt), g(x
U)
)

≥ c
(

g(xL), g(xU)
)

; D
(

g(xopt)
)

≥ D
(

g(xL); d
(

g(xopt), g(x
U)
)

≥ d
(

g(xL), g(xU)
)

.

Since G(xU) ≤ 0, we obtain

0 ≤ V (xopt)− V (xU) ≤ g(xopt)−g(xU)

D
(

g(xopt)
)

{

D
(

g(xL)
)

c
(

g(xL), g(xU)
)

− G(xU)

D
(

g(xU)
)d
(

g(xL), g(xU)
)

− λp

}

.

On the other hand, g(xopt) ≤ g(xU) andD
(

g(xL)
)

c
(

g(xL), g(xU)
)

− G(xU)
D(g(xU))

d
(

g(xL), g(xU)
)

≥ λp.

So,

g(xopt)−g(xU)

D
(

g(xopt)
)

{

D
(

g(xL)
)

c
(

g(xL), g(xU)
)

− G(xU)

D
(

g(xU)
)d
(

g(xL), g(xU)
)

− λp

}

≤ 0.

Hence, V (xopt) = V (xU) and xopt = xU .

Case (2):

Similarly as in Case (1) we can write, using (9.99),

0 ≤ V (xopt)− V (xL) =
G(xopt)

D
(

g(xopt)
) +C

(

g(xopt)
)

− G(xL)

D
(

g(xL)
) −C

(

g(xL)
)

≤ C
(

g(xopt)
)

−C
(

g(xL)
)

+
G(xL)+λp{(g(xL)−g(xopt)}

D
(

g(xopt)
) − G(xL)

D
(

g(xL
)

=
g(xopt)−g(xL)

D
(

g(xopt)
)

{

D
(

g(xopt)
)

c
(

g(xL), g(xopt)
)

− G(xL)

D
(

g(xL)
)d
(

g(xL), g(xopt)
)

− λp

}

.

508 CHAPTER 9. OTHER TOPICS

Case (2a): D is a constant, i.e. d(·, ·)≡ 0, and by Case (2), c
(

g(xL), g(xU)
)

<
λp

D .

The above inequality becomes: 0 ≤ V (xopt)−V (xL) ≤ {g(xopt)−g(xL)}
{

c
(

g(xL), g(xopt)
)

− λp

D

}

.

The convexity of C and g
(

xL
)

≤ g(xopt) ≤ g
(

xU
)

imply, c
(

g(xL), g(xopt)
)

≤ c
(

g(xL), g(xU)
)

.

Consequently

0 ≤ V (xopt)− V (xL) ≤ {g(xopt))− g(xL)}
{

c
(

g(xL), g(xU)
)

− λp

D

}

≤ 0,

implying V (xopt) = V (xL) and xopt = xL.

Case (2b): D is not a constant and D
(

g(xL)
)

c
(

g(xL), g(xU)
)

− G(xU)
D(g(xU)

d
(

g(xL), g(xU)
)

< λp.

We have seen that

0 ≤ V (xopt)−V (xU) ≤ g(xopt)−g(xL)

D
(

g(xopt

)

{

D
(

g(xopt)
)

c
(

g(xL), g(xopt)
)

− G(xL)

D
(

g(xL)
)d
(

g(xL), g(xopt)
)

−λp

}

.

Since C is convex and D is nondecreasing and convex:

c
(

g(xL), g(xopt)
)

≤ c
(

g(xL), g(xU)
)

; D
(

g(xopt)
)

≤ D
(

g(xU); c
(

g(xL), g(xopt)
)

≤ c
(

g(xL), g(xU)
)

.

Since G(xL) ≤ 0, we obtain

0 ≤ V (xopt)− V (xU) ≤ g(xopt)−g(xL)

D
(

g(xopt

)

{

D
(

g(xU)
)

c
(

g(xL), g(xU)
)

− G(xL)

D
(

g(xL)
)d
(

g(xL), g(xU)
)

− λp

}

.

On the other hand, g(xopt) ≥ g(xL) and D
(

g(xU)
)

c
(

g(xL), g(xU)
)

− G(xL)
D(g(xL))

d
(

g(xL), g(xU)
)

< λp,

the last inequility by the equivalence of (9.100) and (9.101), So,

g(xopt)−g(xL)

D
(

g(xopt

)

{

D
(

g(xU)
)

c
(

g(xL), g(xU)
)

− G(xL)

D
(

g(xL)
)d
(

g(xL), g(xU)
)

− λp

}

≤ 0.

Hence, V (xopt) = V (xL) and xopt = xL.

The proofs for the cases (a), (b) and (c) can be obtained in a similar way. Instead of xL and xU

we take: in case (a): xp and xp+1; in case (b): xL and xp+1; in case (c): xp and xU .

9.5.4 Determination of an optimal policy

Theorem 9.51 provides an optimal solution for program (9.94), but it does not provide a procedure

to construct an optimal policy for the mean-variance problem.

Theorem 9.52

Let (x, y) be an extreme optimal solution for program (9.95) for all λ in an open interval I. Then,

there exists a policy f∞ ∈ C(D) whose limiting state-action frequencies vector x(f) satisfies
∑

(i,a)Bi(a)xia(f) =
∑

(i,a)Bi(a)xi(a),
∑

(i,a) Ri(a)xia(f) =
∑

(i,a) Ri(a)xi(a), V
(

x(f)
)

= V (x).

Proof

Let f∞ be a policy satisfying xi

(

f(i)
)

> 0, i ∈ Sx; yi

(

f(i)
)

> 0, i ∈ Sy and f(i) arbitrarily

chosen for i /∈ Sx ∪ Sy. From Theorem 9.41 it follows that f∞ is β-optimal for all λ ∈ I . Define

the policy f∞ by (5.35). Then, for ri(a) := Bi(a) + λRi(a), (i, a) ∈ S ×A, we have
∑

(i,a) ri(a)xia(f) =
∑

i ri(f) ·∑j βj{P ∗(f)}ji
∑

k βj ·
∑

i {P ∗(f)}jiri(f) = φ(β, f∞),

9.5. MEAN-VARIANCE TRADEOFFS 509

i.e.
(

x(f), y(f)
)

is also an optimal solution of (9.95). Therefore,
∑

(i,a){Bi(a) + λRi(a)}xi(a) =
∑

(i,a){Bi(a) + λRi(a)}xia(f) for all λ ∈ I .
Hence,

∑

(i,a){Bi(a)xi(a) =
∑

(i,a) Bi(a)xia(f) and
∑

(i,a) Ri(a)}xi(a) =
∑

(i,a) Ri(a)}xia(f).

Since g(x) = Ri(a)}xi(a), G(x) =
∑

(i,a){Bi(a)xi(a) and V (x) =
G(x)

D
(

g(x)
) + C

(

g(x)
)

, we have

g(x) = g
(

x(f)
)

, G(x) = G
(

x(f)
)

, implying V (x) = V
(

x(f)
)

.

Theorem 9.53

If program (9.94) is feasible, then either xopt = xn for some j+1 ≤ n ≤ k and there exists an op-

timal deterministic policy, or xopt = xL (or xU) and an initial randomization of two deterministic

policies is optimal for the mean-variance tradeoffs problem.

Proof

Suppose that xopt = xn for some j + 1 ≤ n ≤ k. Since xn is optimal for all λ ∈ [λn−1, λn] and

λn−1 < λn, by Theorem 9.52, there exists a policy f∞ whose limiting state-action frequencies vec-

tor x(f) satisfies
∑

(i,a)Bi(a)xia(f) =
∑

(i,a)Bi(a)x
n
i (a),

∑

(i,a) Ri(a)xia(f) =
∑

(i,a) Ri(a)x
n
i (a)

and V
(

x(f)
)

= V (xn). Because x(f) also satisfies the constraint L ≤∑(i,a) Ri(a)xi(a) ≤ U , f∞

is an optimal policy.

Next, suppose that xopt = xL, where xL = νxj + (1 − ν)xj+1 and
∑

(i,a) Ri(a)x
L
i (a) = L (the

case xopt = xU can be shown similarly). By Theorem 9.52, corresponding to xj and xj+1,

there are policies f∞j , f∞j+1 ∈ C(D) whose limiting state-action frequencies vectors x(fj) and

x(fj+1) satisfy
∑

(i,a)Bi(a)xia(fj) =
∑

(i,a)Bi(a)x
j
i(a),

∑

(i,a) Ri(a)xia(fj) =
∑

(i,a) Ri(a)x
j
i (a)

and
∑

(i,a)Bi(a)xia(fj+1) =
∑

(i,a)Bi(a)x
j+1
i (a),

∑

(i,a) Ri(a)xia(fj+1) =
∑

(i,a) Ri(a)x
j+1
i (a),

respectively. Then, setting x∗ = νx(fj) + (1− ν)x(fj+1), we obtain
∑

(i,a) Ri(a)x
∗
i (a) =

∑

(i,a) Ri(a){νxj
i (a) + (1− ν)xj+1

i (a)}
=

∑

(i,a) Ri(a){νxj
i (a) + (1− ν)xj+1

i (a)} =
∑

(i,a) Ri(a)x
L
i (a) = L

and
∑

(i,a) Bi(a)x
∗
i (a) =

∑

(i,a) Bi(a){νxj
i (a) + (1− ν)xj+1

i (a)}
=

∑

(i,a) Bi(a){νxj
i (a) + (1− ν)xj+1

i (a)} =
∑

(i,a) Bi(a)x
L
i (a).

Hence, V (xopt) = V (xL) = V (x∗). From Theorem 1.1 it follows that the policy R∗ which initially

randomizes between f∞j and f∞j+1 with coefficients ν and 1− ν yields as state-action frequencies

vector x(R∗) = νx(fj) + (1− ν)x(fj+1) = x∗. Therefore, R∗ is an optimal policy for the mean-

variance tradeoffs problem.

Corollary 9.12

For an unconstrained problem, i.e. without the constraint L ≤ ∑

(i,a) Ri(a)xi(a) ≤ U , there

exists a deterministic optimal policy. Hence, the variance-penalized version of the mean-variance

tradeoff problem has a deterministic policy.

510 CHAPTER 9. OTHER TOPICS

Example 9.19 (continued)

Consider the model of Example 9.19 for the variance-penalized version of with penalty γ = 1, i.e.

maxR {φ(β, R)− V (β, R)}. The corresponding quadratic program is:

max{−2x21 − 56x31 − 12x32 + (2x21 + 8x31 + 4x32)
2}

subject to

x11 − x31 = 0

x21 − x32 = 0

− x11 − x21 + x31 + x32 = 0

x11 + y11 − y31 = 1
4

x21 + y21 − y32 = 1
4

x31 + x32 − y11 − y21 + y31 + y32 = 1
2

x11, x21, x31, x32, y11, y21, y31, y32 ≥ 0

The parametric linear program is:

max{−2x21 − 56x31 − 12x32 + λ · (2x21 + 8x31 + 4x32)}
subject to

x11 − x31 = 0

x21 − x32 = 0

− x11 − x21 + x31 + x32 = 0

x11 + y11 − y31 = 1
4

x21 + y21 − y32 = 1
4

x31 + x32 − y11 − y21 + y31 + y32 = 1
2

x11, x21, x31, x32, y11, y21, y31, y32 ≥ 0

The extreme optimal solutions are:

λ ≥ 21 : x1
11 = 1

2 x1
21 = 0 x1

31 = 1
2 x1

32 = 0 y1
11 = 0 y1

21 = 1
4 y1

31 = 1
4 y1

32 = 0.

λ ≤ 21 : x2
11 = 0 x2

21 = 1
2 x2

31 = 0 x2
32 = 1

2 y2
11 = 1

4 y2
21 = 0 y2

31 = 0 y2
32 = 1

4 .

λ = 21 : x3
11 = 1

4 x3
21 = 1

4 x3
31 = 1

4 x3
32 = 1

4 y3
11 = 0 y3

21 = 0 y3
31 = 0 y3

32 = 0.

The first two extreme optimal solutions, (x1, y1) and (x2, y2), are optimal in an open interval.

So, according to Theorem 9.52, they correspond to deterministic policies, namely f∞1 and f∞2 ,

respectively. Notice that the last extreme optimal solution (x3, y3) is not optimal in an open

interval; the corresponding policy is the stationary policy π∞ with π31 = π32 = 1
2 .

In order to determine the optimal policy for the variance-penalized problem, we evaluate the

nonlinear objective function −2x21 − 56x31 − 12x32 + (2x21 + 8x31 + 4x32)
2 for x1 and x2. For

x1 we obtain the value −28 + 42 = −12; for x2, the value is −7 + 32 = 2. Hence, f∞2 is the

optimal deterministic policy for the variance-penalized problem. Notice that for x3 the value is

−35
2 + (7

2)2 = −21
4 .

Remark

If we have a multichain MDP, then it is possible that the optimal solution xopt of the nonlinear

program (9.94) does not correspond to a deterministic or stationary policy. In that case we can

9.5. MEAN-VARIANCE TRADEOFFS 511

find, using Algorithm 9.5, a convergent Markov policy Ropt with x(Ropt) = xopt. For unichain

MDPs, as always, the analysis can be simplified. This is the subject of the next section.

9.5.5 The unichain case

In the unichain case the state-action frequencies are independent of the initial distribution. Fur-

thermore, by Theorem 9.24, L = L(M) = L(C) = L(S) = L(D) = Q = Q0. Hence, in this case

the parametric linear program (9.95) can be simplified to

maximize

∑

i,a

{Bi(a) + λRi(a)}xi(a)

∣

∣

∣

∣

∣

∣

∣

∣

∑

i,a {δij − pij(a)}xi(a) = 0, j ∈ S
∑

i,a xi(a) = 1

xi(a) ≥ 0, (i, a) ∈ S × A

.

(9.102)

After the construction of an optimal solution x of the nonlinear problem (9.94) one can construct

an optimal stationary policy π∞ by

πia :=
{

xi(a)
xi

a ∈ A(i), i ∈ Sx

arbitrary otherwise
where xi :=

∑

a

xi(a) and Sx := {i | xi > 0}. (9.103)

Remark

When L <
∑

j,a Rj(a)xj(a) < U , then the extreme optimal solution x is an extreme point of

Q. Hence, the corresponding policy π∞ is a deterministic policy. If
∑

j,a Rj(a)xj(a) = L or
∑

j,a Rj(a)xj(a) = U , then the corresponding policy π∞ is deterministic in all but one state, and

in that state it randomizes between at most two actions.

Example 9.19 (continued)

Consider the model of Example 9.19 for the variance-penalized version with penalty γ = 1. Since

this is a unichain model the parametric linear programming problem (9.102) becomes:

The parametric linear program is:

max{−2x21 − 56x31 − 12x32 + λ · (2x21 + 8x31 + 4x32)}
subject to

x11 − x31 = 0

x21 − x32 = 0

− x11 − x21 + x31 + x32 = 0

x11 + x21 + x31 + x32 = 1

x11, x21, x31, x32 ≥ 0

The extreme optimal solutions are:

λ ≥ 21 : x1
11 = 1

2 ; x1
21 = 0; x1

31 = 1
2 ; x1

32 = 0.

λ ≤ 21 : x2
11 = 0; x2

21 = 1
2 ; x2

31 = 0; x2
32 = 1

2 .

In comparison with the previous parametric linear programming problem with also the y-variables,

in the present program without the y-variables is the solution x3 is not an extreme solution because

x3 = 1
2 (x1+x2). The two extreme optimal solutions. In order to determine the optimal policy for

512 CHAPTER 9. OTHER TOPICS

the variance-penalized problem, we evaluate the nonlinear objective function for x1 and x2. We

have already observed That for x1 and x2 we obtain the values −12 and 2, respectively. Hence,

f∞2 is the optimal deterministic policy for the variance-penalized problem.

Next, we consider the problem of minimizing the variance subject to the constraint φ(β, R) ≥ 7
2 :

min{4x21 + 64x31 + 16x32 − (2x21 + 8x31 + 4x32)
2 | x ∈ Q0; 2x21 + 8x31 + 4x32 ≥ 7

2}.
The corresponding parametric linear program is:

max{−4x21 − 64x31 − 16x32 + λ · (2x21 + 8x31 + 4x32)}
subject to

x11 − x31 = 0

x21 − x32 = 0

− x11 − x21 + x31 + x32 = 0

x11 + x21 + x31 + x32 = 1

2x21 + 8x31 + 4x32 − y5 = 7
2

x11, x21, x31, x32, y5 ≥ 0

The extreme optimal solutions are:

λ ≥ 22 : x1
11 = 1

2 ; x1
21 = 0; x1

31 = 1
2 ; x1

32 = 0; y5 = 1
2 .

λ ≤ 22 : x2
11 = 1

4 ; x2
21 = 1

4 ; x2
31 = 1

4 ; x2
32 = 1

4 ; y5 = 0.

In order to determine the optimal policy for this problem, we evaluate the nonlinear objective

function 4x21 +64x31 +16x32− (2x21 +8x31 +4x32)
2 for x1 and x2. For x1 we obtain the value 16

and for x2 the value 35
4 . Hence, x2 is the optimal solution and π∞ with π11 = 1, π 21 = 1, π31 =

π32 = 1
2 is an optimal stationary policy.

Finally, we consider the mean-standard deviation ratio problem under the constraint φ(β, R) ≥ 7
2 :

max
{

−4x21−64x31−16x32
(2x21+8x31+4x32)2

∣

∣

∣
x ∈ Q0; 2x21 + 8x31 + 4x32 ≥ 7

2

}

.

The parametric program for this problem is the same as for minimum variance problem. There-

fore, we only have to evaluate for x1 and x2 the nonlinear function −4x21−64x31−16x32
(2x21+8x31+4x32)2

. For x1 we

obtain the value −2 and for x2 the value 84
49 . Hence, we have the same optimal solution x2 as

in het minimum variance problem and also the same optimal policy π∞ with π11 = 1, π 21 = 1,

π31 = π32 = 1
2 .

9.5.6 Finite horizon variance-penalized MDPs

We consider a finite horizon MDP with T periods and with nonstationary transition probabilities

pt
ij(a), 1 ≤ t ≤ T, i, j ∈ S and a ∈ A(i). We assume that there are only terminal rewards ri

when state i is reached at the end of the horizon. We also assume a fixed initial distribution β at

t = 1. For a general policy R, we let xi(β, R) denote the probability of being in state i at the end

of the horizon, i.e. when t = T + 1. Then, the variance-penalized reward vγ(β, R), where γ > 0

is a fixed penalty, is defined by

vγ(β, R) := Eβ,R{rT+1} − γ · V arβ,R{rT+1}. (9.104)

Therefore, vγ(β, R) =
∑

i rixi(β, R)− γ ·
{

∑

i r
2
i xi(β, R)− {∑i rixi(β, R)}2

}

.

9.5. MEAN-VARIANCE TRADEOFFS 513

The variance-penalized problem is maxR v
γ(β, R). The corresponding nonlinear program is:

max
{

∑

i rixi,T+1 − γ ·
∑

i r
2
i xi,T+1 + γ · {∑i rixi,T+1}2

}

.

subject to the constraints
∑

a xj,1(a) = βj, j ∈ S
∑

a xj,t(a) −
∑

(i,a) p
t−1
ij xj,t−1(a) = 0, j ∈ S, 2 ≤ t ≤ T

xj,T+1 − ∑

(i,a) p
T
ijxj,t−1(a) = 0, j ∈ S

xi,t(a) ≥ 0, (i, a) ∈ S ×A, 1 ≤ t ≤ T
xi,T+1 ≥ 0, j ∈ S

Notice that the objective function is a convex function (the Hessian H = 2γ · rrT , so we have

xTHx = 2γ · (xT r)2 ≥ 0 for all x ∈ R
N). It is well known that the maximum of a convex function

over linear constraints is achieved at some vertex of the set of the linear constraints. This convex

program can be solved by the method described in Section 9.5.3. In the way described in Section

9.5.4 a Markov deterministic policy can be determined.

We will also present another approach. Define the vector sets K,K(M), K(MD) and P , with

components i ∈ S, by

K := {x(β, R) | R is an arbitrary policy};
K(M) := {x(β, R) | R is a Markov policy};

K(MD) := {x(β, R) | R is a deterministic Markov policy};

P :=
{

x
∣

∣

∣

xi = xi,T+1, i ∈ S, where xi,T+1 is (part of) a feasible solution

of the above convex optimization problem

}

.

Theorem 9.54

K = K(M) = K(MD) = P , where K(MD) is the closed convex hull of the finite set of vectors

K(MD).

Proof

The proof is similar to the proof of Theorem 9.12

Consider the convex function h(x) :=
∑

i rixi − γ ·
∑

i r
2
i xi + γ · {∑i rixi}2. The objective is to

find a distribution x∗ which maximizes h(x) over K and to find the corresponding deterministic

Markov policy R∗. The approach we will take is based on a geometrical characterization of K.

Let vert(K) denote the finite set of vertices of K. Each point in vert(K) is a point in K(MD)

corresponding to the final distribution xi,T+1, i ∈ S, for some deterministic Markov policy.

Given a direction d ∈ R
N , we say a policy R is a best response in the direction of d if:

(1) x(β, R) ∈ vert(K);

(2) yTd ≤ {x(β, R)}Td for all y ∈ K.

Whenever there is no possibility of confusion, we often refer x(β, R) itself as a best response.

A geometric interpretation of a best response can given as follows. Given some d ∈ RN and

z ∈ R, let the half-spaces H−(d, z) and H+(d, z) be defined by H−(d, z) := {x ∈ R
N | xTd ≤ z},

514 CHAPTER 9. OTHER TOPICS

H+(d, z) := {x ∈ R
N | xT d ≥ z}. Furthermore, let the hyperplane H(d, z) be defined by

H(d, z) := {x ∈ R
N | xTd = z}. From the definition of best response, we have that R is a best

response if and only if x(β, R) ∈ vert(K) and K ⊆ H−(d, x(β, R)Td
)

, which is equivalent to

x(β, R) ∈ vert(K) and x(β, R) ∈ H
(

d, x(β, R)Td
)

.

Let Q = H
(

d, x(β, R)Td
)

∩K. So, the set of best responses in the direction of d corresponds to the

set vert(Q). The situation where Q contains a single point corresponds to the case where there is

a unique best response, which is a deterministic Markov policy whose final distribution maximizes

xTd over x ∈ K. Similarly, the situation that Q contains more than one point corresponds to the

case where there is more than one best response, i.e. there is more than one deterministic Markov

policy whose final distribution maximizes xT d over x ∈ K. However, in this case we need to note

that there may also be points in Q ∪K(MD) which are not vertices. There points corresponds

to deterministic Markov policies R for which the final distribution x(β, R) maximizes xTd over

x ∈ K, but for which x(β, R) /∈ vert(K).

We now derive an algorithm which enables us to compute a best response in a given direction.

Algorithm 9.12 Computation of a best response in a given direction

Input: Instance of an MDP over a finite horizon T and a direction d.

Output: A best response R∗ for the given direction d.

1. for all i ∈ S do vT+1
i := di.

2. for all i ∈ S do

for t = T, T − 1 until 1 compute

begin vt
i := maxa{

∑

j pij(a)v
t+1
j }; A(i, t) := {a | vt

i =
∑

j pij(a)v
t+1
j } end

3. if |A(i, t)| = 1 and A(i, t) = {a(i, t)} for all i ∈ S and all 1 ≤ t ≤ T then

begin

(a) R∗ := (f1, f2, . . . , fT) with ft(i) = a(i, t) for all i ∈ S and 1 ≤ t ≤ T
(b) compute the corresponding final distribution x(β, R) by working forward using the

known initial distribution β

end

else

begin

(a) determine the distinct deterministic Markov policies, say f1, f2, . . . , fm, corresponding

to the distinct choices of the elements of A(i, t), i ∈ S, 1 ≤ t ≤ T
(b) determine x1, x2, . . . , xm, the corresponding final distributions by working forward us-

ing the known initial distribution β

9.5. MEAN-VARIANCE TRADEOFFS 515

(c) select some arbitrary strictly convex function g and determine g(x1), g(x2), . . . , g(xm)

(d) select x∗ ∈ argmax{(g(x1), g(x2), . . . , g(xm)} and let R∗ be the corresponding deter-

ministic Markov policy

end

Lemma 9.38

Algorithm 9.12 is correct.

Proof

We have to show that, given direction d, the algorithm identifies a deterministic Markov policy

R∗ such that x(β, R∗) is a vertex of K and maximizes yT d over K. Define the function w on

S by taking w(i) := di, i ∈ S. Then, yT d =
∑

i yiw(i) = Ey{w(XT+1)}, where Ey denotes

the expectation of XT+1, given the distribution y. Therefore, the problem max{yTd | y ∈ K}
corresponds to the problem of maxEx(R){w(XT+1)} over all policies R.

Standard MDP theory now says that there is at least one deterministic Markov policy which

maximizes maxEx(R){w(XT+1)} over all policies R and that Algorithm 9.12 will identify all

distinct deterministic optimal Markov policies.

The algorithm identifiesm deterministic Markov policies, f1, f2, . . . , fm, and the corresponding

final distributions x1, x2, . . . , x
m. There may be final distributions which are not vertices ofK. To

verify that x∗ ∈ argmax{g(x1), g(x2), . . . , g(xm)} is a vertex of K, consider the closed, bounded,

convex setQ = H
(

d, x(β, R)Td
)

∩K. Since g is a strictly convex function, it achieves its maximum

over Q at a vertex of Q, and any point maximizing g over Q must be a vertex of Q. However,

the set {x1, x2, . . . , xm} contains all the points in K(MD) ∩Q, and in particular all the vertices

of Q. Thus, x∗ must be a vertex of Q and hence, R∗ is indeed a best response.

We will describe a vertex identification algorithm for finding an optimal final distribution x∗ and a

corresponding deterministic Markov policy R∗. The algorithm generates a sequence of polytopes

P1, P2, . . . which is used to iteratively identify vertices of K. The algorithm eventually identifies

all the vertices of K and hence finds x∗.

Before we describe the algorithm we present some definitions and properties of convex poly-

topes. A convex polytope may be defined as the convex hull of a finite set of points or as a

bounded intersection of a finite set of half-spaces. Let P be an n-dimensional polytope. For a

real n-vector d and a real number b, the linear inequality yT d ≤ b is called valid for P if yTd ≤ b
holds for all y ∈ P . A subset F of a polyhedron P is called a face of P if it is represented as

F = P ∩ {y | yTd = b} for some valid inequality dTy ≤ b.
By this definition, both the empty set ∅ and the whole set P are faces. These two faces are

called improper faces while the other faces are called proper faces. The faces of dimension 0, 1

and n − 1 are called the vertices, edges and facets, respectively.

For each face F , let aff (F) denote the intersection of all affine subspaces of Rn containing

F . If F is a facet, then aff (F) corresponds to a hyperplane H = {y | yTd = b}, where d is

516 CHAPTER 9. OTHER TOPICS

the outward normal with respect to P . If F1, F2, . . . , Fm are the facets of P with corresponding

hyperplanes yT di = bi, 1 ≤ i ≤ m, then P = {y | yTdi ≤ bi, 1 ≤ i ≤ m}.

The algorithm works as follows. At each iteration k = 1, 2, . . . let Pk be the (N − 1)-dimensional

polytope defined by the currently identified vertices, and let xk be a vertex which maximizes the

strictly convex function g(x) over the vertices of Pk. We classify a facet F as a non-active facet

of Pk if the algorithm has already identified F as a supporting hyperplane of K; otherwise, we

classify an unchecked facet F as an active facet of Pk. Notice that, on checking, an active facet

may turn out to be a supporting hyperplane of K.

The algorithm chooses an active facet F of Pk and then uses the best response method to

(try to) identify a new vertex of K not in Pk which can be used to construct the next polytope.

The polytopes P1 ⊆ P2 ⊆ · · · successively approximate K from within. Since K has only a

finite number of vertices, the algorithm generates a finite sequence of points x1, x2, . . . , xM and

a corresponding sequence of deterministic Markov policies R1, R2, . . . , RM such that we have

h(x1) ≤ h(x2) ≤ · · · ≤ h(xM). We set x∗ := xM and R∗ := RM .

We formally summarize the basic algorithm below, and comment on the steps involved and

the correctness of the algorithm.

Algorithm 9.13 Computation of a variance-penalized optimal policy

Input: Instance of an MDP over a finite horizon T and with only terminal rewards ri, i ∈ S and

a penalty γ for the variance.

Output: A variance-penalized optimal policy R∗.

1. Set the real function h on R
N by h(x) :=

∑

i rixi − γ ·
∑

i r
2
i xi + γ · {∑i rixi}2.

2. Select some arbitrary real strictly convex function g on R
N .

3. Initialization

(a) Generate an (N − 1)-dimensional polytope P1 with V1 := vert(P1) ⊆ vert(K).

(b) Set x1 to be a vertex of P1 which maximizes g(x) over V1 and set R1 to be the

corresponding deterministic Markov policy.

4. Iteration

(a) Let Vk be the set of vertices of K identified after the k-th iteration of the algorithm.

(b) Let Pk the convex hull of the vertices of Vk.

(c) Let xk be a vertex which maximizes h(x) over Vk and let Rk be the corresponding

deterministic Markov policy.

(d) if possible choose an active facet F of Pk

else go to step 7

9.5. MEAN-VARIANCE TRADEOFFS 517

5. Identification

(a) Compute the best response x in the direction d of the outward normal of aff (F) relative

to Pk and compute the corresponding deterministic Markov policy R.

(b) if x ∈ Vk then go to step 6(a)

else go to step 6(b)

6. Updating

(a) begin

set Vk+1 := Vk; Pk+1 := Pk; xk+1 := xk; Rk+1 := Rk;

classify F as non-active; return to step 4

end

(b) begin

set Vk+1 := Vk ∪ x; let Pk+1 be the convex hull of the vertices of Vk+1;

choose xk+1 ∈ argmax{h(x), h(xk)};
set Rk+1 be the corresponding deterministic Markov policy;

identify the faces of Pk+1, noting which are non-active and which are active;

return to step 4

end

7. Termination

The deterministic Markov policy Rk is a variance-penalized optimal policy (STOP).

Initialization

If |K(MD)| is small, we can evaluate all the deterministic Markov policies directly. Therefore,

assume |vert(K)| > N . Identify N independent vertices of K, say v1, v2, . . . , vN , and the N

policies for which they are the corresponding final distributions. There vertices can be found by

finding the best response in N independent directions. Set V1 := {v1, v2, . . . , vN} and set P1 the

convex hull of V1.

Identification

The following lemma shows that step 5 of Algorithm 9.13 either identifies a new vertex of K not

in Pk (if x /∈ Vk) or identifies aff (F) as a non-active facet which is a supporting hyperplane of K

(if x ∈ Vk).

Lemma 9.39

Let F and x be respectively the active facet of Pk chosen in step 4(d) and the vertex x computed

in step 5(a). Then,

(1) If x/notinVk, then x is a new vertex of K not in Pk.

(2) If x ∈ Vk, then aff (F) is a non-active facet which is a supporting hyperplane of K.

518 CHAPTER 9. OTHER TOPICS

Proof

(1) By the definition of best response, x ∈ vert(K). Since Vk = Pk ∩ vert(K), x /∈ Vk implies

x /∈ Pk. Hence, x is a new vertex of K not in Pk.

(2) Let aff (F) = {y | yT d = b}, where d is the outward normal relative to Pk, and let b∗ := xT d.

Then, {y | yT d = b∗}, the hyperplane parallel to aff (F) through x, is - by the definition of

best response - a supporting hyperplane of K. Since x ∈ Vk, aff (F) = {y | yTd = b∗}.
Therefore, aff (F) is a non-active facet which is a supporting hyperplane of K.

Updating

If x ∈ Vk, then Vk+1 = Vk, so the polytope formed by these vertices stays the same except that

F is classified as non-active.

If x /∈ Vk, then Vk+1 6= Vk. In this case every facet of Pk, except F , is also a facet of Pk+1, and

the new facets of Pk+1 are formed from the appropriate combinations of x with the vertices of F .

Lemma 9.40

Algorithm 9.13 terminates after a finite number of iterations with a vertex xm which satisfies

h(xm) = h(x∗) and with corresponding deterministic Markov policy Rm which is a variance-

penalized optimal policy.

Proof

Since K(MD) is finite and vert(K) ⊆ K(MD), vert(K) is also finite. Thus there are only a finite

number of iterations at which a new vertex is actually identified. In the intervening iterations the

vertex set and the approximating polytope stay constant and each iteration uses a different facet

of this polytope to define the direction of search. Since the number of facets of each polytope is

finite, the number of intervening iterations each time is also finite and so the overall number of

iterations is finite.

Let Pm be the terminal polytope and let xm be the terminal vertex generated by the algorithm.

By construction, vert(Pm) ⊆ vert(K). Let F1, F2, . . . , Fr be the finite set of facets of Pm, and

let aff (Fr) = {y | yT di = bi}, where di is the outward normal relative to Pm. Then, we have

Pm = {y | yT di ≤ bi, 1 ≤ i ≤ r}.
Since Pm is the terminal polytope, each {y | yT di = bi} is a supporting hyperplane of K,

implying K ⊆ {y | yTdi ≤ bi} for i = 1, 2, . . . , r. Therefore, we obtain K ⊆ {y | yTdi ≤ bi, 1 ≤
i ≤ r} = Pm and hence vert(K) ⊆ vert(Pm). Combining the above gives vert(K) = vert(Pm).

Furthermore, we have h(x∗) = maxx∈vert(K) h(x) = maxx∈vert(Pm) h(x) = h(xm), and the

corresponding deterministic Markov policy Rm is a variance-penalized optimal policy.

We will also describe a modified algorithm for finding x∗ which uses vertex elimination to avoid

having to explicitly check all the vertices of K. Let Pk be the current approximation of K, let F

be the chosen active facet of Pk, and let aff (F) = {y | yTd = b}, where d is the outward normal

relative to Pk. Furthermore, let x be the best response in the direction d.

9.5. MEAN-VARIANCE TRADEOFFS 519

Assume, on checking, it turns out that aff (F) is not a supporting hyperplane of K. Then,

F divides K into two regions KF and K\KF , where KF := K ∩ {y | yTd ≥ b} and where

Pk ⊆ K ∩ {y | yTd ≥ b}.
In principle the maximum of h(x) over K could be at any of the vertices of K and, in the

absence of other information, the algorithm would not terminate until it had found and evaluated

all the currently unknown vertices of K lying in KF . However, Algorithm 9.13 has provided

extra useful information. Let u1, u2, . . . , us be the known vertices of F , where ui was identified

as the best response in some known direction di. Let bi := (ui)Tdi, 1 ≤ i ≤ s. Then, by the

definition of best response, K is contained in each known half-space {y | yTdi ≤ bi}. Hence,

KF ⊆
{
⋂s

i=1{y | yTdi ≤ bi}
}

∩ {y | yTd ≥ b}.
Let QF be the known polyhedral set

{
⋂s

i=1{y | yTdi ≤ bi}
}

∩{y | yT d ≥ b}. If QF is bounded,

we can find the finite set vert(QF) and the value hF := maxy∈QF h(y) = maxy∈vert(QF) h(y).

Since h is a convex function and KF ⊆ QF , the value hF is an upper bound of h(y) over KF .

If hF ≤ h(xk), where xk is the best vertex in our current approximating polytope Pk, then

no vertex of K in KF can be better than xk and we can eliminate all vertices of KF from further

consideration. Note that it is only worth computing hF if h(x) ≤ h(xk), because otherwise

h(xk) < h(x) ≤ hF , the last inequality since x ∈ QF .

The above motivates the following modification of the algorithm in two respects. Firstly, step 5

is replaced by the following.

Identification

(a) Compute the best response x in the direction d of the outward normal of aff (F) relative

to Pk and compute the corresponding deterministic Markov policy R.

(b) if x ∈ Vk then go to step 6(a)

else go to step 6(b)

(c) Compute h(x).

(d) if h(x) > h(xk) or bf if QF is bounded then go to step 6(b)

else go to step 5(e)

(e) Compute hF .

(f) if hF ≤ h(xk) then go to step 6(a)

else go to step 6(b)

Secondly, at step 6(b), we now classify a facet F as a non-active facet of Pk if F is identified as

a supporting hyperplane of K or if hF ≤ h(xk).

The number of iterations required by the modified algorithm is potentially smaller than by Algo-

rithm 9.13, but more effort is required for the additional computation of hF at some iterations.

We close this section by a comparison of the two approaches: on one hand the solution of the

nonlinear program and on the other hand the geometric, linear algebra approach of Algorithm

9.13. For simplicity in comparing the two approaches, assume the same number of actions in each

state: |A(i)| = M for all i ∈ S.

520 CHAPTER 9. OTHER TOPICS

Then, the nonlinear programming formulation involves of the order of T ×N ×M variables

xj,t(a) with T×N equality constraints and T×N×M non-negativity constraints. In contrast, the

geometrical, linear algebra approach splits the problem up into an iterative sequence, where each

iteration involves the solution of a dynamic programming problem (the best response algorithm)

and a polytope updating problem. The size of the dynamic programming computation is linear

in T and M and at most quadratic in N , while each polytope updating problem is solved in a

space of dimension N , so independent of T and M . However, the number of iterations is at most

|vert(K)| ≤ |K(MD)| ≤MT×N .

9.6 Deterministic MDPs

9.6.1 Introduction

An MDP is said to be deterministic if each action uniquely determines the next state of the pro-

cess. In other words, the probability distribution associated with each action assigns probability

1 to one of the states. Deterministic Markov decision problems are denoted as DMDPs. A DMDP

can be conveniently represented as a network, i.e. a directed graph with weights on the arcs.

The vertices of the graph correspond to the states of the DMDP and the arcs correspond

to the actions. If in state i action a ∈ A(i) is chosen which has a transition with probability 1

to state j, then the graph has an arc from state i to state j with as weight the cost ci(a) (we

assume in this section that we have costs instead of rewards, which can be assumed without loss

of generality by taking ci(a) := −ri(a).
For the limiting average cost criterion the DMDP is strongly related to the well-known problem

of finding a minimum mean weight cycle in a directed graph. This problem is analyzed in [158]

and for this problem a polynomial time algorithm with complexity O(NM) is known, where N

is the number of states and M the number of action, i.e. M :=
∑N

i=1 |A(i)|. Solving discounted

DMDPs seems to be somewhat harder, but also in this case anO(NM) algorithm can be obtained.

9.6.2 Average costs

Let f∞ be a deterministic policy. Then, f∞ induces in each state i exactly one outgoing arc
(

i, f(i)
)

with weight ci(f). Hence, for each starting state i the policy f∞ generates an infi-

nite path i → f(i) → f
(

f(i)
)

→ · · · . Define for k = 0, 1, 2, . . . the state fk(i) recursively

by f0(i) := i and fk(i) := f
(

fk−1(i)
)

for k = 1, 2, With this notation, given start-

ing point i and policy f∞, we obtain the path f0(i) → f1(i) → f2(i) → · · · with weights

cf0(i)

(

f1(i)
)

, cf1(i)

(

f2(i)
)

, cf2(i)

(

f3(i)
)

,

Since the number of states is finite, after at most N steps the path meets a state, say state

fk2(i), which was already in this path, say as state fk1(i), i.e. fk2(i) = fk1(i). From that point,

the cycle C := {fk1(i), fk2+1(i), · · · , fk2(i) = fk1(i)} is repeated infinitely, implying that φi(f
∞),

the limiting average costs of policy f∞ given starting state i, equals the mean-weight of cycle C.

9.6. DETERMINISTIC MDPS 521

Therefore, an optimal policy f∞ for the minimum average costs can be determined as follows:

1. Find the cycle C1 with minimum mean-weight and let f(i), i ∈ C1, be the actions in cycle C1.

2. Find S1 := {j /∈ C1 | C1 is reachable from j} and let f(j), j ∈ S1, be the action that create

a path from j to C1.

3. Repeat the steps 1 and 2 in the graph in which the states C1 ∩ S1 are removed from S.

In the next subsection we present two algorithms to find a cycle with minimum mean-weight.

These algorithms are based on shortest paths and linear programming, respectively.

Minimum mean-weight cycles

Let D = (V, A) be a directed graph with weight function w : A→ R, and let N = |V |. We define

the mean-weight w(C) of a cycle C = {a1, a2, . . . , ak} of arcs ai ∈ A by w(C) := 1
k

∑k
i=1 w(ai).

Let w∗ := minC w(C), where C ranges over all directed cycles in D. A cycle C∗ for which

w(C∗) = w∗ is called a minimum mean-weight cycle.

Minimum mean-weight cycles via shortest paths

Assume that every vertex vj ∈ V, j 6= 1, is reachable from a source vertex v1. This assumption is

without loss of generality: otherwise, add a vertex v0 and arcs (v0, vj), 1 ≤ j ≤ N , with weight

0, and since v0 is in none of the cycles, the problem does not change. Let F (j) be the length, i.e.

the weight, of the shortest path from v1 to vj and let Fk(j) be the weight of the shortest path

from v1 to vj with exactly k arcs. If there is no path from v1 to vj with exactly k arcs, then

Fk(j) :=∞.

Lemma 9.41

If w∗ = 0, then F (j) = min0≤k≤N−1 Fk(j) and max0≤k≤N−1
FN (j)−Fk(j)

N−k ≥ 0 for all j ∈ V .

Proof

Since w∗ = 0 there are no negative cycles. Hence, there is a shortest path from v1 to vj without

any cycle, so with at most N −1 arcs, and consequently, F (j) = min0≤k≤N−1 Fk(j) for all j ∈ V .

Assume that there exists a vertex vj for which max0≤k≤N−1
FN (j)−Fk(j)

N−k < 0.

Then, FN (j)− Fk(j) < 0 for k = 0, 1, . . . , N − 1. The shortest path from v1 to vj with exactly

N arcs consists of a path from v1 to some vi, a cycle C from vi to vi with N − k ≥ 1 arcs, and a

path from vi to vj. Since FN (j) < Fk(j), the weight w(C) < 0, which contradicts w∗ = 0.

Lemma 9.42

If w∗ = 0, then max0≤k≤N−1
FN (j)−Fk(j)

N−k = 0 for some j ∈ V .

Proof

Since w∗ = 0, there exists a cycle C∗ with w(C∗) = 0. Let vi be a vertex on C∗. Take a

shortest path from v1 to vi and then extend the path going along the cycle C∗ so many times

that we end with a path P from v1 to vi with at least N arcs. Then, w(P) = F (i) = Fk(i)

for some 0 ≤ k ≤ N − 1. Let P ∗ be the first N arcs of P , ending in vj on C∗. Since a

522 CHAPTER 9. OTHER TOPICS

part of a shortest path is also a shortest path, we have w(P ∗) = F (j) = FN (j). Because also

FN (j) = F (j) ≤ Fk(j) for all k ≥ 0, we obtain max0≤k≤N−1
FN (j)−Fk(j)

N−k ≤ 0. Using Lemma 9.41,

we conclude max0≤k≤N−1
FN (j)−Fk(j)

N−k = 0 for some j ∈ V .

Corollary 9.13

If w∗ = 0, then minj∈V max0≤k≤N−1
FN (j)−Fk(j)

N−k = 0.

Theorem 9.55

w∗ = minj∈V max0≤k≤N−1
FN (j)−Fk(j)

N−k .

Proof

Adding c to each arc increases w∗ by c. It also increases FN(j) by Nc and Fk(j) by kc. Hence,
FN (j)−Fk(j)

N−k is also increased by c. Thus, for a general w∗, by taking c := −w∗, we have the case

with w∗ = 0 and, by Corollary 9.13, we obtain w∗ = minj∈V max0≤k≤N−1
FN (j)−Fk(j)

N−k .

Lemma 9.43

The minimum mean-weight cycle can be computed by an algorithm with complexity O(NM),

where M is the total number of arcs.

Proof

We first add - if necessary - a vertex, say v1, such that any other vertex is reachable from v1. This

can be executed with complexity O(N). Then, compute Fk(j) for k = 0, 1, . . . , N in O(NM)

time by evaluating the recurrence Fk+1(j) = mini {Fk(i) + w
(

(i, j)
)

}. Finally, in O(N 2) time,

determine minj∈V max0≤k≤N−1
FN (j)−Fk(j)

N−k . Because M ≥ N , the overall complexity is O(NM).

The minimum mean-weight cycle C∗ can be found by bookkeeping, in the recurrence computation

FN (j) = mini {FN−1(i) + w
(

(i, j)
)

} the vertex, say jN , with FN (j) = FN−1(jN) + w
(

(jN , j)
)

.

Then, determine the vertex j∗ such that w∗ = max0≤k≤N−1
FN (j∗)−Fk(j∗)

N−k . Finally, the minimum

mean-weight cycle C∗ can be found by following the sequence j∗ ← j∗N ← (j∗N)N ← until we are

back in j∗. This does not increases the complexity of the method.

Algorithm 9.14 Computation of a minimum mean-weight cycle via shortest paths

Input: Instance of a directed graph with weights on the arcs and such that every vertex

vj ∈ V, j 6= 1 is reachable from a source vertex v1.

Output: A mean-weight cycle C∗.

1. F0(1) := 0; for all j 6= 1 do F0(j) :=∞;

for k = 1 until N do

for all j 6= 1 do Fk(j) := mini {Fk−1(i) +
(

(i, j)
)

}.

2. for all j 6= 1 do determine jN such that FN (j) = FN−1(jN) +w
(

(jN , j)
)

.

3. for all j 6= 1 do determine max0≤k≤N−1
FN (j)−Fk(j)

N−k .

9.6. DETERMINISTIC MDPS 523

4. Determine w∗ and j∗ such thatw∗ = minj∈V max0≤k≤N−1
FN (j)−Fk(j)

N−k = max0≤k≤N−1
FN (j∗)−Fk(j∗)

N−k .

5. Set i1 := j∗; l := 1; while il 6= j∗ do begin l := l + 1; il := (il−1)N end

C∗ := {il, il−1, . . . , i1}.

Example 9.20

Consider the directed graph below. The weights are placed next to the arcs.

s

s

s

s

s

s
Z

Z
Z

Z
Z

Z
Z

Z

�
�

�
�

�
�

�
�

Z
Z

Z
Z

Z
Z

Z
Z

�
�

�
�

�
�

�
�

1

2

4

3

5

6

3

>

2
~

8
6

6?

10-

1
�

4-

3
�

9� 2
6

3~

4>

Notice that all vertices are reachable from vertex v1 and v1 is not in any cycle.

Step 1: Computation of Fk(j) for all k and j:

k = 0 : F0(1) = 0; F0(2) =∞; F0(3) =∞; F0(4) =∞; F0(5) =∞; F0(6) =∞.
k = 1 : F1(2) = 3; F1(3) =∞; F1(4) = 2; F1(5) =∞; F1(6) =∞.
k = 2 : F2(2) = 10; F2(3) = 13; F2(4) = 9; F2(5) = 6; F2(6) =∞.
k = 3 : F3(2) = 14; F3(3) = 8; F3(4) = 9; F3(5) = 13; F3(6) = 10.

k = 4 : F4(2) = 9; F4(3) = 15; F4(4) = 16; F4(5) = 13; F4(6) = 11.

k = 5 : F5(2) = 16; F5(3) = 15; F5(4) = 15; F5(5) = 20; F5(6) = 17.

k = 6 : F6(2) = 16; F6(3) = 22; F6(4) = 22; F6(5) = 19; F6(6) = 18.

Step 2: The determination of the nodes i6:

26 = 3; 36 = 5; 46 = 2; 56 = 4; 66 = 3.

Step 3: Computation of max1≤k≤N−1
FN (j)−Fk(j)

N−k for all j ≥ 2:

j = 2 : max0≤k≤5
F6(2)−Fk(2)

6−k = max{16−3
5 , 16−10

4 , 16−14
3 , 16−9

2 , 16−16
1 = 7

2 .

j = 3 : max0≤k≤5
F6(3)−Fk(3)

6−k = max{22−∞
5 , 22−13

4 , 22−8
3 , 22−15

2 , 22−15
1 = 7.

j = 4 : max0≤k≤5
F6(4)−Fk(4)

6−k = max{22−2
5 , 22−9

4 , 22−9
3 , 22−16

2 , 22−15
1 = 7.

j = 5 : max0≤k≤5
F6(5)−Fk(5)

6−k = max{19−∞
5 , 19−6

4 , 19−13
3 , 19−13

2 , 19−20
1 = 13

4 .

j = 6 : max0≤k≤5
F6(6)−Fk(6)

6−k = max{18−∞
5 , 18−∞

4 , 18−10
3 , 18−11

2 , 18−17
1 = 7

2 .

Step 4: Computation of w∗ and j∗:

w∗ = minj∈V max0≤k≤N−1
FN (j)−Fk(j)

N−k = min{7
2 , 7, 7,

13
4 ,

7
2} = 13

4 ; j∗ = 5.

Step 5: Determination of the minimum mean-weight cycle:

i1 = 5; l = 1; l = 2; i2 = 56 = 4; l = 3; i3 = 46 = 2; l = 4; i4 = 26 = 3; l = 5; i5 = 36 = 5.

C∗ = {5, 3, 2, 4, 5}.

524 CHAPTER 9. OTHER TOPICS

Minimum mean-weight cycles via linear programming

Associate the variable xij to each arc (i, j) ∈ A and denote the cost of this arc by cij. Then, the

linear programming formulation for the minimum mean-weight cycle problem is:

min

∑

(i,j)

cijxij

∣

∣

∣

∣

∣

∣

∣

∣

∑

j xij −
∑

j xji = 0, i ∈ V
∑

(i,j) xij = 1

xij ≥ 0, (i, j) ∈ A

. (9.105)

A solution x of (9.105) determines in D some circulation with constant sum, which equals 1. The

next lemma shows that if x is an extreme solution of (9.105), then {(i, j) | xij > 0} represents an

elementary cycle.

Lemma 9.44

If x is an extreme solution of (9.105), then Ax := {(i, j) | xij > 0} represents an elementary

cycle, say C, and the value of the objective function equals the mean-weight of C.

Proof

We first prove that Ax contains a cycle. Since
∑

(i,j) xij = 1, Ax 6= ∅. Let (k, l) ∈ Ax. Then,
∑

j xkj > 0 and, by the circulation,
∑

j xjk > 0. Hence, xjk > 0 for some j ∈ V , i.e. (j, k) ∈ Ax

for some j ∈ V . Let Vx := {k ∈ V ∑

l xkl > 0}. Then, in any vertex k ∈ Vx there is an outgoing

and an ingoing arc from Ax. As D is a finite graph, crossing the vertices from Vx we shall come

to the first vertex from which we started. Thus, there exists a cycle in Ax.

Next, we show that Ax is an elementary cycle. Therefore, choose an elementary cycle C from

Ax. Assume that C = {(i1, i2), (i2, i3), . . . , (in, in+1) = (in, i1)} and that x = (x1, x2, 0), where

x1 and x2 are the subvectors corresponding to C and Ax\C, respectively. Furthermore, let

θ := min(i,j)∈C x
1
ij > 0.

Consider the following two solutions: y1 := 1
1−nθ · (x1 − θen, x2, 0) and y2 := 1

nθ · (θen, 0, 0). It

is easy to verify that y1 and y2 are feasible solutions, and that x = (1 − nθ) · y1 + (nθ) · y2.

Hence, x is not an extreme solution, showing that Ax represents an elementary cycle C and let

C := {(i1, i2), (i2, i3), . . . , (in, in+1) = (in, i1)}. Then, by the circulation of an elementary cycle,

x = (x1, 0) with x1 = 1
n ·en. This implies that

∑

(i,j) cijxij = 1
n ·
∑

(i,j)∈C cij, i.e. the mean-weight

of C.

Corollary 9.14

If x is an extreme optimal solution of (9.105), then Ax := {(i, j) | xij > 0} represents a minimum

mean-weight cycle.

Algorithm 9.15 Computation of a minimum mean-weight cycle via linear programming

Input: Instance of a directed graph D = (S, A) with weights cij on the arcs.

Output: A mean-weight cycle C∗.

1. Determine an extreme optimal solution x∗ of liner program (9.105).

2. The arcs of C∗ := {(i, j) | xij > 0} represent a minimum mean-weight cycle.

9.6. DETERMINISTIC MDPS 525

Example 9.20 (continued)

The linear program for this example is:

min{3x12 + 2x14 + 10x23 + 6x24 + x32 + 9x34 + 3x36 + 8x42 + 4x45 + 2x53 + 3x54 + 4x56}
subject to

x12 + x14 = 0

− x12 + x23 + x24 − x32 + x34 + x36 − x42 = 0

− x23 + x32 − x34 − x53 = 0

− x14 − x24 + x42 + x45 − x54 = 0

x53 − x45 + x54 + x56 = 0

− x36 − x56 = 0

x12 + x14 + x23 + x24 + x32 + x34 + x36 + x53 + x42 + x45 + x54 + x56 = 0

x12, x14, x23, x24, x32, x34, x36, x53, x42, x45, x54, x56 ≥ 0

The optimal solution is: x12 = 0, x14 = 0, x23 = 0, x24 = 1
4 , x32 = 1

4 , x34 = 0, x36 = 0, x53 = 1
4 ,

x42 = 0, x45 = 1
4 , x54 = 0, x56 = 0. The value of the objective function is 13 , which is the

minimum mean-weight of the cycles.

9.6.3 Discounted costs

Let D = (S, A) be the directed graph corresponding to the DMDP. A deterministic policy f∞

and a starting state i induce an infinite path f0(i)→ f1(i)→ f2(i)→ · · · with α-discounted cost

vα(f∞) =
∑∞

t=1 α
t−1cf t−1(i)

(

f t(i)
)

. From the general theory of discounted MDPs we obtain the

following results for the value vector vα := minf∞ vα(f∞).

Theorem 9.56

(1) vα
i = min{j | (i,j)∈A} {cij + αvα

j }, i ∈ S.

(2) If vα
i = cik(i) + αvα

k(i), i ∈ S, then f∞, where f(i) := k(i), i ∈ S, is an optimal policy.

(3) vα is the optimal solution of the linear program max{∑j vj | vi − αvj ≤ cij, (i, j) ∈ A}.

Remark

The linear program in part (3) of Theorem 9.56 has a special form. Firstly, it contains two

variables per inequality. Secondly, in each inequality the coefficient of one variable is positive,

while the coefficient of the other variable is negative. Strongly polynomial-time algorithms for

checking the feasibility of linear programs with two variables per inequality were obtained by

Cohen and Megiddo ([44]) and Hochbaum and Naor ([118]).

An arc (i, j) ∈ A for which vα
i = cij + αvα

j is said to be optimal. Notice that each vertex i

has at least one optimal outgoing arc. An optimal path (cycle) is a path (cycle) composed of

optimal arcs. It follows from the finiteness of S that for every i ∈ S there exists an optimal path

P from i to some vertex j and an optimal cycle C that passes through j such that the infinite

path PC∞ := PCC . . . has cost vα. The infinite path PC∞ corresponds to a deterministic

policy f∞. If path P is of length k, where 0 ≤ k ≤ N − 1, and C is a cycle of length l, where

1 ≤ l ≤ N , then we have vα
i = C(P) + αk

1−αl · c(C), with c(P) =
∑k

t=1 α
t−1cf t−1(i)

(

f t(i)
)

and

c(C) =
∑l

t=1 α
t−1cf t−1(i)

(

f t(i)
)

.

526 CHAPTER 9. OTHER TOPICS

Minimum discounted-weight infinite path via Bellman-Ford

We shall present an O(NM) algorithm for solving discounted DMDPs. The algorithm is inspired

by the algorithm for finding a minimum mean-weight cycle via shortest paths. We have seen

that an optimal policy corresponds to an optimal path of type PC∞. The algorithm starts

by computing, for each vertex i and each k = 0, 1, . . . , N − 1, the weight Uk(i) of the shortest

discounted path of k arcs that starts at vertex i. This can easily be done in O(NM) time using

an algorithm based on the classical Bellman-ford algorithm2 for computing single-source shortest

paths.

Step 1 of the algorithm is as follows:

for each i ∈ S do U0(i) := 0;

for k = 1 step 1 until N do

for each i ∈ S do Uk(i) := min{j | (i,j)∈A} {cij + αUk−1(j)}
It is obvious that this algorithm has complexity O(NM). Then, for each j ∈ S, the algorithm

computes G0(j) := max0≤k≤N−1
UN (j)−αN−kUk(j)

1−αN−k . The ratio UN (j)−αN−kUk(j)
1−αN−k is the analog of the

nondiscounted ratio FN (j)−Fk(j)
N−k in the mean-weight cycle. To understand the intuition behind

the ratio UN (j)−αN−kUk(j)
1−αN−k , note that if the optimal policy corresponds to the optimal path PC∞,

then for starting vertices j on the cycle C, the optimal path is C∞ with discounted weight vα
j .

Let C be a cycle with N − k arcs, where 0 ≤ k ≤ N − 1. Then, the discounted weight of cycle C

is UN(j)− αN−kUk(j). Hence, the discounted weight of C∞ is

{UN(j)− αN−kUk(j)} · {1 + αN−k +
(

αN−k
)2

+ · · · } = UN (j)−αN−kUk(j)
1−αN−k .

We show shortly (see Lemma 9.45) that G0(j), the maximum over 0 ≤ k ≤ N − 1 of these ratios,

is an upper bound on the value vα
j for all j ∈ S, and we also will show that G0(j) = vα

j for some

j ∈ S.

In the nondiscounted case, the expression w∗ = minj∈V max0≤k≤N−1
FN (j)−Fk(j)

N−k is the mini-

mum mean-weight of a cycle in the graph. In the discounted case, things are more complicated.

In particular, to compute the correct values of all vertices j, we have to perform a second Bellman-

Ford stage, which is related to an infinite path PC∞. For every j ∈ S and k = 0, 1, . . .N − 1,

Gk(j) will be a k-arc path that starts in j, where the discounted cost now takes into account the

G0(j)-value of the last vertex on the path. Finally, the algorithm computes min0≤k≤N−1 Gk(j).

We shall also show that vα
j = min0≤k≤N Gk(j). The whole algorithm is as follows.

Algorithm 9.16 Computation of the discounted value vector of an DMDP

Input: Instance of a directed graph D = (S, A) with weights cij on the arcs.

Output: The discounted value vector vα.

1. for each i ∈ S do U0(i) := 0.

for k = 1 step 1 until N do

for each i ∈ S do Uk(i) := min{j | (i,j)∈A} {cij + αUk−1(j)}.
2see http://en.wikipedia.org/wiki/Bellman-Ford algorithm

9.6. DETERMINISTIC MDPS 527

2. for each j ∈ S do G0(j) := max0≤k≤N−1
UN (j)−αN−kUk(j)

1−αN−k .

3. for k = 1 step 1 until N − 1 do

for each i ∈ S do Gk(i) := min{j | (i,j)∈A} {cij + αGk−1(j)}.

4. for each i ∈ S do vα
i := min0≤k≤N Gk(j).

For the proof of the correctness of algorithm 9.16, not for the algorithm itself, we use the graph

G∗ with costs c∗ij, obtained from G by adding an auxiliary vertex s (the sink) and arcs from

all j ∈ S to the sink s with cost c∗js := 0 (the other costs are unchanged, i.e. c∗ij := cij for all

(i, j) ∈ A). Any k-arc path P = {j0, j1, . . . , jk} in G can be extended to a (k + 1)-arc path

P ∗, where P ∗ := {j0, j1, . . . , jk, jk+1 = s} in G∗ and c∗(P ∗) = c(P). Let S∗ := S ∪ {s} and

A∗ := A ∪ {(i, s) | i ∈ S}. For every potential function v : S∗ → R, we define modified arc costs

c∗(v) by c∗ij(v) := c∗ij − vi + αvj for all (i, j) ∈ A∗.

It is easy to see that if P = {j0, j1, . . . , jk} is a k-arc path in G with corresponding (k+1)-arc

path P ∗ = {j0, j1, . . . , jk, s} in G∗, then c∗(v;P ∗) = c∗(P ∗)− vj0 +αk+1vs = c(P)− vj0 +αk+1vs.

Hence, P is a k-arc path in G, starting in j with minimal discounted costs with respect to c in

G if and only if the corresponding path P ∗ in G∗ is a (k+ 1)-arc path P ∗ in G∗ from j to s with

minimal discounted costs with respect to c∗(v) in G∗.

Consider the potential function vj := vα, j ∈ S (the value vs will be set in a way to be

explained in the proof of Lemma 9.46). With this potential function we have c∗ij(v) = cij − vα
i +

αvα
j ≥ 0 for all (i, j) ∈ A and c∗ij(v) = 0 for all optimal arcs (i, j) ∈ A. The only arcs that can have

negative costs c∗(v) are arcs to the sink, i.e. arcs (i, s) for which c∗is(v) = c∗is−vα
i +αvs = −vα

i +αvs.

Let U∗
k (j) be the minimal discounted cost with respect to a (k + 1)-arc path from j to s in

G∗ with cost c∗(v) in G∗. Clearly, U∗
k (j) = Uk(j)− vα

j + αk+1vs.

Lemma 9.45

vα
j ≤ G0(j) for all j ∈ S.

Proof

Since G0(j) := max0≤k≤N−1
UN(j)−αN−kUk(j)

1−αN−k , we have to show that for every j ∈ S there exists a

0 ≤ k ≤ N−1 such that UN (j)−αN−kUk(j) ≥ (1−αN−k)vα
j . For every j ∈ S and 0 ≤ k ≤ N−1,

we have

UN (j)− αN−kUk(j) = {U∗
N(j) + vα

j − αN+1vs} − αN−k{U∗
k (j) + vα

j − αk+1vs}
= {U∗

N(j)− αN−kU∗
k (j)}+ vα

j {1− αN−k}.
Therefore, it is enough to show that for every j ∈ S there exists a 0 ≤ k ≤ N − 1 such that

U∗
N(j) ≥ αN−kU∗

k (j). Take any j ∈ S. Consider an N -arc path P in G, starting in j, that attains

the value UN (j). The corresponding path P ∗ then attains the value U∗
N (j). As P is composed of

N arcs, it must contain a cycle. Let P = P1P2P3, where P2 is a cycle. Let N1, N2, N3 ≥ 0 be the

number of arcs on P1, P2 and P3, respectively. Note that N2 ≥ 1. Let P4 := P1P3 be the path

with N −N2 arcs obtained from P by removing the cycle P2. For every arc (i, j) on P we have

c∗ij(v) ≥ 0. Hence, c∗(v;P1), c
∗(v;P2), c

∗(v;P3) ≥ 0. Thus,

528 CHAPTER 9. OTHER TOPICS

U∗
N (j) = c∗(v;P1) + αN1c∗(v;P2) + αN1+N2c∗(v;P3)

≥ αN2c∗(v;P1) + αN1c∗(v;P2) + αN1+N2c∗(v;P3)

≥ αN2{c∗(v;P1) + αN1c∗(v;P3)}
= αN2c∗(v;P4).

For k := N − N2 we have 0 ≤ k ≤ N − 1 and U∗
N (j) ≥ αN−kc∗(v;P4) ≥ αN−kU∗

k (j), the last

inequality because P4 corresponds to a (k + 1)-arc path P ∗
4 from j to s in G∗ with cost c∗(v;P4)

and U∗
k (j) is the minimal discounted cost of the (k + 1)-arcs paths from j to s in G∗.

Lemma 9.46

On every optimal cycle in G, i.e. a cycle with optimal arcs, there is at least one vertex j for

which vα
j = G0(j).

Proof

Since, by Lemma 9.45, vα
j ≤ G0(j) for all j ∈ S, it is enough to show that for every optimal cycle

in G there is at least one vertex j for which vα
j ≥ max0≤k≤N−1

UN(j)−αN−kUk(j)
1−αN−k , i.e.

vα
j (1− αN−k) ≥ UN (j)− αN−kUk(j) for every 0 ≤ k ≤ N − 1.

As we have seen in the proof of Lemma 9.45, for every j ∈ S and every 0 ≤ k ≤ N − 1, we have

UN(j)− αN−kUk(j) = {U∗
N(j)− αN−kU∗

k (j)}+ vα
j (1− αN−k).

Therefore, we have to show that on every optimal cycle in G there is at least one vertex j for

which U∗
N (j) ≤ αN−kU∗

k (j) for every 0 ≤ k ≤ N − 1.

Let C be an optimal cycle in G. For every (i, j) ∈ C we have c∗ij(v) = 0. Let i be an arbitrary,

but fixed, vertex on C. Choose vs such that

min0≤k≤N−1 U
∗
k (i) = 0, i.e. min0≤k≤N−1 {Uk(i)− vα

i + αk+1vs} = 0,

which is equivalent to vs := max0≤k≤N−1
1

αk+1 · {vα
i − Uk(i)}.

Suppose that U∗
l (i) = 0. Let P1 be the l-arc path in G, starting in i, such that for the corre-

sponding path P ∗ in G∗ from i to s we have c∗(v;P ∗
1) = 0. Extend P1 to an N -arc path P2

in G by adding to its beginning arcs from the optimal cycle C. Let vertex j ∈ C be the start-

ing point of P2. As all arcs added to P2 have a c∗(v)-cost of 0, we clearly have c∗(v;P ∗
2) = 0

and thus U∗
N(j) ≤ 0. We claim that for every 0 ≤ k ≤ N − 1, we have U∗

k (j) ≥ 0, and thus

U∗
N(j) ≤ 0 ≤ αk−1U∗

k (j) for every 0 ≤ k ≤ N − 1.

It remains to show that U∗
k (j) ≥ 0 for every 0 ≤ k ≤ N−1. Suppose, for the sake of contradiction,

that U∗
k (j) < 0 for some 0 ≤ k ≤ N − 1. Let P3 be a k-arc path of G, starting in j such that the

corresponding path P ∗
3 in G∗ from j to s is such that c∗(v;P ∗

3) < 0. Extend P3, by adding to its

beginning arcs from C, to a path P4, that starts in i, the vertex i chosen before. Recall that i

and j are both on C. As all arcs of C has c∗(v)-cost of 0, we have c∗(v;P ∗
4) = c∗(v;P ∗

3) < 0.

If P4 contains N or more arcs, then it contains a cycle in G. By removing such a cycle, we get

a path P5 with c∗(v;P ∗
5) ≤ c∗(v;P ∗

4) < 0. By repeating removing cycles, we get a path P6 that

starts at i, contains at most N − 1 arcs and has c∗(v;P ∗
6) < 0, a contradiction to the property

that min0≤k≤N−1 U
∗
k (i) = 0.

9.6. DETERMINISTIC MDPS 529

Lemma 9.47

vα
i ≤ Gk(i) for every i ∈ S and every 0 ≤ k ≤ N − 1.

Proof

We apply induction on k. For k = 0 the result is shown in Lemma 9.45. Suppose that vα
i ≤ Gk(i)

for every i ∈ S and some 1 ≤ k ≤ N − 2. We can write

Gk+1(i) = min{j | (i,j)∈A} {cij + αGk(j)} ≥ min{j | (i,j)∈A} {cij + αvα
j } = vα

i , i ∈ S.

Lemma 9.48

For every i ∈ S there exists some 0 ≤ k ≤ N − 1 such that vα
i = Gk(i).

Proof

Every i ∈ S has at least one optimal outgoing arc. Take any i ∈ S and let P = {i = i0, i1, . . . , iN}
be a path with optimal arcs, starting in i. As P contains N arcs, it must contain an optimal cycle

C. By Lemma 9.46, there exists a vertex il on C for which vα
il

= G0(il). As the arcs (ik, ik+1)

of P are optimal arcs, we get that vα
ik

= cik,ik+1
+ αvα

ik+1
. We shall show by induction on k that

Gl−k(ik) ≤ vα
ik

for k = l, l − 1, . . . , 0. For k = l, we have seen that G0(il) = vα
il
. Suppose that

Gl−k(ik) ≤ vα
ik

for some l − 1 ≥ k ≥ 0. Then, we can write

Gl−k+1(ik−1) = min{j | (i,j)∈A} {cik−1j + αGl−k(j)}
≤ cik−1ik + αGl−k(ik) ≤ cik−1ik + αvα

ik
= vα

ik−1
.

As i = i0, we get in particular Gl(i) ≤ vα
i . Combined with Lemma 9.47, we get Gl(i) = vα

i for

some 0 ≤ l ≤ N − 1, as required.

Theorem 9.57

Algorithm 9.16 computes the discounted value vector in O(NM) time.

Proof

Step 1 and step 3 of the algorithm have complexity O(NM). The steps 2 and 4 have complexity

O(N 2) ≤ O(NM). Hence, the overall complexity is O(NM).

By Lemma 9.45, we get vα
i ≤ G0(i) for every i ∈ S, and, by Lemma 9.46, on every optimal

cycle in G there is at least one vertex j for which vα
j = G0(j). The algorithm next computes

Gk(i) := min{j | (i,j)∈A} {cij + αGk−1(j)} for every i ∈ S and k = 1, 2, . . . , N − 1. By Lemma

9.47, we get vα
i ≤ Gk(i) for every i ∈ S and every 0 ≤ k ≤ N − 1.

If (i, j) is an optimal arc, i.e. vα
i = ci,j + αvα

j , if furthermore vα
j = Gk−1(j), then

vα
i = ci,j + αvα

j = vα
i = ci,j + αGk−1(j) ≥ min{j | (i,j)∈A} {cij + αGk−1(j)} = Gk(i) ≥ vα

i ,

implying Gk(i) = vα
i . Take any i ∈ S. Let P1 be a path of N optimal arcs and starting in i. P1

must contain a cycle C and, by Lemma 9.46, there exists a vertex j on C for which vα
j = G0(j).

Let P2 be the subpath of P1 leading from i to the first occurrence of j on C and let l be the

number of arcs in P2 (0 ≤ l ≤ N − 1). As all arcs of P2 are optimal, we get vα
i = Gl(i). Since,

by Lemma 9.47, vα
i ≤ Gk(i) for every 0 ≤ k ≤ N − 1, we have vα

i = min0≤k≤N−1Gk(i), which is

computed in Algorithm 9.16.

530 CHAPTER 9. OTHER TOPICS

Remark

From the value vector vα one obtains easily an optimal deterministic policy: take in each state i

an action f(i) such that vα
i = cij +αvα

j , where j is the state corresponding to the transition from

state i if action f(i) is chosen. This can be done in O(M) time.

Example 9.21

Consider the following DMDP with α = 1
2 . S = {1, 2, 3, 4, 5, 6}; A(1) = A(2) = {1, 2};

A(3) = {1, 2, 3}; A(4) = {1, 2, }; A(5) = {1, 2, 3} and A(6) = {1}. p12(1) = p14(2) = p23(1) = 1;

p24(2) = 1; p32(1) = p34(2) = p36(3) = p45(1) = p42(2) = p54(1) = p56(2) = p53(3) = p66(1) = 1.

c1(1) = 3; c1(2) = 2; c2(1) = 10; c2(2) = 6; c3(1) = 1; c3(2) = 9; c3(3) = 3; c4(1) = 4; c4(2) = 8;

c5(1) = 3; c5(2) = 4; c5(3) = 2; c6(1) = 7.

Note that the graph of this DMDP is the same as in Example 9.20, but with a loop in state 6.

Step 1:

k = 0 : U0 = (0, 0, 0, 0, 0, 0).

k = 1 : U1 = (2, 6, 1, 4, 2, 7).

k = 2 : U2(1) = min{3 + 1
2 · 6, 2 + 1

2 · 4} = 4; U2(2) = min{10 + 1
2 · 1, 6 + 1

2 · 4} = 8;

U2(3) = min{1 + 1
2 · 6, 9 + 1

2 · 4, 3 + 1
2 · 7} = 4; U2(4) = min{4 + 1

2 · 2, 8 + 1
2 · 6} = 5;

U2(5) = min{3 + 1
2 · 4, 4 + 1

2 · 7, 2 + 1
2 · 1} = 5

2 ; U2(6) = 7 + 1
2 · 7 = 21

2 .

U2 = (4, 8, 4, 5, 52 ,
21
2).

k = 3 : U3(1) = min{3 + 1
2 · 8, 2 + 1

2 · 5} = 9
2 ; U3(2) = min{10 + 1

2 · 4, 6 + 1
2 · 5} = 17

2 ;

U3(3) = min{1 + 1
2 · 8, 9 + 1

2 · 5, 3 + 1
2 · 21

2 } = 5; U3(4) = min{4 + 1
2 · 5

2 , 8 + 1
2 · 8} = 21

4 ;

U3(5) = min{3 + 1
2 · 5, 4 + 1

2 · 21
5 , 2 + 1

2 · 4} = 4; U3(6) = 7 + 1
2 · 21

2 = 49
4 .

U3 = (9
2 ,

17
2 , 5,

21
4 , 4,

49
4).

k = 4 : U4(1) = min{3 + 1
2 · 17

2 , 2 + 1
2 · 21

4 } = 37
8 ; U4(2) = min{10 + 1

2 · 5, 6 + 1
2 · 21

4 } = 69
8 ;

U4(3) = min{1 + 1
2 · 17

2 , 9 + 1
2 · 21

4 , 3 + 1
2 · 49

4 } = 21
4 ; U4(4) = min{4 + 1

2 · 4, 8 + 1
2 · 17

2 } = 6;

U4(5) = min{3 + 1
2 · 21

4 , 4 + 1
2 · 49

4 , 2 + 1
2 · 5} = 9

2 ; U4(6) = 7 + 1
2 · 49

4 = 105
8 .

U4 = (37
8 ,

69
8 ,

21
4 , 6,

9
2 ,

105
8).

k = 5 : U5(1) = min{3 + 1
2 · 69

8 , 2 + 1
2 · 6} = 5; U5(2) = min{10 + 1

2 · 21
4 , 6 + 1

2 · 6} = 9;

U5(3) = min{1 + 1
2 · 69

8 , 9 + 1
2 · 6, 3 + 1

2 · 105
8 } = 85

16 ; U5(4) = min{4 + 1
2 · 9

2 , 8 + 1
2 · 69

8 } = 25
4 ;

U5(5) = min{3 + 1
2 · 6, 4 + 1

2 · 105
8 , 2 + 1

2 · 21
4 } = 37

8 ; U5(6) = 7 + 1
2 · 105

8 = 217
16 .

U5 = (5, 9, 85
16 ,

25
4 ,

37
8 ,

217
16).

k = 6 : U6(1) = min{3 + 1
2 · 9, 2 + 1

2 · 25
4 } = 41

8 ; U6(2) = min{10 + 1
2 · 85

16 , 6 + 1
2 · 25

4 } = 73
8 ;

U6(3) = min{1 + 1
2 · 9, 9 + 1

2 · 25
4 , 3 + 1

2 · 217
16 } = 11

2 ; U6(4) = min{4 + 1
2 · 37

8 , 8 + 1
2 · 9} = 101

16 ;

U6(5) = min{3 + 1
2 · 25

4 , 4 + 1
2 · 217

16 , 2 + 1
2 · 85

16} = 149
32 ; U6(6) = 7 + 1

2 · 217
16 = 441

32 .

U6 = (41
8 ,

73
8 ,

11
2 ,

101
16 ,

149
32 ,

441
32).

Step 2:

In the next table we have computed the values
UN(j)−αN−kUk(j)

1−αN−k for j ∈ S and 0 ≤ k ≤ N − 1.

9.6. DETERMINISTIC MDPS 531

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

j = 1 5.206 5.226 5.2 5.214 5.292 5.25

j = 2 9.270 9.226 9.2 9.214 9.292 9.25

j = 3 5.587 5.645 5.6 5.571 5.583 5.688

j = 4 6.413 6.387 6.4 6.464 6.417 6.375

j = 5 4.730 4.742 4.7 4.75 4.708 4.688

j = 6 14 14 14 14 14 14

Hence, G0 = (5.292, 9.292, 5.688, 6.464, 4.8, 14).

Step 3:

k = 1 : G1(1) = min{3 + 1
2 · 9.292, 2 + 1

2 · 6.464} = 5.323;

G1(2) = min{10 + 1
2 · 5.688, 6+ 1

2 · 6.464} = 9.232;

G1(3) = min{1 + 1
2 · 9.292, 9 + 1

2 · 6.464, 3+ 1
2 · 14} = 5.6464;

G1(4) = min{4 + 1
2 · 4.8, 8 + 1

2 · 9.292} = 6.4;

G1(5) = min{3 + 1
2 · 6.646, 4 + 1

2 · 14, 2 + 1
2 · 5.688} = 4.844;

G1(6) = 7 + 1
2 · 14 = 14.

G1 = (5.232, 9.232, 5.464, 6.4, 4.844, 14).

k = 2 : G2(1) = min{3 + 1
2 · 9.232, 2 + 1

2 · 6.4} = 5.2;

G2(2) = min{10 + 1
2 · 5.646, 6+ 1

2 · 6.4} = 9.2;

G2(3) = min{1 + 1
2 · 9.232, 9 + 1

2 · 6.4, 3 + 1
2 · 14} = 5.616;

G2(4) = min{4 + 1
2 · 4.844, 8 + 1

2 · 9.232} = 6.422;

G2(5) = min{3 + 1
2 · 6.4, 4 + 1

2 · 14, 2 + 1
2 · 5.646}= 4.823;

G2(6) = 7 + 1
2 · 14 = 14.

G2 = (5.2, 9.2, 5.616, 6.422, 4.823, 14).

k = 3 : G3(1) = min{3 + 1
2 · 9.2, 2 + 1

2 · 6.422} = 5.211;

G3(2) = min{10 + 1
2 · 5.616, 6+ 1

2 · 6.422} = 9.211;

G3(3) = min{1 + 1
2 · 9.2, 9 + 1

2 · 6.422, 3 + 1
2 · 14} = 5.6;

G3(4) = min{4 + 1
2 · 4.823, 8 + 1

2 · 9.2} = 6.4115;

G3(5) = min{3 + 1
2 · 6.422, 4 + 1

2 · 14, 2 + 1
2 · 5.616} = 4.808;

G3(6) = 7 + 1
2 · 14 = 14.

G3 = (5.211, 9.211, 5.6, 6.4115, 4.808, 14).

k = 4 : G4(1) = min{3 + 1
2 · 9.211, 2 + 1

2 · 6.4115}= 5.20575;

G4(2) = min{10 + 1
2 · 5.6, 6 + 1

2 · 6.4115} = 9.20575;

G4(3) = min{1 + 1
2 · 9.211, 9 + 1

2 · 6.4115, 3+ 1
2 · 14} = 5.6057;

G4(4) = min{4 + 1
2 · 4.808, 8 + 1

2 · 9.211} = 6.404;

G4(5) = min{3 + 1
2 · 6.4115, 4+ 1

2 · 14, 2 + 1
2 · 5.6} = 4.8;

G4(6) = 7 + 1
2 · 14 = 14.

G4 = (5.20575, 9.20575, 5.6057, 6.404, 4.8, 14).

k = 5 : G5(1) = min{3 + 1
2 · 9.20575, 2+ 1

2 · 6.404} = 5.202;

G5(2) = min{10 + 1
2 · 5.60575, 6+ 1

2 · 6.404} = 9.202;

G5(3) = min{1 + 1
2 · 9.20575, 9+ 1

2 · 6.404, 3 + 1
2 · 14} = 5.602875;

532 CHAPTER 9. OTHER TOPICS

G5(4) = min{4 + 1
2 · 4.8, 8 + 1

2 · 9.20575}= 6.4;

G5(5) = min{3 + 1
2 · 6.404, 4 + 1

2 · 14, 2 + 1
2 · 5.6057}= 4.80285;

G5(6) = 7 + 1
2 · 14 = 14.

G5 = (5.202, 9.202, 5.602875, 6.4, 4.80285, 14).

Step 4:

vα
1 = min{5.292, 5.232, 5.2, 5.211, 5.20575, 5.202}= 5.2.

vα
2 = min{9.292, 9.232, 9.2, 9.211, 9.20575, 9.202}= 9.2.

vα
3 = min{5.688, 5.646, 5.616, 5.6, 5.6057, 5.602875}= 5.6.

vα
4 = min{6.464, 6.4, 6.422, 6.4115, 6404, 6.4}= 6.4.

vα
5 = min{4.8, 4.844, 4.823, 4.808, 4.8, 4.8085}= 4.8.

vα
6 = min{14, 14, 14, 14, 14, 14}= 14.

Hence, vα = (5.2, 9.2, 5.6, 6.4, 4.8, 14) and the optimal policy is: f(1) = 2, f(2) = 2, f(3) = 1,

f(4) = 1, f(5) = 3, f(6) = 1.

9.7 Semi-Markov decision processes

9.7.1 Introduction

In the models studied in previous chapters, the decision maker could choose actions only at a

discrete set of time points. However, some applications, particularly in queueing control, are more

natural modeled by allowing decision time points at random times. We have seen some examples

in Chapter 8.

In this section we consider semi-Markov decision processes. They generalizes MDPs by:

(1) Allowing the decision maker to choose actions whenever the state of the system changes.

(2) Allowing the time spent in a particular state to follow an arbitrary probability distribution.

(3) Modeling the system evolution in continuous-time.

We have seen in Section 8.4 that stochastic systems with exponential time distributions can

be transformed to standard MDPs by the method of uniformization. By semi-Markov decision

processes (SMDPs) we can also analyze systems with nonexponential distributions.

In SMDPs action choice determines the joint probability distribution of the subsequent state

and the time between decision epochs. In its simplest form, the system evolves by remaining in

a state for a random amount of time and then jumping to a different state. In greater generality,

the system state may change several times between decision epochs; however, only the state at

the decision epochs is relevant to the decision maker. We refer to these models as semi-Markov

because the distribution time to the next decision epoch and the state at that time depend on

the past only through the the state and action chosen at the current decision epoch and because

the time between transitions may follow an arbitrary probability distribution.

We also study continuous-time Markov decision processes (CTMDPs). This model may be

viewed as a special case of an SMDP because the intertransition times are exponentially dis-

tributed and the actions are chosen at every transition.

9.7. SEMI-MARKOV DECISION PROCESSES 533

We restrict our attention to models in which decision epochs may only occur after a distin-

guished set of transitions. Such models are also called Markov renewal programs. We also restrict

to infinite horizon models with discounted and average reward optimality criteria and assume

the all models have time-homogeneous rewards and transition probabilities, i.e., the rewards and

transition probabilities are independent on the time.

9.7.2 Model formulation

Defining the state system requires some care. In queueing control models the system state may

vary between decision epochs. However, we only allow action choice to depend on the system

content at points of time when actions may be implemented. From the perspective of this model,

what happens between decision epochs provides no relevant information to the decision maker.

To this end we distinguish between the natural process and the semi-Markov decision process.

The natural process models the state evolution of the system as if it were observed continually

throughout time, while the SMDP represents the evolution of the system at decision points only.

The two processes agree at decision epochs. We also refer an SMDP as an embedded Markov

decision process.

For example, in a queueing admission control model, the semi-Markov decision process de-

scribes the system state at arrival times only, while the natural process describes the system state

at all time points. To determine rewards we need information about the queue size at all times.

This is described by the natural process. To determine whether to admit a job, we need only

know the number of customers in the queue when a job enters the system. This is described by

the SMDP.

Let S denote the finite state space. Decision epochs occur at random points of time determined

by the specific model description. If at some decision epoch the system occupies state i, the

decision maker must choose an action a from a finite set A(i). If at some decision epoch the state

is i and action a is chosen, then Qij(a, t) denotes the probability that the subsequent decision

epoch is at most t time units later and the state at that decision epoch equals j. In most

applications Qij(a, t) is not provided directly. Instead, the basic model quantities are the sojourn

time Tij(a) and the transition probabilities pij(a). Conditional to the events that at the current

decision epoch the state is i and action a is chosen and that at the subsequent decision epoch is

state j, the sojourn time is the random time between the current and the subsequent decision

epoch. We assume that the function Fij(a, t) := P{Tij(a) ≤ t} is known. By the transition

probabilities pij(a), we denote that, given the state i and the action a at the current decision

epoch, the state at the subsequent decision epoch is state j. Hence,

Qij(a, t) = pij(a) · Fij(a, t) for all (i, a) ∈ S ×A, j ∈ S and t ≥ 0. (9.106)

If Fij(a, t) is independent of the state j, then we denote the sojourn time by Fi(a, t). In order

to ensure that an infinite number of transitions does not occur in a finite interval, we shall assume

throughout that the following condition holds.

534 CHAPTER 9. OTHER TOPICS

Assumption 9.3

There exist δ > 0 and ε > 0 such that
∑

j Qij(a, δ) ≤ 1− ε for every (i, a) ∈ S ×A.

Or, in other words, this condition states that for every state i and every action a ∈ A(i), there is a positive

probability of at least ε that the transition time will be greater than δ. Consequently, the expected number

of decisions epochs in a finite interval is finite.

We have the following reward structure. When the decision maker chooses action a in state i a

lump sum ri(a) is earned immediately; further, a reward at rate si(a) is imposed until the next decision

epoch: if the next decision epoch occurs after ti(a) units of time, then the reward during this period is

ri(a)+ ti(a) ·si(a). We shall transform the model into one with an expected reward which depends only on

the state of the semi-Markov decision process at a decision epoch and the action chosen. We shall denote

these rewards by r∗i (a), (i, a) ∈ S ×A.

We now describe the evolution of the SMDP. At the start, the system occupies state i1 and the decision

maker chooses action a1. As a consequence the system remains in state i1 for t1 units of time at which

point the system changes to state i2 and the next decision epoch occurs. The decision maker chooses action

a2 and the system remains in state i2 for t2 units of time at which point the system changes to state i3, and

so on. Let hn := (i1, a1, t1, . . . , in−1, an−1, tn−1, in) denote the history of the process up to nth decision

epoch. In contrast to discrete-time models, the history also contains the sojourn times. Equivalently, we

can view discrete MDPs as special cases of SMDPs in which tn = 1 for n = 1, 2,

As in discrete-time models, we consider several classes of decision rules. They may be either determin-

istic or randomized and Markovian or history dependent. Note that history dependent decision rules are

defined in terms of the above expanded notion of history which includes the sojourn times. We use the

same notations for the classes of policies as in MDPs: C,C(M), C(S) and C(D) are the sets of general,

Markov, stationary and deterministic policies, respectively.

9.7.3 Examples

Example 9.22 A two-state semi-Markov decision process

Let S = {1, 2}, A(1) = {1, 2} and A(2) = {1}. We assume the following timing of events. After choosing

an action in a given state, the system remains there for an action-dependent random period of time. Then

a transition occurs and the next action can be chosen. Since the transitions occur only at the end of a

sojourn in a state, we specify transition probabilities for the embedded Markov decision process.

Let p11(1) = p12(1) = 0.5; p11(2) = 0, p12(2) = 1; p21(1) = 0.1, p22(1) = 0.9.

We assume that the sojourn times are uniformly distributed and independent of the states at the subsequent

decision epoch. Let F1(1, t) = U [0, 2], F1(2, t) = U [0, 4] and F2(1, t) = U [0, 3].

The lump sum rewards are given by r1(1) = 0, r1(2) = −1 and r2(1) = 0; the continuous reward rates

are: s1(1) = 5, s1(2) = 10 and s2(1) = −1.

From (9.106) it follows that

Q11(1, t) = Q12(1, t) =

{

0.5 · t
2

0 ≤ t ≤ 2

0.5 t > 2
; Q11(2, t) = 0, t ≥ 0; Q12(2, t) =

{

1 · t
4

0 ≤ t ≤ 4

1 t > 4

Q21(1, t) =

{

0.1 · t
t 0 ≤ t ≤ 3

0.1 t > 3
; Q22(1, t) =

{

0.9 · t
t 0 ≤ t ≤ 3

0.9 t > 3

9.7. SEMI-MARKOV DECISION PROCESSES 535

Example 9.23 Admission control for a G/M/1 queueing system

In a G/M/1 queueing system, interarrival times are independent and follow an arbitrary distribution,

service times at the single server are independent and exponentially distributed. A controller regulates the

system load by rejecting (a = 0) or accepting (a = 1) arriving jobs.

Let the state space for the natural process denote the number of jobs in a system with capacity N :

S = {0, 1, . . . , N}. We denote the interarrival time distribution by G(·) and its density by g(·). Further,

we assume an exponential service rate with parameter µ, independent of the number of jobs in the system.

Each arriving job contributes r units of reward and the system incurs a holding cost at rate s(i) per time

unit whenever there are i jobs in the system. Hence,

ri(a) =
{ 0, i ∈ S, a = 0

r, i ∈ S, a = 1
and si(a) = −s(i), (i, a) ∈ S ×A.

Decisions are required only when jobs enter the system. The embedded Markov decision process models

the system at these time points. We set A(i) = {0, 1}, 0 ≤ i ≤ N − 1 and A(N) = {0}. Action 0 denotes

rejecting an arrival, while action 1 corresponds to accepting an arrival. Since decisions are made only

at arrival time, we have Fij(a, t) = G(t) for all (i, a) ∈ S × A, j ∈ S and t ≥ 0. In between arrivals,

the natural state may change because of service completion. From elementary probability, the number

of service completion in t units of time follows a Poisson distribution with parameter µt. Consequently,
(µt)k

k! · e−µt is the probability of k departures during t units of time. Hence,

Qij(0, t) =

∫ t

0
(µs)(i−j)

(i−j)! · e−µs · g(s)ds 1 ≤ j ≤ i ≤ N
∫ t

0

∑

k≥i
(µs)k

k!
· e−µs · g(s)ds j = 0

0 j > i

Qij(1, t) =

∫ t

0
(µs)(i+1−j)

(i+1−j)! · e−µs · g(s)ds 1 ≤ j ≤ i+ 1 ≤ N
∫ t

0

∑

k≥i+1
(µs)k

k!
· e−µs · g(s)ds j = 0

0 j > i+ 1

Example 9.24 Service rate control in an M/G/1 queueing system

An M/G/1 queueing system has a single server, independent exponential interarrival times, and indepen-

dent service times which follow an arbitrary distribution. In the controlled model, the controller regulates

the system by varying the service rate, where faster servers are more expensive. We assume that inter-

arrival times are exponential with parameter λ, and that service distributions Ga(·), with densities ga(·),
where a can be drawn from a finite set A = {1, 2, ·,M}. In some applications, a will represent a scale

parameter. For example, we might specify Ga to be exponential with parameter µa. Further, we assume

that the controller may change the service rate only upon completion of a service, or on the arrival of a

job to an empty system. Costs include a fixed cost K for changing the service rate, a holding cost rate

h(i) when there are i customers in the system and a cost rate c(a) if action a is chosen.

We denote the state of the natural process by (i, a), where i denote the number of jobs in the system and a

the index of the service distribution in use: S = {(i, a) | i = 0, 1, . . . ; a = 1, 2, . . . ,M}. The semi-Markov

decision process describes these quantities at decision epochs.

In this model, the sojourn time distribution explicitly depends on both the state of the system and the

chosen action. For i ≥ 1, the next decision epoch occurs upon completion of a service:

F(i,a)(b, t) = Gb(t) for all i ≥ 1, a, b ∈ A and t ≥ 0.

If i = 0, the next opportunity to change the service rate occurs when a job arrives:

F(0,a)(b, t) = 1− e−λt for all a, b ∈ A and t ≥ 0.

536 CHAPTER 9. OTHER TOPICS

We now provide the transition probabilities in the natural process. When the queue is empty, the next

transition occurs at an arrival, so that

p(0,a)(1,b)(b) = 1 for all a, b ∈ A (all other transition probabilities are zero).

If i ≥ 1, the next opportunity to change the service rate occurs when a job is completed. If the service time

is t, then the probability that during these t units of time k new jobs arrive is (λt)k

k!
· e−λt for k = 0, 1,

Therefore,

p(i,a)(i−1+k,b)(b) =
∫∞
0

(λt)k

k!
· e−λt · gb(t)dt for i ≥ 1, a, b ∈ A and k = 0, 1,

(all other transition probabilities are zero). For the rewards, we obtain:

r(i,a)(b) =
{ 0 i ≥ 0, a ∈ A, b = a

−K i ≥ 0, a ∈ A, b 6= a
; s(i,a)(b) = −h(i) − c(b), i ≥ 0, a, b ∈ A

9.7.4 Discounted rewards

We assume continuous-time discounting at rate λ > 0. This means that the present value of one unit

received t time units in the future equals e−λt. By setting e−λ := α, this corresponds with the discrete-

time discount factor α ∈ (0, 1).

For a policyR, let vλ
i (R) denote the expected infinite-horizon discounted reward, given that the process

occupies state i at the first decision epoch, defined by

vλ
i (R) := ER

{

∞
∑

n=1

e−λ(T1+T2+···+Tn−1) · {rXn
(Yn) + sXn

(Yn) ·
∫ Tn

0

e−λtdt}
∣

∣

∣ X1 = i
}

. (9.107)

In this expression Xn, Yn denote random variables of the state and action at the nth decision epoch;

Tn denotes the random variable of the time between decision epoch n and decision epoch n + 1, where

T1 + T2 + · · ·+ Tn−1 := 0 for n = 1.

Lemma 9.49

Let πij(a, n, R, t) := PR{Xn = j, Yn = a, T1 +T2 + · · ·+Tn−1 = t | X1 = i} for i, j ∈ S, a ∈ A(i), n ∈ N,

R ∈ C and t ≥ 0, and let r∗j (a) := rj(a) + sj(a) ·
∑

k pjk(a)
∫∞
0

{ ∫ t

0
e−λsds

}

dFjk(a, t).

Then, vλ
i (R) =

∑∞
n=1

∑

j,a r
∗
j (a) ·

∫∞
0

e−λtdπij(a, n, R, t), i ∈ S, R ∈ C.

Proof

First, we observe that

ER

{

rXn
(Yn) + sXn

(Yn) ·
∫ Tn

0
e−λtdt

∣

∣ Xn = j, Yn = a
}

=
∑

k ER

{

rXn
(Yn) + sXn

(Yn) ·
∫ Tn

0
e−λtdt

∣

∣ Xn = j, Yn = a, Xn+1 = k
}

·
PR{Xn+1 = k | Xn = j, Yn = a} =

∑

k pjk(a) ·
{

rj(a) + sj(a) ·
∫∞
0 {
∫ t

0 e
−λsds}dFjk(a, t)

}

=

rj(a) + sj(a) ·
∑

k pjk(a)
∫∞
0 {
∫ t

0 e
−λsds}dFjk(a, t) = r∗j (a), (j, a) ∈ S ×A.

Since the random variables T1 + T2 + · · ·+ Tn−1 and Tn are independent, given Xn and Yn, we obtain

ER

{

e−λ(T1+T2+···+Tn−1) · {rXn
(Yn) + sXn

(Yn) ·
∫ Tn

0 e−λtdt}
∣

∣ X1 = i
}

=
∑

j,a

∫∞
0

e−λt ·
{

ER{rXn
(Yn) + sXn

(Yn) ·
∫ Tn

0
e−λtdt

∣

∣ Xn = j, Yn = a}
}

·
dPR{Xn = j, Yn = a, T1 + T2 + · · ·+ Tn−1 ≤ t | X1 = i} =

∑

j,a r
∗
j (a) ·

∫∞
0

e−λtdPR{Xn = j, Yn = a, T1 + T2 + · · ·+ Tn−1 ≤ t | X1 = i} =
∑

j,a r
∗
j (a) ·

∫∞
0

e−λtdπij(a, n, R, t).

9.7. SEMI-MARKOV DECISION PROCESSES 537

∫∞
0

e−λtdπij(a, n, R, t) may be interpreted as the expected discounted probability that, given X1 = i, we

have Xn = j, Yn = a. By conditioning to the state and action at epoch n− 1, we obtain the recursion

∑

a

∫ ∞

0

e−λtdπij(a, n, R, t) =
∑

l,b

{

{

∫ ∞

0

e−λtdπil(b, n−1, R, t)
}

·plj(b)·
{

∫ ∞

0

e−λsdFlj(b, s)
}

}

. (9.108)

Define wn, M and ρ by

wn :=
∑

j,a

∫ ∞

0

e−λtdπij(a, n, R, t); M := maxi,a

{

|ri(a)|+
|si(a)|
λ

}

; ρ := maxi,j,a

∫ ∞

0

e−λtdFij(a, t).

(9.109)

Then, (9.108) and (9.109) imply

wn =
∑

j

{

∑

l,b

{

[
∫∞
0 e−λtdπil(b, n− 1, R, t)] · plj(b) · [

∫∞
0 e−λsdFlj(b, s)]

}

}

=
∑

l,b

{

[
∫∞
0 e−λtdπil(b, n− 1, R, t)] ·∑j plj(b) · [

∫∞
0 e−λsdFlj(b, s)]

}

≤ ∑

l,b [
∫∞
0

e−λtdπil(b, n− 1, R, t)] · ρ

= ρ · wn−1 ≤ · · · ≤ ρn−1 · w1 = ρn−1,

because w1 =
∑

j,a

∫∞
0

e−λtdπij(a, 1, R, t) =
∫∞
0

e−λtdRR{X1 = i, t ≥ 0 | X1 = i} = 1.

Furthermore, we have

|r∗j (a)| ≤ |rj(a)|+ |sj(a)| ·
∑

k pjk(a) ·
∫∞
0

{ ∫ t

0
e−λsds

}

dFjk(a, t)

= |rj(a)|+ |sj(a)| ·
∑

k pjk(a) ·
∫∞
0

1
λ

(

1− e−λt
)

dFjk(a, t)

≤ |rj(a)|+ |sj(a)|
λ ·∑k pjk(a) ·

∫∞
0

(

1− e−λt
)

dFjk(a, t)

≤ |rj(a)|+ |sj(a)|
λ
·∑k pjk(a) ·

∫∞
0

dFjk(a, t)

≤ |rj(a)|+ |sj(a)|
λ

≤ M.

Consequently, also noting that ρ < 1, we obtain
∑∞

n=1

∑

j,a

∫∞
0 |r∗j (a)| · e−λtdπij(a, n, R, t) ≤M ·∑∞

n=1 wn ≤ M
1−ρ <∞.

Hence, we may interchange the expectation operator and the infinite summation in the expression below:

vλ
i (R) = ER

{

∑∞
n=1 e

−λ(T1+T2+···+Tn−1) · {rXn
(Yn) + sXn

(Yn) ·
∫ Tn

0 e−λtdt}
∣

∣

∣ X1 = i
}

=
∑∞

n=1 ER

{

e−λ(T1+T2+···+Tn−1) · {rXn
(Yn) + sXn

(Yn) ·
∫ Tn

0 e−λtdt}
∣

∣

∣ X1 = i
}

=
∑∞

n=1

∑

j,a r
∗
j (a) · e−λtdπij(a, n, R, t).

The value vector vλ of a discounted SMDP is defined by vλ
i := supR v

λ
i (R), i ∈ S. A policy R∗ is an

optimal policy if vλ
i (R∗) = vλ

i , i ∈ S. From the proof of Lemma 9.49 it follows that

|vλ
i (R)| ≤∑∞

n=1

∑

j,a r
∗
j (a) · e−λtdπij(a, n, R, t) ≤ M

1−ρ
, i ∈ S.

A vector v ∈ R
N is λ-superharmonic if

vi ≥ r∗i (a) +
∑

j

p∗ij(a)vj, (i, a) ∈ S × A, where p∗ij(a) := pij(a) ·
∫ ∞

0

e−λtdFij(a, t). (9.110)

Notice that
∑

j p
∗
ij(a) =

∑

j pij(a) ·
∫∞
0

e−λtdFij(a, t) ≤ ρ ·
∑

j pij(a) = ρ < 1, (i, a) ∈ S × A.

Theorem 9.58

The value vector is the (componentwise) smallest λ-superharmonic vector.

538 CHAPTER 9. OTHER TOPICS

Proof

Choose ε > 0 arbitrarily. Take policies Rj, j ∈ S, such that vλ
j (Rj) ≥ vλ

j − ε. Let ai ∈ A(i) be such that

r∗i (ai) +
∑

j

p∗ij(ai)v
λ
j = maxa {r∗i (a) +

∑

j

p∗ij(a)v
λ
j }, i ∈ S. (9.111)

We denote by R∗ the policy that chooses at t = 0 action ai, given that the state of the system is state i

at t = 0, and then follows policy Rj if the next state is state j, while the process is considered as starting

in state j. Then, we obtain

vλ
i ≥ vλ

i (R∗) = r∗i (ai) +
∑

j p
∗
ij(ai)v

λ
j (Rj) ≥ r∗i (ai) +

∑

j p
∗
ij(ai)v

λ
j − ε ·

∑

j p
∗
ij(ai)

≥ r∗i (ai) +
∑

j p
∗
ij(ai)v

λ
j − ε · ρ ≥ maxa {r∗i (a) +

∑

j p
∗
ij(a)v

λ
j } − ε.

Since ε is arbitrarily chosen, it follows that

vλ
i ≥ maxa {r∗i (a) +

∑

j

p∗ij(a)v
λ
j }, i ∈ S, (9.112)

i.e. vλ is λ-superharmonic. Let R := (π1, π2, . . .) be an arbitrary policy. Then, we can write

vλ
i (R) =

∑

a π
1
ia ·
{

r∗i (a) +
∑

j p
∗
ij(a) ·

{ ∫∞
0

e−λtdFij(a, t)
}

· uλ
j (R)

}

, i ∈ S,

where uλ
j (R) represents the expected discounted reward earned from the second decision epoch, given that

the state at the second decision epoch is state j. Therefore, uλ
j (R) ≤ vλ

j , j ∈ S. Hence,

vλ
i (R) ≥ ∑

a π
1
ia · {r∗i (a) +

∑

j p
∗
ij(a)v

λ
j } ≤

∑

a π
1
ia ·maxa {r∗i (a) +

∑

j p
∗
ij(a)v

λ
j }

= maxa {r∗i (a) +
∑

j p
∗
ij(a)v

λ
j }, i ∈ S.

Since R is arbitrarily chosen, we obtain

vλ
i ≤ maxa {r∗i (a) +

∑

j

p∗ij(a)v
λ
j }, i ∈ S. (9.113)

Combining (9.112) and (9.113) yields

vλ
i = maxa {r∗i (a) +

∑

j

p∗ij(a)v
λ
j }, i ∈ S. (9.114)

Suppose that v ∈ R
N is also λ-superharmonic. Let ai, i ∈ S, again satisfy (9.111). Then, we have

vi − vλ
i (R) ≥ {r∗i (ai) +

∑

j p
∗
ij(ai)vj} − {r∗i (ai) +

∑

j p
∗
ij(ai)v

λ
j }

=
∑

j p
∗
ij(ai)(vj − vλ

j }, i ∈ S.
Let P be the N ×N -matrix with elements pij := p∗ij(ai), i, j ∈ S. Then, we may write in vector notation

v−vλ ≥ P (v−vλ) ≥ · · · ≥ P n(v−vλ), n ∈ N . The matrix P satisfies ‖P ‖∞ = maxi

∑

j p
∗
ij(ai) ≤ ρ < 1.

Consequently, limn→∞ P n = 0, implying v−vλ ≥ limn→∞ P n(v−vλ) = 0. This completes the proof that

the value vector is the smallest λ-superharmonic vector.

For any deterministic policy f∞, let P (f) :=
(

p∗ij(f)
)

and let r∗(f) :=
(

r∗(f)
)

.

Theorem 9.59

vλ(f∞) is the unique solution of the equation r∗(f) + P (f)x = x and vλ(f∞) = {I − P (f)}−1r∗(f).

Proof

The matrix P (f) satisfies ‖P (f)‖∞ = maxi

∑

j p
∗
ij

(

f(i)
)

≤ ρ < 1. Hence, limn→∞ P n(f) = 0, implying

{I − P (f)} is nonsingular. Therefore, it is sufficient to show that vλ(f∞) = r∗(f) + P (f)vλ(f∞).

9.7. SEMI-MARKOV DECISION PROCESSES 539

Notice that

Ei,f∞

{

rX1(Y1) + sX1 (Y1) ·
∫ T1

0
e−λtdt

}

= ri(f) + si(f) ·
∑

j pij(f) ·
∫∞
0

{ ∫ t

0
e−λsds

}

· dFij(f, t) = r∗i (f).

Hence, by conditioning on X2 and T1,

Ei,f∞

{

∑∞
n=2 e

−λ(T1+T2+···+Tn−1) ·
{

rXn
(Yn) + sXn

(Yn) ·
∫ Tn

0 e−λtdt
}

}

=
∑

j pij(f) ·
{ ∫∞

0
e−λtdFij(f, t)

}

· vλ
j (f∞) =

∑

j p
∗
ij(f)v

λ
j (f∞).

In this way, we can write

vλ
i (f∞) = Ei,f∞

{

∑∞
n=1 e

−λ(T1+T2+···+Tn−1) ·
{

rXn
(Yn) + sXn

(Yn) ·
∫ Tn

0 e−λtdt
}

}

= r∗i (f) +
∑

j p
∗
ij(f)v

λ
j (f∞), i ∈ S,

implying that vλ(f∞) satisfies r∗(f) + P (f)x = x.

We have seen that the optimality equation for a discounted semi-Markov decision problem has the form

(9.114). In fact it can be shown similarly to the discrete-time model with discounted rewards that the

operator U : RN → RN , defined by

(Ux)i := maxa {r∗i (a) +
∑

j

p∗ij(a)xaj}, i ∈ S, (9.115)

is a contraction (for details see Denardo [56]). Consequently, we summarize the results in the following

theorem.

Theorem 9.60

(1) The operator U , defined in (9.115), is a contraction.

(2) The value vector vλ is the unique solution of the optimality equation Ux = x.

(3) If f∞ ∈ C(D) satisfies r∗(f) + P (f)vλ = vλ, then f∞ is an optimal policy.

The data of a discounted SMDP are given by the state space S, the action sets A(i), i ∈ S, the transition

probabilities pij(a), (i, a) ∈ S × A, j ∈ S, the immediate rewards ri(a), (i, a) ∈ S × A, the reward rates

si(a), (i, a) ∈ S × A and the sojourn time distribution functions Fij(a, t) for all (i, a) ∈ S × A, j ∈ S.

From these quantities we compute the transition numbers p∗ij(a), (i, a) ∈ S × A, j ∈ S, and the rewards

r∗i (a), (i, a) ∈ S × A.

Example 9.22 (continued)

We assume that λ = 0.1. We first compute the numbers
∫∞
0 e−λtdFi(a, t) for all i ∈ S and a ∈ A(i)

(notice that we write dFi(a, t) because Fij(a, t) is independent of j).
∫∞
0 e−λtdF1(1, t) = 1

2 ·
∫ 2

0 e
−0.1tdt = 1

2 · 1
0.1 ·

(

1− e−0.2
)

= 0.906.
∫∞
0

e−λtdF1(2, t) = 1
4
·
∫ 4

0
e−0.1tdt = 1

4
· 1

0.1
·
(

1− e−0.4
)

= 0.824.
∫∞
0

e−λtdF2(1, t) = 1
3
·
∫ 3

0
e−0.1tdt = 1

3
· 1

0.1
·
(

1− e−0.3
)

= 0.864.

Hence,

p∗11(1) = 0.453, p∗12(1) = 0.453; p∗11(2) = 0, p∗12(2) = 0.824; p∗21(1) = 0.086, p∗22(1) = 0.778.

For the rewards r∗i (a) = ri(a) + si(a) ·
∫∞
0

{ ∫ t

0
e−λsds

}

dFj(a, t), we obtain

r∗1(1) = 0 + 5 ·
∫∞
0

{ ∫ t

0
e−λsds

}

dF1(1, t) = 5 · 1
0.2

∫ 2

0

(

1− e−0.1t
)

dt = 4.683.

r∗1(2) = −1 + 10 ·
∫∞
0

{ ∫ t

0
e−λsds

}

dF1(2, t) = −1 + 10 · 1
0.4

∫ 4

0

(

1− e−0.1t
)

dt = 16.580.

r∗2(1) = 0− 1 ·
∫∞
0

{ ∫ t

0
e−λsds

}

dF2(1, t) = − · 1
0.3

∫ 3

0

(

1− e−0.1t
)

dt = −1.361.

540 CHAPTER 9. OTHER TOPICS

Let f∞1 and f∞2 be the deterministic policies with f1(1) = 1 and f2(1) = 2. Then, we have

P (f1) =

(

0.453 0.453

0.086 0.778

)

, r∗(f1) =

(

4.683

−1.361

)

, P (f2) =

(

0 0.824

0.086 0.778

)

, r∗(f2) =

(

16.580

−1.361

)

.

vλ(f∞1) = {I − P (f1)}−1r∗(f1) =

(

5.141

−4.139

)

and vλ(f∞2) = {I − P (f2)}−1r∗(f2) =

(

16.934

−1.361

)

.

The optimality equation is:

vλ
1 = max{4.683+0.453 ·vλ

1 +0.453 ·vλ
2} and vλ

2 = −1.361+0.086 ·vλ
1 +0.778 ·vλ

2 with solution vλ
1 = 16.934

and vλ
2 = 0.429.

The methods of policy iteration, linear programming, value iteration and modified policy iteration for

discounted MDPs can be applied directly to the discounted SMDPs when we replace αpij(a) and ri(a)

by p∗ij(a) and r∗i (a) for all (i, a) ∈ S × A and j ∈ S. We shall make this statement explicit for the linear

programming method. Since, by Theorem 9.60, vλ is the smallest superharmonic vector, vλ is the unique

optimal solution of the linear program

min
{
∑

j

βjvj

∣

∣

∑

i,a

{δij − p∗ij(a)}vj ≥ r∗i (a), (i, a) ∈ S × A
}

, (9.116)

where βj , j ∈ S, are arbitrary, but strictly positive, numbers. The dual of (9.116) becomes

max

∑

i,a

r∗i (a)xi(a)

∣

∣

∣

∣

∣

∑

i,a {δij − p∗ij(a)}xi(a) = βj , j ∈ S
xi(a) ≥ 0, (i, a) ∈ S × A

. (9.117)

Theorem 9.61

Let x∗ be an optimal solution of the linear program (9.117). Then, any deterministic policy f∞∗ such that

x∗i
(

f∗(i)
)

> 0, i ∈ S, is an optimal policy.

Proof

Since vλ is the unique optimal solution of the linear program (9.116), the dual program (9.117) has also a

finite optimal solution, say x∗. Notice that
∑

a x
∗
j (a) = βj +

∑

i,a p
∗
ij(a)x

∗
i (a) ≥ βj > 0, j ∈ S.

Hence, the policy f∞∗ is well-defined. Further, from the complementary slackness property of linear pro-

gramming, we obtain

x∗i
(

f∗(i)
)

·
{∑

j {δij − p∗ij(f∗)}vλ
j − r∗i (f∗)

}

= 0, i ∈ S,

implying
∑

j {δij − p∗ij(f∗)}vλ
j = r∗i (f∗), i ∈ S, i.e. vλ(f∞∗) = vλ.

Algorithm 9.17 Linear programming algorithm for a discounted SMDP

Input: Instance of a discounted SMDP.

Output: The value vector vλ and an optimal policy f∞∗ .

1. for each (i, a) ∈ S ×A do

for each j ∈ S do p∗ij(a) := pij(a) ·
∫∞
0

e−λtdFij(a, t).

2. for each (i, a) ∈ S ×A do r∗i (a) := ri(a) + si(a) ·
∑

j pij(a)
∫∞
0

{ ∫ t

0
e−λsds

}

dFij(a, t).

3. Select βj ∈ R
N such that βj > 0, j ∈ S.

9.7. SEMI-MARKOV DECISION PROCESSES 541

4. Compute optimal solutions v∗ and x∗ of the dual pair of linear programs

min
{∑

j βjvj

∣

∣

∑

i,a {δij − p∗ij(a)}vj ≥ r∗i (a), (i, a) ∈ S × A
}

and

max

{

∑

i,a r
∗
i (a)xi(a)

∣

∣

∣

∣

∣

∑

i,a {δij − p∗ij(a)}xi(a) = βj , j ∈ S
xi(a) ≥ 0, (i, a) ∈ S ×A

}

.

5. for all i ∈ S do select f∗(i) ∈ A(i) such that x∗i
(

f∗(i)
)

> 0.

6. f∞∗ is an optimal policy and v∗ is the value vector vλ (STOP).

Example 9.22 (continued)

Step 1:

p∗11(1) = 0.453, p∗12(1) = 0.453; p∗11(2) = 0, p∗12(2) = 0.824; p∗21(1) = 0.086, p∗22(1) = 0.778.

Step 2:

r∗1(1) = 4.683; r∗1(2) = 16.580; r∗2(1) = −1.361.

Step 3:

Set β1 := β2 := 0.5.

Step 4:

The primal and dual linear programs are:

min

0.5v1 + 0.5v2

∣

∣

∣

∣

∣

∣

∣

0.547v1 − 0.453v2 ≥ 4.683

v1 − 0.824v2 ≥ 16.580

−0.086v1 + 0.222v2 ≥ −1.361

and

max

4.683x1(1) + 16.580x1(2)

1.361x2(1)

∣

∣

∣

∣

∣

∣

∣

0.547x1(1) + x1(2) − 0.086x2(1) = 0.5

−0.453x1(1) − 0.824x1(2) + 0.222x2(1) = 0.5

x1(1), x1(2), x2(1) ≥ 0

with optimal solutions v∗1 = 16.934, v∗2 = 0.429 and x∗1(1) = 0, x∗1(2) = 1.0189, x∗2(1) = 6.034.

Step 5:

f∗(1) = 2, f∗(2) = 1.

Step 6:

f∞∗ is an optimal policy and v∗ = (16.934, 0.429 is the value vector.

Remark

Consider the MDP model (S, A, p∗, r∗) with the total reward criterion. Denote the total rewards by v∗(R)

for policy R. Since
∑

j p
∗
ij(a) =

∑

j pij(a) ·
∫∞
0

e−λtdFij(a, t) ≤ ρ ·
∑

j pij(a) = ρ < 1 for all (i, a) ∈ S×A,

this model is contracting with µ := e and α := ρ. It can also easily be verified that vλ(π∞) = v∗(π∞) for

every policy π∞ ∈ C(S). Therefore, the MDP model (S, A, p∗, r∗) with total rewards may be considered

as equivalent to the discounted SMDP model.

9.7.5 Average rewards - general case

We can define the average expected reward in two ways. We startn with the most natural definition. Let

Z(t) denote the total reward generated by the process up to time t. The first definition of the expected

reward, χ1(R), is defined by

χ1(R) := lim inf
t→∞

Ei,R

{

Z(t)

t

}

, i ∈ S. (9.118)

542 CHAPTER 9. OTHER TOPICS

For the second definition, χ2(R), we use the random variables τn, where τn is the time between decision

epoch n and decision epoch n+ 1:

χ2(R) := lim inf
M→∞

Ei,R

{∑M
n=1 {rXn

(Yn) + τn · sXn
(Yn)}

}

Ei,R

{∑M
n=1 τn

}
, i ∈ S. (9.119)

However, while χ1(R) is clearly a more natural criterion, it turns out that it is easier to work with χ2(R).

Fortunately, it turns out that under certain conditions, both criteria are equal. If a stationary policy is

employed, then the process {X(t), t ≥ 0} is a semi-Markov process, where X(t) represents the state at

time t. Roughly speaking, for any stationary policy π∞, a sufficient condition for χ1(π∞) = χ2(π∞) is

that the resultant semi-Markov process {X(t), t ≥ 0} is a regenerative process with finite expected cycle

length. Let

T := min {T > 0 | X(t) = i, X(0) = i} and N := min {N ≥ 1 | Xn+1 = i, X1 = i}. (9.120)

Hence, T is the time of the first return to state i, and N is the number of transitions that it takes before

this occurs. We suppress in the notation T and N the dependency of state i.

Lemma 9.50

If Eπ∞ {T} <∞, then Eπ∞ {N} <∞ and T =
∑N

n=1 τn.

Proof

By the definition of T and N , it follows that T ≥=
∑N

n=1 τn, with equality holding if Eπ∞ {N} <∞.

Let δ > 0 and ε > 0 are such as in Assumption 9.3 and let

τn :=

0 if τn ≤ δ
δ with probability ε

1−
P

j Qkj(a,δ)
if τn > δ, Xn = k, Yn = a

0 with probability 1− ε
1−

P

j Qkj(a,δ) if τn > δ, Xn = k, Yn = a

If Xn = k, then Pπ∞{τn > δ} = 1−∑j Qkj(π, δ). Further, τn, n = 1, 2, . . . are independent and

identically distributed with Pπ∞{τn = δ} = Pπ∞{τn > δ} · ε
1−

P

j Qkj(π,δ)
= ε = 1− Pπ∞{τ = 0}.

Now, from Walds equation (see [236]), it follows that if Eπ∞ {N} =∞, then Eπ∞ {∑N
n=1 τn} =∞, and

hence Eπ∞ {T} ≥ Eπ∞ {∑N
n=1 τn} ≥ Eπ∞ {∑N

n=1 τn} =∞ (since τn ≥ τn for all n). Therefore, if

Eπ∞ {T} <∞, then Eπ∞ {N} <∞ and T =
∑N

n=1 τn.

Theorem 9.62

If Eπ∞ {T} <∞, then χ1
i (π

∞) = χ2
i (π

∞) =
Ei,π∞ {Z(T)}

Ei,π∞ {T} , i ∈ S.

Proof

Take any starting state i ∈ S. Now, it is easily seen that, under a stationary policy, the semi-Markov

process {X(t), t ≥ 0} is a regenerative process with regeneration time T . Hence, the process {Z(t), t ≥ 0}
may be regarded as a renewal reward process, and thus (by Theorem 3.16 in [236]),

χ1
i (π

∞) = lim
t→∞

Ei,π∞

{Z(T)

T

}

=
Ei,π∞ {Z(T)}

Ei,π∞ {T} . (9.121)

It is also easy to see that {Xn, n = 1, 2, . . .} is a discrete time regenerative process with regeneration time

N . Hence, by regarding Z1 + Z2 + · · ·+ ZN as the reward during the first cycle of this process, it follows

(by Lemma 9.36 and by Theorem 3.16 in [236]), that

lim
M→∞

Ei,π∞

{ 1

M

M
∑

n=1

Zn

}

=
Ei,π∞ {∑N

n=1 Zn)}
Ei,π∞ {N} . (9.122)

9.7. SEMI-MARKOV DECISION PROCESSES 543

However, if we regard τ1 + τ2 + · · · + τN as the reward during the first cycle of this process, it follows

similarly that

lim
M→∞

Ei,π∞

{ 1

M

M
∑

n=1

τn

}

=
Ei,π∞ {∑N

n=1 τn)}
Ei,π∞ {N} . (9.123)

By combining (9.112) and (9.112), we obtain

χ2
i (π

∞) = lim inf
M→∞

Ei,π∞

{

1
M

∑M
n=1 Zn

}

Ei,π∞

{

1
M

∑M
n=1 τn

}
=

Ei,π∞

{∑N
n=1 Zn

}

Ei,π∞ {N} · Ei,π∞ {N}
Ei,π∞

{∑N
n=1 τn

}
=

Ei,π∞

{∑N
n=1 Zn

}

Ei,π∞

{∑N
n=1 τn

}
.

(9.124)

Since Eπ∞{T} <∞, we have by Lemma 9.50, Eπ∞ {N} <∞ and T =
∑N

n=1 τn. Because Eπ∞ {N} <∞,

we also have
∑N

n=1 Zn = Z(T). Hence,

χ2
i (π

∞) =
Ei,π∞

{

Z(T)
}

Ei,π∞

{

T
} . (9.125)

The result of the theorem follows from (9.121) and (9.125).

As a consequence of the above theorem, we shall write χ(π∞) for the average reward of a stationary policy

π∞. The value vector χ of an undiscounted SMDP is defined by χi := supR χ
1
i (R), i ∈ S. A policy R∗ is

an optimal policy if χ1
i (R∗) = χi, i ∈ S.

We now introduce some additional notation by letting

τi(a) :=
∑

j

pij(a) ·
∫ ∞

0

t dFij(a, t) and r∗i (a) := ri(a) + τi(a) · si(a), (i, a) ∈ S × A. (9.126)

In other words, τi(a) is the expected time until a transition occurs when action a is taken in state i, and

r∗i (a) is the expected reward incurred during such a transition interval. By T (π) we denote the diagonal

matrix with elements {T (π)}ij := δij ·
∑

a τi(a)πia. Throughout the remaining part of this section we shall

assume that the following condition holds.

Assumption 9.4

0 <
∫∞
0 t2 dFij(a, t) <∞ for every i, j ∈ S and a ∈ A(i).

Let vt
i(R) denote the expected total reward generated by the process up to time t, given that the system

occupies state i at time t = 0. The next theorem gives a deep result, which is based on renewal theory, on

Laplace-Stieltjes transforms (the discounted rewards
∫∞
0 eλt dvt

i(R) may be viewed as a Laplace-Stieljes

transform of the total rewards vt
i(R) and on Abelian and Tauberian theorems to the behavior of vt

i(R)

as t → ∞. The results are generalizations of results obtained by Blackwell ([29]) and Miller and Veinott

([199]) for the discrete-time model.

Theorem 9.63

Let π∞ be any stationary policy. Then, we have the following properties.

(1) χ(π∞) is the unique solution of the following system of linear equations:

{ {I − P (π)}x = 0

P ∗(π)T (π)x = P ∗(π)r∗(π)
(9.127)

(2) vλ(π∞) = 1
λ
χ(π∞) +w(π∞) + ε(λ), where limλ↓0 ε(λ) = 0.

(3) w(π∞) is a solution of the linear system {I − P (π)}y = r∗(π) − T (π)χ(π∞).

(4) There exists a deterministic Blackwell optimal policy f∞∗ , i.e. vλ(f∞∗) = vλ for all λ ∈ (0, λ0].

544 CHAPTER 9. OTHER TOPICS

Proof

For the proof, which is complicated, we refer to Denardo’s paper ([60]).

Lemma 9.51

Suppose that x satisfies

{ {I − P (π)}x ≥ 0

P ∗(π)T (π)x ≥ P ∗(π)r∗(π)
. Then, x ≥ χ(π∞).

Proof

Suppose that the Markov chain P (π) and the stationary matrix P ∗(π) have the standard form (5.4) and

(5.7), respectively. Let R(π) and F (π) be the set of states which are recurrent and transient, respectively,

under P (π). Further, let ik be an arbitrary state in the kth ergodic set of the Markov chain P (π). Denote

the vector {I − P (π)}x by a. Then, a ≥ 0 and P ∗(π)a = 0, implying ai = 0 for all i ∈ R(π), i.e.

xi = {P (π)x}i, i ∈ R(π). Consequently, xi = {P ∗(π)x}i, i ∈ R(π). Hence, xi = xik
if i belongs to the

kth ergodic set of P (π). Therefore, we can write xi ≥ {P∗(π)r∗(π)}i

{P∗(π)T (π)e}i
for all i ∈ R(π).

By (9.127) we have with the same arguments, χi(π
∞) = {P∗(π)r∗(π)}i

{P∗(π)T (π)e}i
, i ∈ R(π), implying xi ≥ χi(π

∞)

for all i ∈ R(π). Let xF be the vector with as components the transient states of x. Then, because

x ≥ P (π)x, we can write xF ≥
∑m

k=1 xik
· Ak(π)e+Q(π)xF ≥

∑m
k=1 χik

(π) · Ak(π)e+Q(π)xF .

Since {I−Q(π)} is nonsingular and {I−Q(π)}−1 ≥ 0, we obtain xF ≥
∑m

k=1 χik
(π∞)·{I−Q(π)}−1Ak(π)e.

With the same arguments, we obtain by (9.127), χF (π∞) =
∑m

k=1 χik
(π∞) · {I −Q(π)}−1Ak(π)e.

Therefore, xF ≥ χF (π∞), completing the proof that x ≥ χ(π∞).

Lemma 9.52

lim infλ↓0 λ · vλ
i (R) ≥ χ1

i (R) for every i ∈ S and every policy R.

Proof

Since vλ
i (R) =

∫∞
0 eλt dvt

i(R), the proof follows from an Abelian theorem (see Widder [[334]).

Theorem 9.64

Any deterministic Blackwell optimal policy f∞0 is also an average optimal policy.

Proof

Let f∞0 be a Blackwell optimal policy. Take any arbitrary policy R. Then, Lemma 9.52 and Theorem

9.63 part (2) imply χ1
i (R) ≤ lim infλ↓0 λ · vλ

i (R) ≤ lim infλ↓0 λ · vλ
i (f∞0) = χ1

i (f
∞
0), i ∈ S. Consequently,

χ1
i (f

∞
0) = χ1

i , i ∈ S. i.e. f∞0 is an average optimal policy.

From Theorem 9.64 it follows that for the determination of an average optimal policy, we may restrict

ourselves to the deterministic policies. Consider a deterministic policy f∞. Then, (9.127) implies that

χ1
i (f

∞) depends on the rewards r∗i (a), the transition probabilities pij(a) and the transition times τi(a).

Hence, it is sufficient to know the transition times τi(a) instead of explicit knowledge about the probability

distributions Fij(a, t). By the same argument, we may assume

Fij(a, t) =

{

0 if t < τi(a)

1 if t ≥ τi(a)
for all i, j ∈ S and all a ∈ A(i) (9.128)

A vector v ∈ R
N is called average superharmonic if there exists a vector w such that the pair (v, w) satisfies

the following system of inequalities

{

vi ≥ ∑

j pijvj for every (i, a) ∈ S ×A
τi(a)vi + wi ≥ r∗i (a) +

∑

j pijwj for every (i, a) ∈ S ×A
(9.129)

9.7. SEMI-MARKOV DECISION PROCESSES 545

Theorem 9.65

The value vector χ is the (componentwise) smallest average superharmonic vector.

Proof

Let f∞0 be any deterministic Blackwell optimal policy (f∞0 exists by Theorem 9.63 part (4)), i.e. for every

λ ∈ (0, λ0], v
λ(f∞0) = vλ. Since vλ is λ-superharmonic, we have for all (i, j) ∈ S × A and all λ ∈ (0, λ0]

vλ
i (f∞0) ≥ ri(a) + si(a) ·

∑

j pij(a)
∫∞
0

{ ∫ t

0
e−λs ds

}

dFij(a, t) +
∑

j pij(a) ·
{ ∫∞

0
e−λtdFij(a, t)

}

vλ
j (f∞0).

Since we may assume, by formula (9.128), that Fij(a, t) =

{

0 if t < τi(a)

1 if t ≥ τi(a)
for all i, j ∈ S and all a ∈ A(i),

we obtain
∫∞
0

{ ∫ t

0
e−λs ds

}

dFij(a, t) =
∫ τi(a)

0
e−λs ds = 1

λ
·
(

1−e−λτi(a)
)

and
∫∞
0

e−λtdFij(a, t) = e−λτi(a).

Therefore, we have for all (i, j) ∈ S ×A and all λ ∈ (0, λ0]

vλ
i (f∞0) ≥ ri(a) + si(a) · 1

λ · {1− e−λτi(a)}+ e−λτi(a) ·∑j pij(a)v
λ
j (f∞0).

Using the expansion e−λτi(a) =
∑∞

n=1
(−λτi(a))n

n!
, we obtain for all (i, j) ∈ S × A and all λ ∈ (0, λ0]

vλ
i (f∞0) ≥ ri(a) + si(a) · τi(a) + {1− λτi(a))} ·

∑

j pij(a)v
λ
j (f∞0) + o(λ)

= r∗i (a) +
∑

j pij(a)v
λ
j (f∞0)− λτi(a) ·

∑

j pij(a)v
λ
j (f∞0) + o(λ),

where a function h(λ) = o(λ) if limλ→∞
h(λ
λ

= 0. Using Theorem 9.63 part (2), we can write

1
λχi(f

∞
0) + wi(f

∞
0) + ε(λ) ≥ r∗i (a) +

∑

j pij(a){ 1
λχj(f

∞
0) + wj(f

∞
0) + ε(λ)}

−λτi(a) ·
∑

j pij(a){ 1
λχj(f

∞
0) +wj(f

∞
0) + ε(λ)} + o(λ)

for all (i, j) ∈ S × A and all λ ∈ (0, λ0]. Hence, since χ(f∞0) = χ for every λ ∈ (0, λ0],

1
λ{χi −

∑

j pij(a)χj} ≥ r∗i (a) − {wi(f
∞
0)−∑j pij(a)wj(f

∞
0)} − τi(a) ·

∑

j pij(a)χj + ε(λ)

for all (i, j) ∈ S × A. Therefore,

χi ≥
∑

j

pij(a)χj for all (i, a) ∈ S × A (9.130)

and wi(f
∞
0)} ≥ r∗i (a)+

∑

j pij(a)wj(f
∞
0)− τi(a) ·χi, i ∈ S, a ∈ A(i, χ) := {a ∈ A(i) | χi =

∑

j pij(a)χj}.
Similarly is in Theorem 5.17 we can prove that

τi(a) · χi + wi ≥ r∗i (a) +
∑

j

pij(a)wj for every (i, a) ∈ S ×A, (9.131)

where wi := wi(f
∞
0)−M · χi, and M := min

{

τi(a)·χi−r∗
i (a)+wi(f

∞
0)−P

j
pij(a)wj(f

∞
0)

χi−
P

j pij(a)χj

∣

∣

∣ a ∈ A∗(i), i ∈ S
}

with A∗(i) := {a ∈ A(i) | τi(a) · χi − r∗i (a) +wi(f
∞
0)−∑j pij(a)wj(f

∞
0) < 0}, i ∈ S.

If A∗(i) = ∅, then we set wi := wi(f
∞
0). Consequently, (9.130) and (9.131) imply that the value vector χ

is average superharmonic.

Suppose that v is also an average superharmonic vector with corresponding vector w. Then,

{I − P (f0)}v ≥ 0 and T (f0)v + {I − P (f0)}w ≥ r∗(f0). Consequently, P ∗(f0)T (f0)v ≥ P ∗(f0)r∗(f0).

Since {I − P (f0)}v ≥ 0 and P ∗(f0)T (f0)v ≥ P ∗(f0)r∗(f0), we have by Lemma 9.51, v ≥ χ(f∞0) = χ, the

last equality because f∞0 is an average optimal policy (Theorem 9.64). So, we have shown that the value

vector χ is the (componentwise) smallest average superharmonic vector.

Since the value vector χ is the smallest average superharmonic vector, any optimal solution (v∗, w∗) of the

following linear program satisfies v∗ = χ.

546 CHAPTER 9. OTHER TOPICS

min

∑

j

βjvj

∣

∣

∣

∣

∣

∑

j{δij − pij(a)}vj ≥ 0 for every (i, a) ∈ S ×A
τi(a)vi +

∑

j

(

δij − pij(a)
)

uj ≥ r∗i (a) for every (i, a) ∈ S ×A

,

(9.132)

where βj > 0, j ∈ S, is arbitrarily chosen. The dual linear program of (9.132) is

max

∑

(i,a)

r∗i (a)xi(a)

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a) {δij − pij(a)}xi(a) = 0, j ∈ S
∑

a τj(a)xj(a) +
∑

(i,a) {δij − pij(a)}yi(a) = βj , j ∈ S
xi(a), yi(a) ≥ 0, (i, a) ∈ S ×A

.

(9.133)

Theorem 9.66

Let (x∗, y∗) be an extreme optimal solution of (9.133). Then, any deterministic policy f∞∗ , where

x∗i
(

f∗(i)
)

> 0 if
∑

a x
∗
i (a) > 0 and y∗i

(

f∗(i)
)

> 0 if
∑

a x
∗
i (a) = 0 is an average optimal policy.

Proof

Let (v∗, w∗) be an optimal optimal solution of (9.132). Then, v∗ = χ. Analogously to the proof of Theorem

5.18 it can be shown that:

1. f∞∗ is well-defined.

2.
∑

j {δij − pij(f∗)}χj = 0 for all i ∈ S.

3. τi(f∗)χi +
∑

j {δij − pij(f∗)}w∗
j = 0 for all i ∈ Sx∗ := {j | ∑a x

∗
j (a) > 0}.

4. The states of are transient in the Markov chain induced by P (f∗).

From the above properties it follows that
{ {I − P (f∗)}χ = 0

P ∗(f∗)T (f∗)χ = P ∗(f∗)r∗(f∗)

Hence, by Theorem 9.63, χ(f∞∗) = χ, i.e. f∞∗ is an average optimal policy.

Algorithm 9.18 Linear programming algorithm for an undiscounted SMDP

Input: Instance of an undiscounted SMDP.

Output: The value vector χ and an optimal policy f∞∗ .

1. Select βj ∈ R
N such that βj > 0, j ∈ S.

2. Use the simplex method to compute optimal solutions (v∗, w∗) and (x∗, y∗) of the dual pair of linear

programs (9.132) and (9.133), respectively.

3. for all i ∈ S do select f∗(i) ∈ A(i) such that

begin if
∑

a x
∗
i (a) > 0 then x∗i

(

f∗(i)
)

> 0

else y∗i
(

f∗(i)
)

> 0

end

4. f∞∗ is an average optimal policy and v∗ is the value vector χ (STOP).

Example 9.22 (continued)

In this example we have the following data:

Transition probabilities: p11(1) = p12(1) = 0.5; p11(2) = 0, p12(2) = 1; p21(1) = 0.1, p22(1) = 0.9.

Immediate rewards: r1(1) = 0, r1(2) = −1 and r2(1) = 0.

9.7. SEMI-MARKOV DECISION PROCESSES 547

Continuous reward rates are: s1(1) = 5, s1(2) = 10 and s2(1) = −1.

Expected sojourn times: τ1(1) = 1, τ1(2) = 2 and τ2(1) = 1.5.

Hence, r∗1(1) = 0 + 1 · 5 = 5, r∗1(2) = −1 + 2 · 10 = 19 and r∗1(1) = 0 + 1.5 · (−1) = −1.5.

The primal and dual linear programs are:

min

0.5v1 − 0.5v2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0.5v1 − 0.5v2 0

v1 − v2 0

−0.1v1 + 0.1v2 0

v1 + 0.5w1 − 0.5w2 ≥ 5

2v1 + w1 − w2 ≥ 19

1.5v2 − 0.1w1 + 0.1w2 ≥ −1.5

and

max

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

5x1(1) +

19x1(2) −
1.5x2(1)

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

0.5x1(1) + x1(2) − 0.1x2(1) = 0

−0.5x1(1) − x1(2) − 0.1x2(1) = 0

x1(1) + 2x1(2) + 0.5y1(1) + 0.5y1(2) − 0.1y2(1) = 0.5

1.5x2(1) − 0.5y1(1) − y1(2) + 0.1y2(1) = 0.5

x1(1), x1(2), x2(1), y1(1), y1(2), y2(1) ≥ 0

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

.

with optimal solutions v∗1 = v∗2 = 4
17 ; w∗

1 = 315
17 , w

∗
2 = 0 and x∗1(1) = 0, x∗1(2) = 1

17 , x
∗
2(1) = 10

17 .

f∗(1) = 2, f∗(2) = 1; χ = (4
17 ,

4
17) is the value vector and f∞∗ is the optimal policy.

Let τ be such that

0 < τ ≤ mini,a

{ τi(a)

1− pii(a)

∣

∣

∣
pii(a) 6= 1

}

. (9.134)

Further, let pij(a) := δij − {δij − pij(a)} · τ
τi(a)

for all i, j ∈ S and a ∈ A(i). Therefore, we also

have δij − pij(a) = {δij − pij(a)} · τ
τi(a) for all i, j ∈ S and a ∈ A(i). Then, one can easily verify

that pij(a) ≥ 0 for all i, j ∈ S and a ∈ A(i), and
∑

j pij(a) = 1 for all (i, a) ∈ S × A. Let

ri(a) := 1
τi(a) · r∗i (a) for all (i, a) ∈ S×A. Then, we obtain for all (i, a) ∈ S×A and with vj := vj

and wj := 1
τ · wj for all j ∈ S

∑

j {δij − pij(a)}vj ≤ 0 ⇔ ∑

j {δij − pij(a)}vj · τ
τi(a) ≥ 0

⇔ ∑

j {δij − pij(a)}vj ≥ 0

⇔ ∑

j {δij − pij(a)}vj ≥ 0

and

τi(a)vi +
∑

j {δij − pij(a)}wj ≤ r∗i (a) ⇔ vi +
∑

j {δij − pij(a)}wj · 1
τi(a) ≥ r∗i (a) · 1

τi(a)

⇔ vi +
∑

j {δij − pij(a)}wj · 1
τ ≥ ri(a)

⇔ vi +
∑

j {δij − pij(a)}wj ≥ ri(a)

Hence, the linear program (9.132) is equivalent to the linear program

min

∑

j

βjvj

∣

∣

∣

∣

∣

∣

∑

j{δij − pij(a)}vj ≥ 0 for every (i, a) ∈ S × A
vi +

∑

j

(

δij − pij(a)
)

wj ≥ ri(a) for every (i, a) ∈ S × A

,

(9.135)

which is the linear program (5.28) for the MDP, which is derived from the SMDP by taking

transition probabilities pij(a), i, j ∈ S, a ∈ A(i) and immediate rewards ri(a), i ∈ S, a ∈ A(i).

Therefore, the SMDP is equivalent to the MDP (S, A, p, r), and also the methods policy iteration,

value iteration and modified policy iteration can be used to find an average optimal or ε-optimal

policy for the SMDP.

548 CHAPTER 9. OTHER TOPICS

9.7.6 Average rewards - special cases

In this section we present linear programming algorithms for the weak unichain case, the unichain

case and the irreducible case. These algorithms are a direct consequence of related results for

corresponding special cases of MDPs. Since for these special cases the value vector components

χi, i ∈ S, are independent of the starting state i, we can use the following dual pair of linear

programs:

min
{

v
∣

∣

∣ τi(a)v +
∑

j

{δij − pij(a)}wj ≥ r∗i (a) for every (i, a) ∈ S ×A
}

(9.136)

and

max

∑

(i,a)

r∗i (a)xi(a)

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a) {δij − pij(a)}xi(a) = 0, j ∈ S
∑

(i,a) τi(a)xi(a) = 1

xi(a) ≥ 0, (i, a) ∈ S ×A

. (9.137)

Furthermore, the optimality equation becomes

yi = maxa{r∗i (a) + pij(a)yj − τi(a)x}, i ∈ S. (9.138)

Algorithm 9.19 Linear programming algorithm for a weak unichained undiscounted SMDP

Input: Instance of a weak unichained undiscounted SMDP.

Output: The value χ and an optimal policy f∞∗ .

1. Use the simplex method to compute optimal solutions (v∗, w∗) and x∗ of the dual pair of

linear programs (9.136) and (9.137), respectively.

2. Set Sx∗ := {j ∈ S | ∑a x
∗
j (a) > 0}.

3. for all i ∈ Sx∗ do select f∗(i) ∈ A(i) such that x∗i
(

f∗(i)
)

> 0.

4. Set S0 := Sx∗.

5. if S0 := S then begin v∗ is the value χ; f∞∗ is an average optimal policy (STOP) end

else go to step 6

6. Select a triple (i, ai, j) such that i ∈ S\S0, ai ∈ A(i), j ∈ S0 and pij(ai) > 0.

7. Set f∗(i) := ai, S0 := S0 ∪ {i}; go to step 5.

Algorithm 9.20 Linear programming algorithm for a unichained undiscounted SMDP

Input: Instance of a unichained undiscounted SMDP.

Output: The value χ and an optimal policy f∞∗ .

1. Use the simplex method to compute optimal solutions (v∗, w∗) and x∗ of the dual pair of

linear programs (9.136) and (9.137), respectively.

9.7. SEMI-MARKOV DECISION PROCESSES 549

2. Set Sx∗ := {j ∈ S | ∑a x
∗
j (a) > 0}.

3. for all i ∈ Sx∗ do select f∗(i) ∈ A(i) such that x∗i
(

f∗(i)
)

> 0.

4. for all i ∈ S\Sx∗ do select f∗(i) ∈ A(i) arbitrarily.

5. v∗ is the value χ and f∞∗ is an average optimal policy (STOP).

Algorithm 9.21 Linear programming algorithm for an irreducible undiscounted SMDP

Input: Instance of an irreducible undiscounted SMDP.

Output: The value χ and an optimal policy f∞∗ .

1. Use the simplex method to compute optimal solutions (v∗, w∗) and x∗ of the dual pair of

linear programs (9.136) and (9.137), respectively.

2. for all i ∈ S do select f∗(i) ∈ A(i) such that x∗i
(

f∗(i)
)

> 0.

3. v∗ is the value χ and f∞∗ is an average optimal policy (STOP).

Example 9.22 (continued)

This example is an irreducible model. The linear programs (9.136) and (9.137) are:

min

v

∣

∣

∣

∣

∣

∣

∣

∣

v + 0.5w1 − 0.5w2 ≥ 5

2v + w1 − w2 ≥ 19

1.5v − 0.1w1 + 0.1w2 ≥ −1.5

and

max

5x1(1) +

19x1(2) −
1.5x2(1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0.5x1(1) + x1(2) − 0.1x2(1) = 0

−0.5x1(1) − x1(2) + 0.1x2(1) = 0

x1(1) + 2x1(2) + 1.5x2(1) = 1

x1(1), x1(2), x2(1) ≥ 0

.

with optimal solutions v∗ = 4
17 ; w∗

1 = 315
17 , w

∗
2 = 0 and x∗1(1) = 0, x∗1(2) = 1

17 , x
∗
2(1) = 10

17 .

f∗(1) = 2, f∗(2) = 1; χ =
(

4
17 ,

4
17

)

is the value vector and f∞∗ is an optimal policy.

One can also use policy iteration and value iteration for SMDPs under the unichain (or irreducible)

assumption. The proofs are similar to the proofs for unichained MDPs and are left to the reader.

Below, we present the algorithms.

Algorithm 9.22 Policy iteration algorithm for a unichained undiscounted SMDP

Input: Instance of a unichained undiscounted SMDP.

Output: The value χ and an optimal policy f∞∗ .

1. Select an arbitrary policy f∞ ∈ C(D).

2. Determine the unique solution (x, y) of the system
{

x · T (f)e+ {I − P (f)}y = r∗(f)

y1 = 0

550 CHAPTER 9. OTHER TOPICS

3. for all i ∈ S do B(i, f) := {a ∈ A(i) | r∗i (a) +
∑

j pij(a)yj > τi(a)x+ yi}.

4. if B(i, f) = ∅ for all i ∈ S then

begin x is the value χ; f∞∗ := f∞ is an average optimal policy (STOP) end

else go to step 5.

5. Select g such that for every i ∈ S,

r∗i (g) +
∑

j pij(g)yj − τi(g)x = maxa {r∗i (a) +
∑

j pij(a)yj − τi(a)x}.

6. f := g; return to step 2.

Example 9.22 (continued)

Iteration 1

We start with f(1) = f(2) = 1. The linear system becomes:

x + 0.5y1 − 0.5y2 = 5

1.5x − 0.1y1 + 0.1y2 = −1.5

y1 = 0

with solution x = − 5
17 , y1 = 0, y2 = −180

17 .

B(1, f) = {2}, B(2, f) = ∅; g(1) = 2, g(2) = 1.

Iteration 2

f(1) = 2, f(2) = 1. The linear system becomes:

2x + y1 − y2 = 19

1.5x − 0.1y1 + 0.1y2 = −1.5

y1 = 0

with solution x = 4
17 , y1 = 0, y2 = −315

17 .

B(1, f) = B(2, f) = ∅. The value χ = 4
17 ; f(1) = 2, f(2) = 1 is an optimal policy.

For the semi-Markov decision model the formulation of a value iteration algorithm is not straight-

forward. The usual relation is

vn+1 := Tvn where (Tx)i := maxa {r∗i (a) +
∑

j

pij(a)xj}, i ∈ S. (9.139)

This recursion relation does not take into account the non-identical transition times. However,

we can use the data transformation which uses transition probabilities pij(a) and rewards ri(a),

defined by

pij(a) := δij − {δij − pij(a)} ·
τ

τi(a)
, i, j ∈ S, a ∈ A(i); ri(a) :=

1

τi(a)
· r∗i (a), i ∈ S, a ∈ A(i),

(9.140)

where τ is defined by (9.134).

Lemma 9.53

For any f∞ ∈ C(D) such that P (f) is a unichain Markov chain, we have the following property:

y is the stationary distribution of the Markov chain P (f) if and only if x, defined by

xi := τi(f)
P

j τj(f)yj
· yi, i ∈ S, is the stationary distribution of the Markov chain P (f).

9.7. SEMI-MARKOV DECISION PROCESSES 551

Proof

Let x be the stationary distribution of the Markov chain P (f), i.e. xTP (f) = xT and xT e = 1.

Hence,

xj =
∑

i xi pij(f) =
∑

i xi

{

δij − {δij − pij(a)} · τ
τi(a)

}

= xj − xj · τ
τj(a) +

∑

i xi pij(a) · τ
τi(a) , j ∈ S,

implying
xj

τj(f) =
∑

i
xi

τi(f) · pij(f), j ∈ S. Since P (f) is a unichain Markov chain, any solution of

zT = zTP (f) equals z = c·y, where y is the stationary distribution of P (f). Therefore,
xj

τj(f) = c·yi

for all j ∈ S. Because
∑

j xj = 1, we have c = 1
P

j τj(f)yj
and consequently, xi := τi(f)

P

j τj(f)yj
· yi

for all i ∈ S.

Conversely, let y be the stationary distribution P (f) and define x by xi := τi(f)
P

k τk(f)yk
· yi, i ∈ S.

Then,
∑

i xi = 1 and
∑

i xi pij(f) = 1
P

k τk(f)yk
·∑i τi(f)yi ·

{

δij − {δij − pij(f)} · τ
τi(f)

}

= 1
P

k τk(f)yk
·
{

τj(f)yj − τ · yj + τ ·∑i yi pij(f)
}

= 1
P

k τk(f)yk
·
{

τj(f)yj − τ · {yj −
∑

i yi pij(f)}
}

= 1
P

k τk(f)yk
· τj(f)yj = xj, j ∈ S,

implying x is the stationary distribution of the Markov chain P (f).

Corollary 9.15

χ(f∞) = φ(f∞), where φ(f∞ is the average reward in MDP (S, A, p, r).

Proof

Let π and π be the stationary distributions of the Markov chains P (f) and P (f), respectively.

Then, φ(f∞) =
∑

i πi ri =
∑

i
τi(f)

P

k τk(f)πk
πi · r∗i (f)

τi(f))
=

P

i πir∗i (f)
P

k πkτk(f)
= χ(f∞), the last equality by

(9.127), part (1).

The Markov chain P (f) is unichain and aperiodic. Thus the semi-Markov model can be solved

by applying the value iteration algorithm 5.10, which yields the following algorithm.

Algorithm 9.23 Value iteration algorithm for a unichained undiscounted SMDP

Input: Instance of a unichained undiscounted SMDP and some scalar ε > 0.

Output: An ε-optimal deterministic policy f∞ and a 1
2ε-approximation of the value χ.

1. Select τ be such that 0 < τ ≤ mini,a

{

τi(a)
1−pii(a)

∣

∣

∣ pii(a) 6= 1
}

.

2. Select v ∈ R
N arbitrarily; vN := 0.

3. Compute r∗i (a) := ri(a) + τi(a) · si(a), (i, a) ∈ S ×A.

4. (a) for all (i, a) ∈ S ×A do yi(a) :=
r∗i (a)
τi(a) + τ

τi(a) ·
∑

pij(a)vj + {1− τ
τi(a)} · vi.

(b) g := maxa∈A(N) yN (a).

(c) for all i ∈ S do wi := maxa∈A(i) yi(a)− g.

552 CHAPTER 9. OTHER TOPICS

(d) Select f such that w = y(f)− g · e.
(e) u := maxi (wi − vi); l := mini (wi − vi).

5. if u− l ≤ ε then

begin f∞ is an ε-optimal policy; 1
2(u+ l) + g is an 1

2ε-approximation of φ0 (STOP)

end

else begin v := w; return to step 4 end.

Example 9.25 The streetwalkers dilemma

Consider a prostitute and suppose that potential customers arrive in accordance with a Poisson

process with rate λ. Each potential customer makes an offer consisting of the pair (i, ti), where i is

the amount of money offered and ti is the mean time spent to this customer. The successive offers

are assumed independent and the offer (i, ti) occurs with probability pi > 0, where
∑N

i=1 pi = 1

(we assume that there are N possible offers of the type (i, ti)).

If the offer is rejected, then the arrival leaves and the prostitute waits for the next potential

customer. If the offer is accepted, then all potential customers, who arrive while the prostitute

is busy, are assumed lost. The prostitute dilemma is to choose the customers so as to maximize

the long-run return.

The above problem may be viewed as a two action SMDP with S = {1, 2, . . . , N}, where state i

means that the prostitute has received an offer of (i, ti). Let action 1 be the accept and action 2

the reject action. The other parameters of the process are given by:

pij(1) = pij(2) = pj, i, j ∈ S; r∗i (1) = i, r∗i (2) = 0, i ∈ S; τi(1) = ti + 1
λ , τi(2) = 1

λ , i ∈ S.

This model is an irreducible SMDP. The optimality equation for this model becomes

yi = max
{

i+

N
∑

j=1

pjyj −
{

ti +
1

λ

}

· x,
N
∑

j=1

pjyj −
1

λ
· x
}

, i ∈ S. (9.141)

We know from the general theory that the x-part of (9.141) is the value χ and that in state i

action 1 is optimal if and only if i +
∑N

j=1 pjyj −
{

ti + 1
λ

}

· χ ≥ ∑N
j=1 pjyj − 1

λ · x. Hence the

optimal policy f∞∗ satisfies

f∗ = 1 if and only if
i

ti
≥ χ. (9.142)

So, the structure of the policy is determined. Note that P (f) is, independently of the policy

f∞, the fixed matrix P with identical rows (p1, p2, . . . , pN). Consequently, π := (p1, p2, . . . , pN)

is also the stationary distribution of any P (f). By Theorem 9.63, part (1), χ(f∞) is the unique

solution of πTT (f)x = πT r∗(f). For any policy f∞, let S1(f) := {a | f(i) = 1}. Then, it is

straightforward that

χ(f∞) =

∑

j∈S1(f) pj · j
1
λ +

∑

j∈S1(f) pj · tj
. (9.143)

The right hand of (9.143) can be interpreted as the ratio of the expected return and the expected

time between arrivals. This is exactly in accordance with the renewal theory. For the value χ this

9.7. SEMI-MARKOV DECISION PROCESSES 553

expression has to be maximized over the policies. When the value χ is known, then the optimal

policy f∞∗ follows from (9.142).

Example 9.26 Post office

Suppose that letters arrive at a post office in accordance with a Poisson process with rate λ. At

any time, the postmaster may, at a cost of K, summon a truck to pick up all letters presently

in the post office. We assume that the truck arrives instantaneously. Suppose also that the post

office occurs a cost at a rate of ci when there are i letters waiting to be picked up, where ci is an

nondecreasing function. The problem is to select a policy which minimizes the long-run average

cost per unit time.

This problem may be viewed as a two action SMDP, where state i means that there are i letters

waiting to be picked up. Action 1 is summon a truck and action 2 dont summon a truck. As state

space we take S = {1, 2, . . . , N}. Note that since a truck would never be summoned if there were

no letters in the post office, we need not have a state 0. Further, we assume that there exists a

number N such that a truck is always summoned when there are N letters. The other parameters

of the problem are for all i ∈ S:

pi1(1) = 1; τi(1) = 1
λ ; c∗i (1) = K + c0

λ ; pi,i+1(2) = 1; τi(2) = 1
λ ; c∗i (2) = ci

λ .

This SMDP is obviously a unichained model. Take τ = 1. Then the SMDP model is equivalent to

the MDP model with costs ci(1) = λK + c0, ci(2) = ci and transitions pi1(1) = 1, pi,i+1(2) = 1.

From Section 6.2, it follows that the optimality equation for this model is

x+ yi = min {λK + c0 + y1, ci + yi+1}, i ∈ S, (9.144)

where yN+1 := ∞. Further, we have seen that any solution (x∗, y∗) of this equation satisfies

x∗ = χ, the value of the MDP, and that the policy which chooses the minimal actions is optimal.

Theorem 9.67

Let (x∗ = χ, y∗) be a solution of the optimality equation (9.144). Let the index i∗ be such that

i∗ = min{i | ci + y∗i+1 > λK + c0 + y∗1}. Then, the optimal control-limit policy is to summon the

truck whenever the number of letters in the post office is at least i∗.

Proof

From the definition of the index i∗ it follows that action 1 is optimal in state i∗. Notice that

x+ y∗N = λK + c0 + y∗1 ≥ min {λK + c0 + y∗1 , cN−1 + y∗N} = x+ y∗N−1,

implying y∗N−1 ≤ y∗N . Then, by backward induction and the property that ci is nondecreasing

in i, it follows from (9.144) that the function y∗i is also nondecreasing in i. Hence, we can write

for all i ≥ i∗: ci + y∗i+1 ≥ ci∗ + y∗i∗+1 > λK + c0 + y∗1 . Further, for i ≤ i∗ − 1, we have:

ci + y∗i+1 ≤ ci∗−1 + y∗i∗ ≤ λK+ c0 + y∗1, i.e. in these states it is optimal not to summon the truck.

554 CHAPTER 9. OTHER TOPICS

Consider the optimal control limit policy f∞∗ , as defined in Theorem 9.67. It is easy to see that

the stationary matrix P ∗(f∗) has identical rows π∗ with elements π∗i =
{ 1

i∗
, 1 ≤ i ≤ i∗

0, i ≥ i∗ + 1

The linear system P ∗(f∗)T (f∗)x = P ∗(f∗)r(f∗), which has the unique solution x = χ, becomes

for this model 1
λx =

∑i∗−1
i=1

1
i∗
· ci

λ + 1
i∗

(

K + c0
λ

)

, implying χ = 1
i∗
· {λK +

∑i∗−1
i=0 ci}. Knowing

that an optimal control-limit policy exists, the optimal i∗ can be found as the value for which the

function h(i) := 1
i · {λK +

∑i
k=1 ck} is minimal.

For example, if ci = c · i, we have h(i) = λK
i + i−1

2 · c, and by treating i as a continuous variable,

we obtain by differential calculus that the optimal i∗ is one of the two integers adjacent to
√

2λK
c .

Example 9.27 Optimal sharing of memory between processors

In computer networks an important problem is the allocation of memory to several types of

users. Suppose two processors share a common memory that is able to accommodate a total of

M messages. The messages are distinguished by the processor destinations: a message of type

k is destined for processor k and arrives according to a Poisson process with rate λk (k = 1 or

k = 2). When a message arrives a decision to accept or reject that message must be made. A

message that is rejected has no further influence on the system. If a message is accepted it stays

in the memory until completion of service. The time required to process a message of type k is

exponentially distributed with mean 1
µk
, k = 1, 2. The processor k handles only messages of type

k and is able to serve only one message at a time.

The measure of system performance is minimizing the average weighted sum of the rejections

of the messages 1 and 2, where the respective weights are given by γ1 and γ2. Note that the

special case γ1 = γ2 = 1 is the minimization of the average rejections which is equivalent to the

maximization of the average throughput. This sharing problem can be modeled as a semi-Markov

decision problem.

A straightforward formulation takes the arrival epochs as the only decision epochs. In such a

formulation the determination of the transition probabilities is rather complicated and the vectors

{pij(a), i ∈ S}, with components (j, a) ∈ S × A, have many nonzero entries. By the nature of

the value iteration algorithm it is computationally burdensome to have many nonzero transition

probabilities.

In our specific problem this difficulty can be circumvented by including the service completion

epochs as fictitious decision epochs in addition to the real decision epochs, being the arrival epochs

of the messages. The fictitious decision at the service completion epochs is to leave the system

unchanged. Note that the inclusion of these fictitious decision epochs does not change the Marko-

vian nature of the decision process, since the times between state transitions are exponentially

distributed and thus have the memoryless property.

It will appear that the inclusion of fictitious decision epochs simplifies not only the formulation

of the value iteration algorithm, but also reduces the computational effort as compared with a

straightforward formulation. The inclusion of the service completion epochs as fictitious decision

epochs has a consequence that the state space must be enlarged.

9.7. SEMI-MARKOV DECISION PROCESSES 555

We take as state space S = {(i1, i2, k) | i1, i2 = 0, 1, . . . ,M ; i1 + i2 ≤ M ; k = 0, 1, 2}. State

(i1, i2, k) with k = 1 or k = 2 corresponds to the situation in which a message of type k arrives and

finds i1 messages of type 1 and i2 messages of type 2 being present in the common waiting area.

The state (i1, i2, 0) corresponds to the situation in which the service of a message is completed

and i1 messages of type 1 and i2 messages of type 2 are left behind in the common waiting area.

For the states (i1, i2, k) with k = 1 or k = 2 the possible actions a are 0 or 1, where a = 0

corresponds to rejection and a = 1 to acceptance, with the stipulation that action 0 is the only

action when i1 + i2 = M . For the states (i1, i2, 0) the only decision (a = 0) is leaving the system

unchanged.

Thanks to the fictitious decisions, each transition from a given state is to one of the four

neighboring states, corresponding to arrival of a message of type 1 or 2, or completion of message

of type 1 or 2. In other words, most of the one-step transition probabilities are zero. Further, the

nonzero transition probabilities are easy to specify. To find these probabilities, we use the basic

properties of the exponential distribution.

Let λ(i1, i2) = λ1 + λ2 + µ1δ(i1) + µ2δ(i2), where δ(x) is defined by δ(x) :=
{ 0 if x = 0

1 if x ≥ 1
.

For action a = 0 in any state s = (i1, i2, k), we obtain

τs(a) := 1
λ(i1,i2)

and pss′ :=

λ1
λ(i1,i2)

= λ1 · τs(a) if s′ = (i1, i2, 1)

λ2
λ(i1,i2)

= λ2 · τs(a) if s′ = (i1, i2, 2)

µ1·δ(i1)
λ(i1,i2)

= µ1 · δ(i1) · τs(a) if s′ = (i1 − 1, i2, 0)

µ2·δ(i2)
λ(i1,i2)

= µ2 · δ(i2) · τs(a) if s′ = (i1, i2 − 1, 0)

.

For action a = 1 in any state s = (i1, i2, 1), we obtain

τs(a) := 1
λ(i1+1,i2)

and pss′ :=

λ1
λ(i1+1,i2)

= λ1 · τs(a) if s′ = (i1 + 1, i2, 1)

λ2
λ(i1+1,i2)

= λ2 · τs(a) if s′ = (i1 + 1, i2, 2)

µ1
λ(i1+1,i2)

= µ1 · τs(a) if s′ = (i1, i2, 0)

µ2·δ(i2)
λ(i1+1,i2)

= µ2 · δ(i2) · τs(a) if s′ = (i1 + 1, i2− 1, 0)

.

For action a = 2 in any state s = (i1, i2, 1), we obtain

τs(a) := 1
λ(i1,i2+1) and pss′ :=

λ1
λ(i1,i2+1) = λ1 · τs(a) if s′ = (i1, i2 + 1, 1)

λ2
λ(i1,i2+1) = λ2 · τs(a) if s′ = (i1, i2 + 1, 2)

µ1·δ(i1)
λ(i1,i2+1)

= µ1 · δ(i1) · τs(a) if s′ = (i1 − 1, i2 + 1, 0)

µ2

λ(i1,i2+1) = µ2 · τs(a) if s′ = (i1, i2, 0)

.

For the costs c∗s(a), we have c∗s(a) :=

γ1 if s = (i1, i2, 1) and a = 0

γ2 if s = (i1, i2, 2) and a = 0

0 otherwise

.

Now, having specified the basic elements of this semi-Markov decision model, we are in a position

to formulate the value iteration algorithm for the computation of an ε-optimal policy. In the data

transformation, we take τ := 1
λ1+λ2+µ1+µ2

. The value iteration scheme becomes quite simple.

556 CHAPTER 9. OTHER TOPICS

For the states (i1, i2, 0) we have

vn+1
(i1,i2,0) = τλ1v

n
(i1,i2,1) + τλ2v

n
(i1,i2,2) + τµ1v

n
(i1−1,i2,0) + τµ2v

n
(i1,i2−1,0) + {1− τλ(i1, i2)} vn

(i1,i2,0),

with the convention that vn
(i1,i2,0) = 0 when i1 = −1 or i2 = −1.

For the states (i1, i2, 1) we have

vn+1
(i1,i2,1) = min{

[

γ1λ(i1, i2) + τλ1v
n
(i1,i2,1) + τλ2v

n
(i1,i2,2) + τµ1v

n
(i1−1,i2,0) + τµ2v

n
(i1,i2−1,0) +

{1− τλ(i1, i2)} vn
(i1,i2,1)

]

,
[

τλ1v
n
(i1+1,i2,1) + τλ2v

n
(i1+1,i2,2) + τµ1v

n
(i1,i2,0) +

τµ2v
n
(i1+1,i2−1,0) + {1− τλ(i1 + 1, i2)} vn

(i1,i2,1)

]

},
with the convention that vn

(i1,i2,1) =∞ when i1 + i2 = M + 1.

For the states (i1, i2, 2) we have

vn+1
(i1,i2,2)

= min{
[

γ2λ(i1, i2) + τλ1v
n
(i1,i2,1) + τλ2v

n
(i1,i2,2) + τµ1v

n
(i1−1,i2,0) + τµ2v

n
(i1,i2−1,0) +

{1− τλ(i1, i2)} vn
(i1,i2,2)

]

,
[

τλ1v
n
(i1,i2+1,1) + τλ2v

n
(i1,i2+1,2) + τµ1v

n
(i1−1,i2+1,0) +

τµ2v
n
(i1,i2,0) + {1− τλ(i1, i2 + 1)} vn

(i1,i2,2)

]

},
with the convention that vn

(i1,i2,1) =∞ when i1 + i2 = M + 1.

The value iteration algorithm with the fictitious decision epoch requires the extra states (i1, i2, 0).

However the number of additions and multiplications per iteration is of the order M2 rather than

the order M4 as in a straightforward value iteration algorithm.

Numerical investigations (see [288] p. 229) indicate that for γ1 = γ2 = 1 and µ1 = µ2 the

optimal sharing rule has the intuitively reasonable property that the acceptance of a message of

type 1 in state (i1, i2) implies the acceptance of a message of type 1 in state (i1−1, i2); similarly,

the acceptance of a message of type 2 in state (i1, i2) implies the acceptance of a message of type

2 in state (i1, i2− 1). A control rule of this type is characterized by two nonincreasing sequences

a0 ≥ a1 ≥ · · · ≥ aM−1 and b0 ≥ b1 ≥ · · · ≥ bM−1. A message of type 1 finding upon arrival

(i1, i2) as the state of the system is accepted only when i1 < ai2 and i1 + i2 ≤M − 1. Similarly,

a message of type 2 finding upon arrival (i1, i2) as the state of the system is accepted only when

i2 < bi1 and i1 + i2 ≤M − 1.

In a numerical example with M = 15, λ1 = 1.2, λ2 = 1, µ1 = µ2 = 1 and γ1 = γ2 = 1, we

find a0 = a1 = 11, a2 = a3 = 10, a4 = 9, a5 = a6 = 8, a7 = a8 = 7, a9 = 6, a10 = 5, a11 = 4,

a12 = 3, a13 = 2, a14 = 1 and b0 = b1 = 12, b2 = b3 = 11, b4 = b5 = 10, b6 = 9, b7 = 8, b8 = 7,

b9 = 6, b10 = 5, b11 = 4, b12 = 3, b13 = 2, b14 = 1. The minimal average lost is 0.348.

A challenging open problem is to find a theoretical proof that there exists an optimal policy with

this structure.

Example 9.28 Optimal control of a service system

A service system has s identical channels available for providing service, where the number of

channels in operation can be controlled by turning channels on or off. For example, the service

channels could be checkouts in a supermarket or production machines in a factory.

Requests for service are sent to the service facility according to a Poisson process with rate λ.

Each arriving request is allowed to enter the system and waits in line until an operating channel

9.7. SEMI-MARKOV DECISION PROCESSES 557

is provided. The service time of each request is exponentially distributed with mean 1
µ . It is

assumed that the average arrival rate λ is less than the maximum service rate sµ.

A channel that is turned on can handle only one request at the time. At any time, channels

can be turned on and off depending on the number of service request in the system. A switching

cost K(a, b) ≥ 0 is incurred when adjusting the number of channels turned on from a to b. For

each channel turned on there is an operating costs at a rate r > 0 per unit of time. Also, for each

request a holding cost h > 0 is incurred for each unit of time the message is in the system until

the service is completed. The objective is to find a rule for controlling the number of channels

turned on such that the long run average cost per unit of time is minimal. The decision epochs

are the epochs at which a new request for service arrives or the service of a request is completed.

Since the Poisson process and the exponential distribution are memoryless, the state of the

system can be described by the pair (i, k), where i is the number of service requests present,

and k is the number of channels turned on. In principle, the number of service requests in the

system is unbounded. It is intuitively obvious that under each reasonable control rule all of the

s channels will be turned on when the number of requests in the system is sufficiently large. In

other words, choosing a sufficiently large integer M ≥ s, it is from a practical point of view no

restriction to assume that in the states (i, k) with i ≥ M the only feasible action is to turn on

all of the s channels. However, this implies that we can restrict the control of the system only

to those arrival epochs and service completion epochs at which no more that M service requests

remain in the system.

By doing so, we obtain an SMDP with state space S = {(i, k) | 0 ≤ i ≤M ; 0 ≤ k ≤ s}. The

action sets are A(i, k), where A(i, k) :=

{

{0, 1, . . . , s}, 0 ≤ i ≤M − 1; 0 ≤ k ≤ s
{s}, i = M, 0 ≤ k ≤ s

, where

action a in state (i, k) means that the number of channels turned on is adjusted from k to a.

If action a = s is taken in state (M, k), then the next decision epoch is defined as the first

service completion epoch at which either M−1 (when there are no arrivals in the meantime) orM

(when there are arrivals in the meantime) service requests are left behind. The first possibility has

a probability of sµ
λ+sµ and the second possibility has a probability of λ

λ+sµ . Denote by the random

variable t(M, s) the time until the next decision epoch when action s is taken in state (M, k).

The random variable t(M, s) is the sum of two components. The first component is the time

until the next service completion or the next arrival, whichever occurs first. This first component

is exponentially distributed with expectation 1
λ+sµ . The second component is zero if a service

completion occurs first, which has probability sµ
λ+sµ ; otherwise, which has probability λ

λ+sµ , it is

the time needed to reduce the number of service requests fromM+1 to M . Whenever M or more

requests are in the system, we can imagine that a single ’superchannel’ is servicing requests one at

a time at an exponential rate of sµ. Hence, from the properties of theM/M/1 queue we know that,

if an arrival occurs first, the expectation of the second component of t(M, s) is 1
sµ−λ . Therefore,

we obtain the one-step expected transition time τ(M,k)(s) = 1
λ+sµ + λ

λ+sµ · 1
sµ−λ = sµ

(λ+sµ)(sµ−λ) .

Next, we will compute the one-step expected costs c∗(M,k)(s). These costs consists of several

terms:

558 CHAPTER 9. OTHER TOPICS

- switching costs K(k, s);

- operating costs: rs · τ(M,k)(s) = rs2µ
(λ+sµ)(sµ−λ) ;

- holding costs: hM · τ(M,k)(s) + h · λ
λ+sµ · 1

sµ−λ · (1 + L), where L is the average number of

requests that enter the system during the second component of t(M, s).

From the the properties of the M/M/1 queue we know that L = λ
sµ−λ . Hence, the holding costs

are hM · τ(M,k)(s) + h · λ
λ+sµ · 1

sµ−λ ·
sµ

sµ−λ . Therefore, we obtain for the one-step expected cost:

c∗(M,k)(s) = K(k, s) + rs · sµ
(λ+sµ)(sµ−λ) + hM · sµ

(λ+sµ)(sµ−λ) + h · sµ
(λ+sµ)(sµ−λ) · λ

sµ−λ .

Finally, we have for the transition probabilities in state (M, k):

p(M,k)(M−1,s)(s) = sµ
λ+sµ ; p(M,k)(M,s)(s) = λ

λ+sµ for k = 0, 1, . . . , s.

For the other states, the basic elements of the SMDP are:

τ(i,k)(a) = 1
λ+µ·min(i,a)

, 0 ≤ i ≤M − 1; 0 ≤ a ≤ s;
c∗(i,k)(a) = K(k, a) + h·i+r·a

λ+µ·min(i,a)
, 0 ≤ i ≤M − 1; 0 ≤ a ≤ s;

p(i,a)(i+1,a)(a) = λ
λ+µ·min(i,a) ; p(i,a)(i−1,a)(a) = µ·min(i,a)

λ+µ·min(i,a) .

Note that this model is a unichained SMDP. We set τ = 1
λ+sµ . The value iteration scheme

becomes:

vn+1
(i,k) = min0≤a≤s

{

{λ+ µ ·min(i, a)} ·K(k, a) + h · i+ r · a+ λ
λ+sµ · vn

(i+1,a)

+ µ·min(i,a)
λ+sµ · vn

(i−1,a) +
{

1− λ+µ·min(i,a)
λ+sµ

}

· vn
(i,k)

}

for states (i, k) with 0 ≥ i ≤M − 1 and 0 ≤ k ≤ s and with the convention vn
(−1,k) = 0.

For the states (M, k), 0 ≤ k ≤ s, we obtain

vn+1
(M,k)

= 1
sµ · (λ+ sµ)(sµ− λ) ·K(k, s) + h ·M + r · s+ sµ−λ

λ+sµ · vn
(M−1,s)

+ λ
λ+sµ ·

sµ
λ+sµ · vn

(M,s) +
{

1− sµ−λ
sµ

}

· vn
(M,k).

9.7.7 Continuous-time Markov decision processes

In continuous-time Markov decision processes (CTMDPs), the intertransition times are exponen-

tially distributed. These times may depend on the state and the chosen action. Hence, when the

current state is state i and action a ∈ A(i) is chosen, the sojourn times Fi(a, t) are given by

Fi(a, t) = 1− e−β(i,a)t, t ≥ 0 (9.145)

for some parameter β(i, a).

Consider a fixed stationary policy f∞. The corresponding stochastic original process remains

in state i for a period of time determined by an exponential distribution with parameter β(i, f),

and then jumps to state j with probability pij(f). This process is a continuous stationary Markov

chain. We may summarize the probabilistic behavior of the process in terms of its infinitesimal

generator. By the infinitesimal generator we mean an (N ×N)-matrix Q(f) with components

qij(f) :=

{

−{1− pii(f)} · β(i, f) j = i

pij(f)β(i, f) j 6= i
i, j ∈ S.

9.7. SEMI-MARKOV DECISION PROCESSES 559

Continuous Markov chains

In the continuous Markov chain {X(t), t ≥ 0}, induced by policy f∞ and with sojourn time

Ti(f) in state i, we have for all states i, j with j 6= i, for all t ≥ 0 and for h sufficiently small

P{X(t+ h) = i | X(t) = i} = P{Ti(f) ≥ h}+ P{Ti(f) ≤ h} · pii(f)

= e−β(i,f)h + {1− e−β(i,f)h} · pii(f)

= {1− β(i, f)h}+ {β(i, f)h · pii(f)}+ o(h)

= 1 + qii(f)h+ o(h)

and for every j 6= i,

P{X(t+ h) = j | X(t) = i} = P{Ti(f) ≤ h} · pij(f)

= {1− e−β(i,f)h} · pij(f)

= β(i, f)h · pij(f)}+ o(h)

= qij(f)h+ o(h)

where o(h) for a function g(h) means limh→0
g(h)
h = 0. Note that one might argue that within

the next h time units state j could be reached from state i by first jumping from state i to some

state k and next jumping from state k to state j. However, the probability of two or more state

transitions in a small interval h is of o(h).

Let P (t) be the N × N -matrix defined by {P (t)}ij := P{X(t) = j | X(0) = i} for i, j ∈ S.

Then, the following results are well known from the theory of continuous Markov chains.

Lemma 9.54 Chapman-Kolmogorov equations

P (t+ s) = P (t)P (s) for every s, t > 0.

Proof

Take any i, j ∈ S. Then, we may write

{P (t+ s)}ij = P{X(t+ s) = j | X(0) = i} =
∑

k P{X(t+ s) = j, X(t) = k | X(0) = i}
=

∑

k P{X(t+ s) = j | X(t) = k, X(0) = i} · P{X(t) = k | X(0) = i}
=

∑

k P{X(t+ s) = j | X(t) = k} · P{X(t) = k | X(0) = i}
=

∑

k pik(t) pkj(s) = {P (t)P (s)}ij}.

Lemma 9.55 Kolmogorovs forward differential equations

P ′(t) = P (t)Q(f) for every t > 0 and every f∞ ∈ C(D).

Proof

From Lemma 9.54, we obtain P (t+h) = P (t)P (h) for every t, h > 0. Therefore, for every i, j ∈ S,

pij(t+h) =
∑

k 6=j pik(t)pkj(h)+pij(t)pjj(h) =
∑

k 6=j pik(t)qkj(f)h+pij(t){1+qjj(f)h}+o(h).
Hence,

pij(t+h)−pij (t)
h =

∑

k 6=j pik(t)qkj(f) + pij(t)qjj(f) + o(h)
h =

∑

k pik(t)qkj(f) + o(h)
h .

Letting h ↓ 0, we obtain p′ij(t) =
∑

k pik(t)qkj(f).

560 CHAPTER 9. OTHER TOPICS

Lemma 9.56 Kolmogorovs backward differential equations

P ′(t) = Q(f)P (t) for every t > 0 and every f∞ ∈ C(D).

Proof

From Lemma 9.54, we obtain P (t+h) = P (h)P (t) for every t, h > 0. Therefore, for every i, j ∈ S,

pij(t+h) =
∑

k 6=j pik(h)pkj(t)+pij(t)pjj(h) =
∑

k 6=i qik(f)hpkj(t)+{1+qii(f)h}pij(t)+o(h).

Hence,

pij(t+h)−pij (t)
h =

∑

k 6=i qik(f)pkj(t) + qii(f)pij(t) + o(h)
h =

∑

k qik(f)pkj(t) + o(h)
h .

Letting h ↓ 0, we obtain p′ij(t) =
∑

k qik(f)pkj(t).

Since P (0) = I , we obtain from the above lemmata that the infinitesimal generator determines

the probability distribution of the system. P ′(t) = P (t)Q(f) implies P (t) = etQ(f), where etQ(f) is

defined by etQ(f) :=
∑∞

k=0
{tQ(f)}k

k! . Consequently, processes with the same infinitesimal generator

have identical distributions, provided they have the same initial distribution.

Uniformization

Uniformization is a powerful technique which transforms the original continuous-time process with

nonidentical transition times into an equivalent continuous-time process with identical transition

times. This technique was already used at the end of Section 9.7.5. Take the constant c such that

{1− pii(a)} · β(i, a) ≤ c for all (i, a) ∈ S × A.

Remark that c can be taken as 1
τ , where τ is defined in (9.134). Let, also as in Section 9.7.5,

pij(a) := δij − {δij − pij(a)} ·
β(i, a)

c
for all i, j ∈ S and a ∈ A(i).

Note that pij(a) ≥ 0 for all (i, a) ∈ S × A, j ∈ S, and
∑

j pij(a) = 1 for all (i, a) ∈ S × A.

Consider the stochastic decision process {X(t), t ≥ 0} with uniform exponential sojourn times

with parameter β(i, a) = c for all (i, a) ∈ S × A, and with transition probabilities pij(a) for all

(i, a) ∈ S × A and j ∈ S. The corresponding infinitesimal generator Q(f) satisfies

qij(f) =

−{1− pii(f)}β(i, f) = −
{

1− {1− {1−pii(f)}β(i,f)
c }

}

· c = −{1− pii(f)}β(i, f), j = i;

pij(f)β(i, f) =
pij (f)}β(i,f)

c · c = pij(f)β(i, f), j 6= i.

Hence, given a deterministic policy f∞, the stochastic processes {X(t), t ≥ 0} and {X(t), t ≥ 0}
have the same infinitesimal generator, so that they are equal in distribution. Notice also that

Q(f) = Q(f) = c · {P (f)− I}. Since for every deterministic policy f∞ the matrices P (t), t ≥ 0,

are completely determined by the infinitesimal generator Q(f) via P (t) = etQ(f), it follows from

Q(f) = Q(f) that P (t) = P (t) for all t ≥ 0, i.e. the original continuous-time process with

nonidentical transition times is equivalent to a continuous-time process with identical transition

times.

9.7. SEMI-MARKOV DECISION PROCESSES 561

Let P
n
(f) be the n-step transition probabilities of the discrete-time Markov chain P (f). Using

the fact that the probability of exactly n state transitions of the process X(t) during a given time

t equals the Poisson probability e−ct · (ct)n

n! , it follows by conditioning that

pij(t) =
∞
∑

n=0

{Pn
(f)}ij · e−ct · (ct)

n

n!
for t > 0 and i, j ∈ S. (9.146)

For any fixed time t and starting state i, the probabilities pij(t), j ∈ S can be computed by

pij(t) =
∑∞

n=0 zj(n), where zj(n) := {Pn
(f)}ij · e−ct · (ct)n

n! for n = 0, 1, . . . and all j ∈ S. The

numbers zj(n) can be calculated by applying the recursion scheme

zj(n) :=

0 n = 0 and j 6= i;

e−ct n = 0 and j = i;

ct
n ·
∑

k zk(n − 1) · pkj(f) n ≥ 1 and j ∈ i.
(9.147)

Example 9.29 Uniformization

Consider a continuous Markov chain with S = {1, 2}; p11 = 0, p12 = 1; p21 = 1, p22 = 0;

β1 = 2, β2 = 0.8. Take c = 4 and note that (1− pii) · βi ≤ c for all i ∈ S).

Then, P =

(

0 1

1 0

)

and Q =

(

−2 2

0.8 − 0.8

)

. For the Markov chain P we obtain P =

(

0.5 0.5

0.2 0.8

)

.

It is easy to see that the corresponding infinitesimal generator Q =

(

−2 2

0.8 − 0.8

)

= Q.

Discounted rewards

Assume the same reward structure as in the previous sections. Then, we have

r∗j (a) = rj(a) + sj(a) ·
∫∞
0 {

∫ t
0 e

−λsds} · β(j, a) · e−β(j,a)tdt

= rj(a) + sj(a) · β(j,a)
λ ·

∫∞
0 {1− e−λt} · β(j, a) · e−β(j,a)tdt

= rj(a) + sj(a) · β(j,a)
λ · {

∫∞
0 e−β(j,a)tdt−

∫∞
0 e−{λ+β(j,a)}tdt}

= rj(a) + sj(a) · β(j,a)
λ ·

{

1
β(j,a) − 1

λ+β(j,a)

}

= rj(a) + sj(a) · 1
λ+β(j,a) , (j, a) ∈ S × A

and

p∗ij(a) = pij(a) ·
∫∞
0 e−λt · β(i, a) · e−β(j,a)tdt

= pij(a) · β(i, a) ·
∫∞
0 e−{λ+β(i,a)}tdt

= pij(a) · β(i,a)
λ+β(i,a) , (i, a) ∈ S ×A, j ∈ S.

From Theorem 9.59 it follows that

vλ
i (f∞) = r∗i (f) +

∑

j p
∗
ij(f)vλ

j (f∞) = r∗i (f) +
β(i,a)

λ+β(i,a) ·
∑

j pij(a)v
λ
j (f∞), i ∈ S.

If β(i, f) = β for all (i, a) ∈ S × A, then vλ
i (f∞) = r∗i (f) + α · ∑j pij(a)v

λ
j (f∞), i ∈ S,

with α := β
λ+β ∈ (0, 1). Hence, in this case we have a discrete MDP with discount factor

α = β
λ+β ∈ (0, 1).

562 CHAPTER 9. OTHER TOPICS

Next, we consider the CTMDP obtained by the technique of uniformization and with as rewards

ri(a) := r∗i (a)· λ+β(i,a)
λ+c , (i, a) ∈ S×A. The following result relates the original and the uniformized

model.

Theorem 9.68

vλ(f∞) = vλ(f∞) for every f∞ ∈ C(D).

Proof

From Theorem 9.59 it follows that vλ(f∞) and vλ(f∞) are the unique solutions of the linear

systems

r∗i (f) +
∑

j

pij ·
β(i, f)

λ+ β(i, f)
· xj = xi, i ∈ S (9.148)

and

ri(f) +
∑

j

pij ·
β(i, f)

λ+ β(i, f)
· yj = yi, i ∈ S, (9.149)

respectively. System (9.149) can be rewritten as

r∗i (a) · λ+β(i,a)
λ+c +

∑

j 6=i pij · β(i,f)
c · c

λ+c · yj +
{

1− {1−pii(f)}·β(i,f)
c

}

· c
λ+c · yi = yi, i ∈ S,

which is equivalent to

r∗i (a) · {λ+β(i, a)}+∑j 6=i pij ·β(i, f) · yj +
{

c−{1−pii(f)} ·β(i, f)} · yi = (λ+ c) · yi, i ∈ S,

or

r∗i (a) · {λ+ β(i, a)}+
∑

j pij · β(i, f) · yj = {λ+ β(i, f)} · yi, i ∈ S,

This last equation can be written as r∗i (a) +
∑

j pij · β(i,f)
λ+β(i,a) · yj = yi, i ∈ S, which is system

(9.148) (with y instead of x).

From the above analysis we may consider the discounted CTMDP as a discrete discounted MDP

(S, A, p, r) with discount factor α = c
λ+c . Both models have, by Theorem 9.68, the same value

vector. Note that by uniformization all results from Chapter 3 also are applicable to a discounted

CTMDP.

Example 9.29 (continued)

Let λ = 0.1 and r1 = 3, r2 = 5; s1 = 2 and s2 = 1. Since c = 4, we have α = c
λ+c = 40

41 .

Further, r∗1 = r1 + s1
1

λ+β1
= 83

21 ; r∗2 = r2 + s2
1

λ+β2
= 55

9 ; r1 = r∗1 · λ+β1

λ+c = 83
41 ; r2 = r∗2 · λ+β2

λ+c = 55
41 .

The value vector vα is the unique solution of the system.

vα
1 = r1 + α · {p11v

α
1 + p12v

α
2 } = 83

41 + 40
41 · {0.5vα

1 + 0.5vα
2 } = 83

41 + 20
41 · vα

1 + 20
41 · vα

2 ;

vα
2 = r2 + α · {p21v

α
1 + p22v

α
2 } = 55

41 + 40
41 · {0.2vα

1 + 0.8vα
2 } = 55

41 + 8
41 · vα

1 + 42
41 · vα

2 .

The solution of this system gives: vα
1 = 6221

69 and vα
2 = 6320

69

9.7. SEMI-MARKOV DECISION PROCESSES 563

Average rewards - unichain case

In this subsection we consider a CTMDP with average rewards under the assumption that for all

deterministic policies f∞ the transition matrix P (f) is unichain. For average rewards we have

r∗i (a) = ri(a) + si(a)
β(i,a) for all (i, a) ∈ S × A. Also in this case we consider the uniformized model

with rewards ri(a) = r∗i (a) · β(i, a) = ri(a) · si(a) for all (i, a) ∈ S ×A. The relation between the

original model and the uniformized model is explained in the following theorem.

Theorem 9.69

χ(f∞) = c · χ(f∞) for every f∞ ∈ C(D) .

Proof

From Algorithm 9.22 it follows that χ(f∞) and χ(f∞) are the unique solutions x and w of the

linear systems

x · T (f)e+ {I − P (f)}y = r∗(f); y1 = 0 (9.150)

and

w · T (f)e+ {I − P (f)}z = r(f); z1 = 0, (9.151)

respectively. We also have the following relations:

P (f) = I −B(f){I − P (f)}, where B(f) is a diagonal matrix with elements β(i, f), i ∈ S.

r(f) = B(f)r∗(f); T (f) = {B(f)}−1; T (f) = 1
c · I .

System (9.151) can be rewritten as 1
c · χ(f∞) · e +B(f){I − P (f)}z = B(f)r∗(f); z1 = 0, what

is equivalent to 1
c · χ(f∞) · T (f)e + {I − P (f)}z = r∗(f); z1 = 0. Now, it follows from (9.150)

and that χ(f∞) = c · χ(f∞).

Example 9.29 (continued)

r∗1 = r1 + s1 · 1
β1

= 4; r∗2 = r2 + s2 · 1
β2

= 25
4 ; r1 = r∗1 · β1 = 8; r2 = r∗2 · β2 = 5.

T =

(

0.5 0

0 1.25

)

; T =

(

0.25 0

0 0.25

)

; P =

(

1 0

0 1

)

; P =

(

0.5 0.5

0.2 0.8

)

.

For the value χ we solve the system

1
2x + y1 − y2 = 4
5
4x − y1 + y2 = 25

4

y1 = 0

→ x = χ = 41
7 , y1 = 0, y2 = −15

14 .

For the value χ we solve the system

1
4w + 1

2z1 − 1
2z2 = 8

1
4w − 1

5z1 + 1
5z2 = 2

z1 = 0

→ w = χ = 164
7 , z1 = 0, y2 = −30

7 .

From the above analysis we may consider a unichain CTMDP with average rewards as a discrete

unichain MDP (S, Ap, r) with average rewards. Therefore, we may apply all results from Chapter

6. There are a lot of applications, particularly in queueing theory, that are successfully analyzed

by applying uniformization. As an example we mention the admission control of anM/M/1-queue

as discussed in Section 8.4.

564 CHAPTER 9. OTHER TOPICS

9.8 Bibliographic notes

As the notion of computational complexity emerged, there were tremendous efforts in analyzing

the complexity of MDPs and its solution methods. On the positive side, since it can be formulated

as a linear program, the MDP can be solved in polynomial time by either the ellipsoid method

(e.g. Khachiyan ([168]) or the interior-point method (e.g. Karmarkar ([157]).

The first results particularly for MDPs are due to Papadimitriou and Tsitsiklis ([211]) who

showed for the variants finite horizon MDPs, discounted MDPs and undiscounted MDPs the

following:

(1) these decision problems are complete for P , and therefore most likely cannot be solved

very fast by parallel algorithms;

(2) the deterministic cases of all these variants, the DMDPs, are in NC, and therefore can be

solved very fast in parallel.

Tseng ([290]) showed that the value-iteration method generates an optimal policy in polyno-

mial time. Mansour and Singh ([195]) gave the upper bound 1
N · 2N on the number of iterations

for the policy iteration method when each state has two actions (note that 2N is the total number

of policies, so that this result is not much better than complete enumeration). In 2005, Ye ([336])

developed a strongly polynomial-time combinatorial interior-point algorithm (CIPA).

In terms of the worst-case complexity bound on the number of arithmetic operations the best

results (within a constant factor) are summarized in the following table, when there are exactly

k actions in each of the N states and for L the total bit-size of the input data (see also Littman

et al. [183]). Notice that the discount factor α is a fixed constant, no parameter.

Value iteration Policy iteration Linear programming CIPA

kN 2L · log{1/(1−α)}
1−α kN 3L · log{1/(1−α)}

1−α k2N 3L k4N 4 log{N/(1− α)}

For general linear programming, Klee and Minty ([169]) showed that the classic simplex

method, with as pivot column the column of the most negative reduced cost, necessarily takes an

exponential number of iterations in the worst case. In 1994, Melekopoglou and Condon ([197])

showed that a special policy iteration algorithm, where only the action in the largest state which

has an improving action is updated, needs an exponential number of iterations.

Finally, Ye ([337]) showed that the classic simplex method is indeed a strongly polynomial-

time algorithm for discounted MDPs. He proved that the number of iterations is bounded by
(k−1)N2

1−α · log{N 2/(1 − α)}, and that each each iteration uses at most O(kN 2) aritmetic oper-

ations. Since the policy iteration method with the all-negative-reduced-cost pivoting rule (in

terms of a simplex method with block pivots) is at least good as the policy iteration method

with only one new action per iteration (the action of the most negative reduced-cost), the policy

iteration method is also a strongly polynomial-time algorithm with the same iteration complexity

bound. Therefore, the worst case operation complexity O(k2N 4 logN) is actually superior to the

complexity O(k4N 4 logN) of Yes combinatorial interior-point algorithm.

9.8. BIBLIOGRAPHIC NOTES 565

The first reference on MDPs with additional constraints is the paper of Derman and Klein

([70]). Derman was the first who presented a comprehensive treatment to analyze a constrained

MDP ([[69], chapter 7). He introduced the state-action frequency approach for the analysis of

these problems, and developed its relationship to linear programming. Derman and Veinott ([73])

analyzed CMDPs by applying the Dantzig-Wolfe decomposition principle.

Hordijk and Kallenberg ([129]) have derived results for transient MDPs with additional con-

straints. These results imply the treatment of discounted MDPs with additional constraints. Our

presentation of the material on monotone optimal policies draws from a working paper by Serin

([265]). The section on finite horizon and additional constraints is due to Kallenberg ([147]).

Kallenberg ([148]), and Hordijk and Kallenberg ([129]) developed further properties of the sets

of limiting state action frequencies, and extended the linear programming approach for MDPs

with average rewards to manage also constrained multichain models. Altman and Spieksma

([5]) have have shown that the linear program for constrained MDPs can be obtained from an

equivalent unconstrained Lagrange formulation of this problem. Altman, Hordijk and Kallenberg

studied the value function for constrained discounted MDPs ([3]).

Constrained semi-Markov decision processes with with average rewards was studied by Fein-

berg ([83]). He considered two average reward criteria: time-average rewards and ratio-average

rewards (ratio of total rewards during the first n steps and duration of first n steps as n →∞).

Optimal policies exist for both criteria, but may be different for each of these criteria, even for

unichain problems.

Section 9.2.7 on constrained MDPs with sum of discounted rewards and different discount

factors is based on a paper of Feinberg and Shwartz ([85]), which uses results from Kallenberg

([147]). In Section 9.2.8 we consider the special case where a standard discounted reward function

is to be maximized, subject to a constraint on another standard discounted reward function but

with a different discount factor. For this case we provide an easier implementable algorithm for

computing an optimal policy. This section is also based on a paper of Feinberg and Shwartz ([86])

The sensitivity of CMDPs was considered by Altman and Shwartz ([4]). White ([326]) and

Beutler and Ross ([24]) used Lagrange multipliers to analyze constrained models. A more recent

comprehensive survey of constrained MDPs with an emphasis on the Lagrange approach is Alt-

mans book ([2]). We also mention some papers on CMDPs written by Ross and Varadarajan

([240], [241], [242]).

The results for multiobjective linear programming are based on the papers by Iserman ([140]),

and Yu and Zeleny ([338]). The treatment of MDPs with multiple objective for the average reward

criterion is based on the papers by Durinovic, Lee, Kathehakis and Filar ([76]), and Hordijk and

Kallenberg ([129]).

Section 9.4, in which the linear program for unconstrained and constrained MDPs under the

average reward criterion is revisited, is based on Altman and Spieksma paper ([5]).

Sobel ([278]) and Chung ([41], [42], [43]) considered the mean-variance ratio with a lower

bound on the mean. Kawai ([165]) investigated the minimization of the variance with a lower

bound on the mean. White ([329]) surveyed various models with mean-variance criteria and

566 CHAPTER 9. OTHER TOPICS

reviewed the importance of and relationship between the limiting state action frequencies in

different classes of models. Filar, Kallenberg and Lee ([93]) and White ([330], [331]) analyzed the

variance penalized model. Other contributions to the literature on mean-variance tradeoffs are

Kawai and Katoh ([166]), Bayal-Gürsoy and Ross ([15]) and Sobel ([279]). Huang and Kallenberg

([137]) presented a framework that unifies and extends most of these approaches. The geometrical,

linear algebra approach for the finite horizon variance-penalized problem is due to Collins ([45]).

Deterministic MDPs with average rewards or costs is based on the minimum mean-weight

cycle in a directed graph. This minimum mean-weight cycle problem via shortest paths has

been studied by several authors, among Karp ([158]). The approach via linear programming is

borrowed from Lozovanu and Petric ([186]). The results for deterministic MDPs with discounted

costs are developed by Madani, Thorup and Zwick ([190]).

Semi-Markov decision processes, also called Markov renewal programs, were introduced by

Jewell ([142],[143], Howard ([135]), De Cani ([50]) and Schweitzer ([254]). Ross ([236]) introduced

Assumption 9.3, which appears to be fundamental. The examples 9.22, 9.23 and 9.24 are taken

from Puterman ([227]). Lemma 9.49 and the linear programming approach for discounted SMDPs

were developed by Wessels and Van Nunen ([324]) and by Kallenberg ([148]). The contraction

property of the operator U , defined in (9.115), is due to Denardo ([56]).

The proof that χ1(π∞) = χ2(π∞) for stationary policies π∞ is based on Ross ([237]). The

fundamental Theorem 9.63 was derived by Denardo ([60]). The linear programming method for

undiscounted SMDPs is due to Denardo and Fox ([64]) and to Kallenberg ([148]). The important

data transformation, the uniformization technique, which converts SMDPs to equivalent MDPs

was established by Schweitzer ([255]). The examples 9.25 and 9.25 are taken from Ross ([236]),

and the examples 9.26 and 9.27 from Tijms ([288]).

The material of Section 9.7.7 is taken from Puterman ([227]) and Tijms ([288]).

9.9 Exercises

Exercise 9.1

Consider the following MDP model: S = {1, 2}; A(1) = {1, 2}, A(2) = {1};
p11(1) = 1, p12(1) = 0; p11(2) = 0, p12(2); = 1; p21(1) = 0, p22(1) = 1; β1 = β2 = 1

2 .

Determine the set Q of the long-run average state-action frequencies.

Exercise 9.2

Show by a counterexample that in the multichain case x(β, π∞) is in general not continuous in

π.

Exercise 9.3

Consider the inventory model with backlogging of Example 1.1. The state represent the inventory

on hand and negative states represent backlogged orders. Suppose that we are interested in

maximizing the long-run average profit, subject to the requirement that the average probability

that there is out of stock is at most γ. Formulate the constraint of this optimization problem.

9.9. EXERCISES 567

Exercise 9.4

Consider the following irreducible MDP model: S = {1, 2}; A(1) = {1}, A(2) = {1, 2, 3};
p11(1) = 0.4, p12(1) = 0.6; p21(1) = 1, p22(1) = 0; p21(2) = 0.8, p22(2) = 0.2;

p21(3) = 0.3, p22(3) = 0.7.

a. Determine an average optimal deterministic policy f∞ by linear programming.

b. Add the constraint that the limiting state-action frequencies in state 2 is no more than 0.4

and solve the constrained model, i.e. determine an optimal stationary policy π∞.

Exercise 9.5

Consider a unichain multi-objective MDP with immediate rewards rk
i (a), k = 1, 2, . . . , m.

Let x be an optimal solution of the linear program

max

∑

(i,a)

ri(a)xi(a)

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a) {δij − pij(a)}xi(a) = 0, j ∈ S
∑

(i,a) xi(a) = 1

xi(a) ≥ 0, (i, a) ∈ S × A

,

where ri(a) =
∑m

k=1 λkr
k
i (a) for some λ ∈ Rm with λk > 0, k = 1, 2, . . . , m.

Define the stationary policy π∞ by πia =

xi(a)/xi if xi > 0;

arbitrary if xi = 0.

Show that policy π∞ is a β-efficient solution for any initial distribution β.

Exercise 9.6

Prove Lemma 9.53.

Exercise 9.7

Consider the following irreducible MDP model: S = {1, 2}; A(1) = {1, 2}, A(2) = {1}.
p11(1) = 0.8, p12(1) = 0.2; p11(2) = 0, p12(2) = 1; p21(1) = 1, p22(1) = 0.

r1(1) = 1, r1(2) = 0, r2(1) = 3.

a. Determine for the two deterministic stationary policies the average reward and the variance.

b. Consider the mean-variance tradeoffs problem min{V (R) | φ(R) ≥ 17
12}.

(1) Formulate the parametric linear program for this problem and solve it.

(2) Determine the optimal solution xopt of problem (9.94) and the optimum value V (xopt).

(3) Determine an optimal policy according to the proof of Theorem 9.53.

(4) Show that if π∞ is the stationary policy which randomizes in state 1 between the two

actions with the same randomization as the optimal policy uses between the two

deterministic policies, then π∞ is not an optimal policy for the mean-variance tradeoffs

problem.

(5) Try to find a stationary policy π∞ with the same average reward and variance as the

policy of part (3).

568 CHAPTER 9. OTHER TOPICS

Chapter 10

Stochastic Games

10.1 Introduction

10.1.1 The model

10.1.2 Optimality criteria

10.1.3 Matrix games

10.1.4 Bimatrix games

10.2 Discounted rewards

10.2.1 Value and optimal policies

10.2.2 Mathematical programming

10.2.3 Iterative methods

10.2.4 Finite methods

10.3 Total rewards

10.3.1 Value and optimal policies

10.3.2 Mathematical programming

10.3.3 Single-controller stochastic games: the transient case

10.3.4 Single-controller stochastic games: the general case

10.4 Average rewards

10.4.1 Value and optimal policies

10.4.2 The Big Match

10.4.3 Mathematical programming

10.4.4 Perfect information and irreducible games

10.4.5 Finite methods

10.5 10.5.1 Two-person general-sum stochastic games

10.5.2 Discounted rewards

10.5.3 Single-controller stochastic games

10.6 Bibliographic notes

10.7 Exercises

569

570 CHAPTER 10. STOCHASTIC GAMES

10.1 Introduction

10.1.1 The model

In this chapter we first consider two-person zero-sum stochastic games. As in MDPs a stochastic

game is a dynamic system that evolves along discrete time points. The state of the system at

every time point is assumed to be one of the finite set S = {1, 2, . . . , N}. At these discrete time

points each of the two players has the possibility to earn rewards and to influence the course of

the system by choosing, independently of the choice of the other player, an action out of a finite

action set. Let A(i) and B(i) be the action sets of player 1 and player 2, respectively, in state

i, i ∈ S. If in state i player 1 chooses action a ∈ A(i) and player 2 action b ∈ B(i) then two

things happen:

(1) Player 1 earns an immediate reward ri(a, b) from player 2 (zero-sum game);

(2) The next state is determined by a transitions which depend on the actions a and b, i.e. the

state of the next decision time point is state j with probability pij(a, b), j ∈ S, where
∑

j pij(a, b) = 1 for every i ∈ S, a ∈ A(i) and b ∈ B(i).

Consider the Cartesian product

S ×A ×B := {(i, a, b) | i ∈ S, a ∈ A(i), b ∈ B(i)}

and let Ht denote the set of the possible histories of the system up to time point t, i.e.

Ht := {ht = (i1, a1, b1, . . . , it−1, at−1, bt−1, it | (ik, ak, bk) ∈ S × A×B, 1 ≤ k ≤ t− 1; it ∈ S}.

A decision rule πt at time point t for player 1 is a function on Ht which prescribes the action to

be taken at time t as a transition probability from Ht into A, i.e.

πt
htat
≥ 0 for every at ∈ A(it) and

∑

at

πt
htat

= 1 for every ht ∈ Ht.

A policy R1 for player 1 is a sequence of decision rules: R1 = (π1, π2, . . . , πt, . . .), where πt is the

decision rule at time point t, t = 1, 2, Similarly, the concept of a decision rule and a policy

for player 2 is defined. As in the MDP model we distinguish between Markov, stationary and

deterministic policies.

For stationary policies π∞ and ρ∞ for player 1 and 2, respectively, the transition matrix P (π, ρ)

and the reward vector r(π, ρ) are defined by

pij(π, ρ) :=
∑

a,b

pij(a, b)πiaρib for every (i, j) ∈ S × S; (10.1)

ri(π, ρ) :=
∑

a,b

ri(a, b)πiaρib for every i ∈ S. (10.2)

Furthermore, we define for all i, j ∈ S and all a ∈ A(i) and b ∈ B(i):

pij(a, ρ) :=
∑

b

pij(a, b)ρib; ri(a, ρ) :=
∑

b

ri(a, b)ρib; (10.3)

pij(π, b) :=
∑

a

pij(a, b)πia; ri(π, b) :=
∑

a

ri(a, b)πia. (10.4)

10.1. INTRODUCTION 571

10.1.2 Optimality criteria

Let Xt, Yt, Zt be random variables denoting the observed state, the action chosen by player 1

and the action chosen by player 2, respectively, at time point t. For any two policies R1 and R2

for player 1 and player 2, respectively, and initial state i, we denote the total expected discounted

reward and the average expected reward by vα
i (R1, R2) and φi(R1, R2), defined by

vα
i (R1, R2) :=

∞
∑

t=1

αt−1
∑

j,a,b

Pi,R1,R2{Xt = j, Yt = a, Zt = b} · rj(a, b). (10.5)

and

φi(R1, R2) := lim inf
T→∞

1

T

T
∑

t=1

∑

j,a,b

Pi,R1,R2{Xt = j, Yt = a, Zt = b} · rj(a, b). (10.6)

The total expected reward, given initial state i and the policies R1 and R2 is denoted by vi(R1, R2)

and defined by

vi(R1, R2) :=

∞
∑

t=1

∑

j,a,b

Pi,R1,R2{Xt = j, Yt = a, Zt = b} · rj(a, b), (10.7)

under the following assumptions:

(1) The model is substochastic, i.e.
∑

j pij(a, b) ≤ 1 for all (i, a, b) ∈ S × A×B.

(2) For any initial state i and any two policies R1, R2 the expected total reward vi(R1, R2) is

well-defined (possibly ±∞).

Under the assumption that the model is transient, i.e.
∑∞

t=1 Pi,R1,R2 {Xt = j, Yt = a, Zt = b} <∞
for all i, j and a, b, it can be shown that, with α = 1, most properties of the discounted model

are valid for the total reward.

10.1.3 Matrix games

For the solution of stochastic games we sometimes make use of properties of matrix games.

Therefore we present in this section a number of concepts and results in the theory of matrix

games.1 A two-person zero-sum matrix game can be represented by an m× n-matrix A = (aij),

the game matrix or payoff matrix. The actions of player 1 correspond to the rows and the actions

of player 2 to the columns of A. When player 1 chooses row i and player 2 column j, player 2

has to pay the amount aij to player 1. If player 1 chooses row i, he will get at least minj aij .

Hence, by an optimal choice of row i, he can achieve w(A) := maximinj aij. Similarly, player 2

can obtain a payoff of at most w(A) := minjmaxi aij. It is well known that

w(A) = minimaxj aij ≥maximinj aij = w(A).

Let us now allow the choice of a strategy by a player to be random. The set of mixed strategies

of player 1 is the simplex

X :=
{

(x1, x2, . . . , xm) | xi ≥ 0, 1 ≤ i ≤ m;

m
∑

i=1

xi = 1
}

.

1For a comprehensive survey of matrix games we refer to Owen, G.: Game Theory, Academic Press, 1982.

572 CHAPTER 10. STOCHASTIC GAMES

An element x ∈ X is the probability on the set of rows of A. Similarly, the set of mixed strategies

of player 2 is the simplex

Y :=
{

(y1, y2, . . . , yn) | yj ≥ 0, 1 ≤ j ≤ n;

n
∑

j=1

yj = 1
}

.

If player 1 uses x ∈ X and player 2 y ∈ Y , the (average) payoff is xTAy =
∑m

i=1

∑n
j=1 xiaijyj .

Note that the pure strategy for player 1 of choosing row i may be represented as the mixed strategy

ei, the unit vector with a 1 in the i-th position and 0’s elsewhere. Similarly, the pure strategy for

player 2 of choosing column j may be represented as the mixed strategy ej.

It is natural to consider the mixedmaxmin andminmax, namely v(A) := maxx∈Xminy∈Y x
TAy

and v(A) := miny∈Ymaxx∈X xTAy. Since miny∈Y x
TAy = minj x

TAej, we can write

v(A) = maxx∈Xminy∈Y x
TAy = maxx∈Xminj x

TAej ≥ maximinj aij = w(A).

Similarly, w(A) ≥ v(A), implying v(A) − v(A) ≤ w(A) − w(A), i.e. mixed strategies reduce the

’duality gap’. Since maxx∈X xTAy ≥ maxx∈Xminy∈Y x
TAy for all y ∈ Y , we obtain

v(A) = miny∈Y maxx∈X xTAy ≥maxx∈Xminy∈Y x
TAy = v(A).

The matrix game with payoff matrix A has a value val(A) if val(A) = v(A) = v(A). The policy

x∗ ∈ X is an optimal policy for player 1 if

(x∗)TAy ≥ v(A) for all y ∈ Y .

The policy y∗ ∈ Y is an optimal policy for player 2 if

xTAy∗ ≤ v(A) for all x ∈ X.

The basic Minmax Theorem for two-person zero-sum matrix games proves that the game has a

value and that both players have optimal mixed strategies.

Theorem 10.1 Minmax theorem

Two-person zero-sum matrix games have a value and both players have optimal mixed strategies.

Proof

Consider the linear programming problem

min

y0

∣

∣

∣

∣

∣

∣

y0 ≥
n
∑

j=1

aijyj , 1 ≤ i ≤ m;
n
∑

j=1

yj = 1; yj ≥ 0, 1 ≤ j ≤ n

(10.8)

with corresponding dual program

max

{

x0

∣

∣

∣

∣

∣

x0 ≤
m
∑

i=1

aijxi, 1 ≤ j ≤ n;

m
∑

i=1

xi = 1; xi ≥ 0, 1 ≤ i ≤ m
}

. (10.9)

10.1. INTRODUCTION 573

Let (y∗0 , y
∗) and (x∗0, x

∗) be optimal solutions of (10.8) and (10.9), respectively. Take any x ∈ X
and y ∈ Y . Then, we can write

y∗0 =
∑m

i=1 xiy
∗
0 ≥

∑m
i=1 xi

∑n
j=1 aijy

∗
j = xTAy∗

and

x∗0 =
∑n

j=1 yjx
∗
0 ≤

∑n
j=1 yj

∑m
i=1 aijx

∗
i = (x∗)TAy.

Hence, xTAy∗ ≤ y∗0 = x∗0 ≤ (x∗)TAy for all x ∈ X and y ∈ Y . Therefore,

x∗0 = y∗0 = (x∗)TAy∗ and (x∗)TAy∗ = maxx∈X xTAy∗ and (x∗)TAy∗ = miny∈Y (x∗)TAy,

implying

v(A) = maxx∈Xminy∈Y x
TAy ≥ miny∈Y (x∗)TAy = (x∗)TAy∗ = maxx∈X xTAy∗

≥ miny∈Ymaxx∈X xTAy = v(A).

Since we also have v(A) ≥ v(A), we have shown that v(A) = v(A) = val(A) and (x∗)TAy ≥ val(A)

for all y ∈ Y and xTAy∗ ≤ val(A), i.e. x∗ and y∗ are optimal policies for player 1 and 2,

respectively.

The simplest case of all occurs if a saddle point exists, i.e. there exists an entry akl which is

both the maximum entry in its column and the minimum entry in its row. In this case the pure

strategies row k for player 1 and column l for player 2 are optimal strategies as the following

lemma shows.

Lemma 10.1

If akl ≥ ail for all i and akl ≤ akj for all j, then x = ek and y = el are optimal pure strategies

for player 1 and 2, respectively, and akl is the value of the game.

Proof

The result follows immediately from the following observation.

akl = maxi ail ≥ minjmaxi aij = w(A) ≥ val(A) ≥ w(A) = maximinj aij ≥ minj akj = akl.

Suppose that player 1 has the pure optimal strategy ek. From (ek)
TAy ≥ val(A) = (ek)

TAy∗ for

all y ∈ Y and some y∗ ∈ Y it follows that akj ≥ val(A) = (ek)
TAy∗ for j = 1, 2, . . . , n. Therefore,

el is an optimal pure strategy for player 2, where l satisfies akl = minj akj. Since el is an optimal

pure strategy for player 2, we also have xTAel ≤ val(A) = akl for all x ∈ X , implying ail ≤ akl

for i = 1, 2, . . . , m. Hence, A has a saddle point akl and we obtain the following result.

Lemma 10.2

If one of the players has a pure optimal strategy, both players have optimal pure strategies and

the game has a saddle point.

Lemma 10.3

(1) For any c ∈ R and any m× n-matrix A, val(A+ cJ) = val(A) + c, where J is the

m× n-matrix with each entry equal to 1.

(2) For any two m× n-matrices A and B with aij ≤ bij for all (i, j), we have val(A) ≤ val(B).

(3) For any two m× n-matrices A and B, |val(A)− val(B)| ≤ max(k,l) |akl − bkl|.

574 CHAPTER 10. STOCHASTIC GAMES

Proof

(1) and (2): Since xT (A+ cJ)y = xTAy + c and xTAy ≤ xTBy, it is straightforward that

val(A+ cJ) = val(A) + c and val(A) ≤ val(B).

(3) Notice that aij −max(k,l) |akl − bkl| ≤ bij ≤ aij +max(k,l) |akl − bkl| for all (i, j). Hence,

by (1) and (2), val(A) ≤ val(B) +max(k,l) |akl − bkl| and val(B) ≤ val(A) +max(k,l) |akl − bkl|,
implying |val(A)− val(B)| ≤ max(k,l) |akl − bkl|.

2 × 2 games

Suppose we are given the 2× 2 matrix game

(

a11 a12

a21 a22

)

. It may be that this game has a saddle

point; if so, this entry is the value and provides the optimal strategies which are pure. Suppose

that the game has no saddle point. Then, by Lemma 10.2 both players have completely mixed

optimal strategies x and y, i.e. x1 > 0, x2 > 0, y1 > 0 and y2 > 0. For the value of the game we

have val(A) = x1{a11y1 + a12y2}+ x2{a21y1 + a22y2}. The two terms between brackets are at

most val(A) (see the linear program (10.8)), we have val(A) = a11y1 + a12y2 = a21y1 + a22y2.

Similarly, it can been seen that val(A) = a11x1 + a21x2 = a12x1 + a22x2. In vector notation,

v = Ay and v = ATx, where v :=

(

val(A)

val(A)

)

.

If A is nonsingular, we can write

v = ATx → (A−1)Tv = x → vTA−1e = {(A−1)Tv}T e = xT e = 1 → val(A) · eTA−1e = 1

→ val(A) = 1
eT A−1e

.

v = Ay → y = A−1v = val(A) ·A−1e = A−1e
eT A−1e

.

v = ATx → x = (A−1)T v = val(A) · (A−1)T e =
(A−1)T e
eT A−1e

.

If A is singular, this is of course meaningless. Then, it can be shown that

val(A) =
|A|

eT A∗e
= a11a22−a12a21

a11+a22−a12−a21
, y = A∗e

eT A∗e
=
(

a22−a21
a11+a22−a12−a21

, a11−a12
a11+a22−a12−a21

)

,

x = A∗e
eT A∗e

=
(

a22−a12
a11+a22−a12−a21

, a11−a21
a11+a22−a12−a21

)

.

where |A| the determinant of A and A∗ is the adjoint of A. Note that the formulas in the

nonsingular case coincide with the above formulas, because A∗A = AA∗ = |A| · I . For the details

on the adjoint of A and the property A∗A = AA∗ = |A| ·I we refer to text books on linear algebra.

10.1.4 Bimatrix games

A pair of matrices (M1,M2) constitutes a bimatrix game when the sizes of M1 and M2 are equal.

Let M1 and M2 be m × n matrices. The rows correspond to pure actions of player 1 and the

columns to pure actions of player 2. Given a pair of pure actions (i, j), the payoff for player 1

can be found in the corresponding entry of the matrix M1 and the payoff for player 2 in the

10.1. INTRODUCTION 575

corresponding entry of the matrix M2. We allow mixed strategies, i.e., the players are allowed to

make a convex combination of pure actions. These mixed strategies are represented by probability

vectors x and y for player 1 and 2, respectively.

A bimatrix game is a generalization of a matrix game, because a bimatrix game (M1,M2)

with M2 = −M1 is equivalent to a matrix game. For bimatrix games we use the notion of

equilibrium points. A pair (x∗, y∗) is an equilibrium point if and only if

(x∗)TM1y∗ ≥ xTM1y∗ for all mixed strategies x for player 1; (10.10)

(x∗)TM2y∗ ≥ (x∗)TM2y for all mixed strategies y for player 2. (10.11)

The following result, due to Nash ([202]), is well known.

Theorem 10.2

Each bimatrix game has at least one equilibrium point.

Consider the following associated quadratic program (quadratic objective function and and linear

constraints):

max

xTM1y + xTM2y − z1 − z2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑n
j=1 m

1
ijyj ≤ z1, 1 ≤ i ≤ m

∑m
i=1 m

2
ijxi ≤ z2, 1 ≤ j ≤ n

∑n
j=1 yj = 1; yj ≥ 0, 1 ≤ j ≤ n

∑m
i=1 xi = 1; xi ≥ 0, 1 ≤ i ≤ m

. (10.12)

From the first two sets of linear constraints it follows that for any feasible solution (x, y, z1, z2)

of the quadratic program (10.12) we have xTM1y + xTM2y − z1 − z2 ≤ 0, i.e. the optimum of

the quadratic program is at most 0.

Remark

Consider the special case of a matrix game, i.e. M1 = −M2. Then the quadratic program

becomes the linear program

max

−z1 − z2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑n
j=1 m

1
ijyj ≤ z1, 1 ≤ i ≤ m

−∑m
i=1 m

1
ijxi ≤ z2, 1 ≤ j ≤ n

∑n
j=1 yj = 1; yj ≥ 0, 1 ≤ j ≤ n

∑m
i=1 xi = 1; xi ≥ 0, 1 ≤ i ≤ m

.

From Section 10.1.3 we know that x and y are optimal mixed strategies for player 1 and 2,

respectively, if and only if (x, x0) and (y, y0) are feasible solutions of (10.9) and (10.8) with

x0 = y0 = (x)TM1y. Take z1 = y0 and z2 = −x0, then (x, y, z1, z2) is an optimal solution of

the above linear program with value 0. Hence, (x, y, z1, z2) is an optimal solution of the above

linear program with value 0 if and only if x and y are optimal mixed strategies, z1 = (x)TM1y

and z2 = −(x)TM1y. This result can be generalized to bimatrix games.

576 CHAPTER 10. STOCHASTIC GAMES

Theorem 10.3

The following two assertions are equivalent:

(1) (x, y, z1, z2) is an optimal solution of the quadratic program (10.12) with value 0.

(2) (x, y) is an equilibrium point, z1 = (x)TM1y and z2 = −(x)TM1y.

Proof

First, suppose that (x, y, z1, z2) is an optimal solution of the quadratic program (10.12) with

value 0. Since the value equals 0, we have z1 = (x)TM1y and z2 = −(x)TM1y. Furthermore,

from the first two sets of the constraints of (10.12) it follows that xTM1y ≤ (x)TM1y and

xTM2y ≤ (x)TM2y, i.e. (x, y) is an equilibrium point.

Next, assume that (x, y) is an equilibrium point and that z1 = (x)TM1y and z2 = −(x)TM1y.

By taking for i = 1, 2, . . . , n, the pure strategy x = ei, the ith unit vector, it follows that
∑n

j=1 m
1
ijyj ≤ z1, i.e. (y, z1) satisfies the first set of the constraints of (10.12). Similarly, (x, z2)

satisfies the second set of the constraints of (10.12).

By Theorem 10.3, the quadratic program (10.12) is equivalent to the equilibrium point question.

Since, by Theorem 10.2, every bimatrix game has an equilibrium point, the quadratic program

(10.12) has an optimal solution with value 0.

Remark

The objective function is not concave in general. However, it is known a priori that its global

maximum is zero. Hence, the lack of concavity is not a handicap, since in most computational

schemes, concavity of the objective function is invoked mainly to exclude local maxima. Here,

a local maximum, if any, will be immediately discarded upon finding that its value is less than

zero.

10.2 Discounted rewards

10.2.1 Value and optimal policies

A policy R∗
1 is optimal for player 1 if vα(R∗

1, R2) ≥ infR2 supR1 v
α(R1, R2) for all policies R2.

A policy R∗
2 is optimal for player 2 if vα(R1, R

∗
2) ≤ supR1 infR2 v

α(R1, R2) for all policies R1.

The stochastic discounted game has a value if infR2 supR1 v
α(R1, R2) = supR1 infR2 v

α(R1, R2).

A policy R∗
1 is ε-optimal for player 1 if vα(R∗

1, R2) ≥ infR2supR1v
α(R1, R2)−ε for all policies R2.

A policy R∗
2 is ε-optimal for player 2 if vα(R1, R

∗
2) ≤ supR1infR2v

α(R1, R2)+ε for all policies R1.

Theorem 10.4

If the policies R∗
1 and R∗

2 satisfy vα(R1, R
∗
2) ≤ vα(R∗

1, R
∗
2) ≤ vα(R∗

1, R2) for all policies R1 and

R2, the game has a value and R∗
1 and R∗

2 are optimal policies.

10.2. DISCOUNTED REWARDS 577

Proof

We can write

supR1 infR2 v
α(R1, R2) ≥ infR2 v

α(R∗
1, R2) ≥ vα(R∗

1, R
∗
2)

≥ supR1 v
α(R1, R

∗
2) ≥ infR2 supR1 v

α(R1, R2).

On the other hand, infR2 supR1 v
α(R1, R2) ≥ infR2 v

α(R1, R2) for all policies R1, implying

infR2 supR1 v
α(R1, R2) ≥ supR1infR2 v

α(R1, R2). Hence, we have shown that

infR2 supR1 v
α(R1, R2) = supR1infR2 v

α(R1, R2) = vα(R∗
1, R

∗
2) i.e. the game has a value.

Since vα(R∗
1, R2) ≥ infR2 supR1 v

α(R1, R2) for all R2 and vα(R1, R
∗
2) ≤ supR1 infR2 v

α(R1, R2)

for all R1, i.e. R∗
1 and R∗

2 are optimal policies.

We will show in this section that the game has a value and that there exist stationary optimal

policies for both players. Furthermore, we present algorithms to approximate the value and

stationary optimal policies arbitrarily close. Let Π and Γ be the set of stationary policies for

player 1 and 2, respectively. Define for any x ∈ RN the mapping T : RN → RN by

(Tx)i = infρ∞∈Γ supπ∞∈Π {ri(π, ρ) + α
∑

j

pij(π, ρ)xj}, i ∈ S. (10.13)

(Tx)i is the value of a matrix game with matrix Mx[i]. The matrix Mx[i] has m = #A(i) rows

and n = #B(i) columns and the payoff, if player 1 chooses row a and player 2 column b, is

ri(a, b) + α
∑

j pij(a, b)xj. We will show in the next theorem that T is a monotone contraction.

Theorem 10.5

The mapping T , defined in (10.13), is a monotone contraction with respect to the supremum norm

‖·‖∞ with contraction factor α and fixed point vα = infR2 supR1
vα(R1, R2) = supR1

infR2 v
α(R1, R2).

Proof

Let x, y ∈ R
N with x ≤ y. Take any i ∈ S. Then, {Mx[i]}ab ≤ {My[i]}ab for all (a, b). By Lemma

10.3 part (2), (Tx)i = val(Mx[i]) ≤ val(My[i]) = (Ty)i, proving the monotonicity.

‖Tx− Ty‖∞ = maxi |(Tx)i − (Ty)i|. Notice that |(Tx)i − (Ty)i| = |val(Mx[i])− val(My[i])|.
By Lemma 10.3 part (3), we can write,

|val(Mx[i])− val(My)[i]| ≤ max(a,b) |{ri(a, b) + α
∑

j pij(a, b)xj{−{ri(a, b) + α
∑

j pij(a, b)yj}|
= α ·max(a,b) |

∑

j pij(a, b)(xj − yj)| ≤ α · ‖x− y‖∞,
implying that T is a contraction with contraction factor α.

Hence, T has a unique fixed point, say vα. We now show that there exist stationary policies

(π∗)∞ and (ρ∗)∞ such that vα
(

π∞, (ρ∗)∞
)

≤ vα ≤ vα
(

(π∗)∞, ρ∞
)

for every π∞ ∈ Π and ρ∞ ∈ Γ.

Let π∗ be such that π∗ia, a ∈ A(i), is an optimal mixed strategy in the matrix game with matrix

{ri(a, b) + α
∑

j pij(a, b)v
α
j }, which - because of the fixed point property - has value vα

i , i ∈ S.

So, r(π∗, ρ) + αP (π∗, ρ)vα ≥ vα for all ρ∞ ∈ Γ, implying vα
(

(π∗)∞, ρ∞
)

≥ vα for every ρ∞ ∈ Γ.

Similarly, it can be shown that vα
(

π∞, (ρ∗)∞
)

≤ vα for every π∞ ∈ Π. Therefore

vα
(

π∞, (ρ∗)∞
)

≤ vα ≤ vα
(

(π∗)∞, ρ∞
)

for every π∞ ∈ Π and ρ∞ ∈ Γ. (10.14)

578 CHAPTER 10. STOCHASTIC GAMES

As in the proof of Theorem 10.4, we obtain from these inequalities

vα = vα
(

(π∗)∞, (ρ∗)∞
)

= inf
ρ∞∈Γ

sup
π∞∈Π

vα(π∞, ρ∞) = sup
π∞∈Π

inf
ρ∞∈Γ

vα(π∞, ρ∞). (10.15)

Finally we show that vα = infR2 supR1
vα(R1, R2) = supR1

minR2 v
α(R1, R2).

Since supR1
vα(R1, R2) ≥ supR1

minR2 v
α(R1, R2) for all policies R2, we have

infR2 supR1
vα(R1, R2) ≥ supR1

minR2 v
α(R1, R2).

Take any fixed policy ρ∞ for player 2. This induces an MDP, so we obtain

supR1
vα(R1, ρ

∞) = maxπ∞∈Π vα(π∞, ρ∞) for any fixed ρ∞ ∈ Γ

and similarly infR2 v
α(π∞, R2) = minρ∞∈Γ v

α(π∞, ρ∞) for any fixed π∞ ∈ Π.

Because

supR1
infR2 v

α(R1, R2) ≥ supπ∞∈Π infR2 v
α(π∞, R2) = supπ∞∈Π infρ∞∈Γ v

α(π∞, ρ∞)

= vα = infρ∞∈Γ supπ∞∈Π vα(π∞, ρ∞) = infρ∞∈Γ supR1
vα(R1, ρ

∞)

≥ infR2 supR1
vα(R1, R2),

we have shown that vα = infR2 supR1
vα(R1, R2) = supR1

minR2 v
α(R1, R2).

Corollary 10.1

The game has a value vα, which satisfies vα
i = val(Mvα[i]), i ∈ S. Furthermore, there are

stationary optimal policies for both players.

Proof

From the last line of the proof of Theorem 10.5 we obtain that vα is value of the game. Since vα

is the unique fixed point of T , we have vα
i = val(Mvα [i]), i ∈ S. Furthermore, we can write,

vα
(

(π∗)∞, R2

)

≥ inf
R2

vα
(

(π∗)∞, R2

)

= inf
ρ∞∈Γ

vα
(

(π∗)∞, ρ∞
)

= vα,

the last equality by (10.14), i.e. (π∗)∞ is an optimal policy for player 1. Similarly, we have

vα
(

R1, (ρ
∗)∞

)

≤ sup
R1

vα
(

R1, (ρ
∗)∞

)

= sup
π∞∈Π

vα
(

(π∞, (ρ∗)∞
)

= vα,

i.e. (ρ∗)∞ is an optimal policy for player 2.

Example 10.1

S = {1, 2}; A(1) = B(1) = {1, 2}, A(2) = B(2) = {1}; α = 1
2 .

r1(1, 1) = 1
2 , r1(1, 2) = 1, r1(2, 1) = 3, r1(2, 2) = 3

2 , r2(1, 1) = 1.

p11(1, 1) = 1
3 , p12(1, 1) = 2

3 ; p11(1, 2) = 0, p12(1, 2) = 1; p11(2, 1) = 0, p12(2, 1) = 1;

p11(2, 2) = 1
2 , p12(2, 2) = 1

2 ; p21(1, 1) = 0, p22(1, 1) = 1.

Consider the fixed point equation x = Tx, i.e.

x1 = val

1
2 + 1

6x1 + 1
3x2 1 + 1

2x2

3 + 1
2x2

3
2 + 1

4x1 + 1
4x2

 ; x2 = val
(

1 + 1
2x2

)

.

10.2. DISCOUNTED REWARDS 579

Hence, vα
2 = x2 = 2 and x1 = val

5
6 + 1

6x1 2

4 2 + 1
4x1

. Since the maximum reward is 3
2 ,

the total expected discounted reward is at most
3/2
1−α = 3. Therefore the second row of the matrix

dominates the first one and player 1 and 2 will both choose the second action:

x1 = 2 + 1
4x1 → vα

1 = x1 = 8
3 .

Perfect information

A stochastic game is said to be a game of perfect information if the state space S can be divided

into two disjoint sets S1 and S2 such that |A(i)| = 1 for i ∈ S1 and |B(i)| = 1 for i ∈ S2. Then,

the matrices in the matrix game with matrix Mx has either one row (if i ∈ S1) or one column (if

i ∈ S2). Hence, the optimal policies are pure, i.e. nonrandomized, and we obtain the following

result.

Corollary 10.2

In a discounted stochastic game with perfect information, both players possess optimal determin-

istic policies.

Lemma 10.4

A pair of deterministic policies (f∞, g∞) is optimal if and only if vα(f∞, g∞) = vα, the value of

the stochastic game.

Proof

The if-part is obvious, because the optimality of (f∞, g∞) implies vα(f∞, h∞2) ≥ vα ≥ vα(h∞1 , g
∞)

for every pair h∞1 , h
∞
2 , and consequently, vα(f∞, g∞) = vα.

Let the pair (f∞, g∞) be such that vα(f∞, g∞) = vα, and let (f∞∗ , g∞∗) be a pair of deterministic

optimal policies. When players 2 policy is fixed at g∞, we are in an MDP situation with one-step

rewards ri(a, g∗) and transition probabilities pij(a, g∗), and f∞ is an optimal policy for this MDP.

Thus, for any deterministic policy h∞ for player 1, we have

ri(h1, g∗) + α
∑

j

pij(h1, g∗)v
α
j (f∞∗ , g∞∗) ≤ vα

i (f∞∗ , g∞∗), i ∈ S. (10.16)

In the states i ∈ S2, player 2 has only one action, so g(i) = g∗(i), i ∈ S2. Furthermore,

vα(f∞∗ , g∞∗) = vα = vα(f∞, g∞). Hence, we obtain for any deterministic policy h∞1 for player 1,

and also using (10.16),

ri(h1, g) + α
∑

j

pij(h1, g)v
α
j (f∞, g∞) ≤ vα

i (f∞, g∞), i ∈ S2. (10.17)

For the states i ∈ S1, player 1 has only one action. Hence, for all i ∈ S1, ri(h1, g) = ri(f, g) and

pij(h1, g) = pij(f, g), j ∈ S. Because also vα
i (f∞, g∞) = ri(f, g) + α

∑

j pij(f, g)v
α(f∞, g∞) for

all i ∈ S, we can write,

vα
i (f∞, g∞) = ri(f, g)+α

∑

j pij(f, g)v
α(f∞, g∞) = ri(h1, g)+α

∑

j pij(h1, g)v
α(f∞, g∞), i ∈ S1.

580 CHAPTER 10. STOCHASTIC GAMES

Therefore, using (10.17), we have

ri(h1, g) + α
∑

j

pij(h1, g)v
α
j (f∞, g∞) ≤ vα

i (f∞, g∞), i ∈ S. (10.18)

From MDP we know that the map Lh1,gx := r(h1, g) + αP (h1, g)x is a monotone contraction

with fixed point vα(h∞1 , g
∞). By (10.18), we have Lh1,gv

α(f∞, g∞) ≤ vα(f∞, g∞), implying

vα(h∞1 , g
∞) ≤ vα(f∞, g∞) for all deterministic policies h∞1 for player 1. (10.19)

Similarly, we can show for any policy h∞2 for player 2, we have vα(f∞, h∞2) ≥ vα(f∞, g∞). Hence,

vα(h∞1 , g
∞) ≤ vα(f∞, g∞) ≤ vα(f∞, h∞2) for all pairs of deterministic policies (h∞1 , h

∞
2), implying

the optimality of the pair (f∞, g∞).

We shall give a policy improvement type algorithm to find optimal deterministic policies for

discounted stochastic games with perfect information. The algorithm uses a certain lexicographic

search in the policy improvement process. At each iteration one players policy is fixed and the

other players policy changes just at one state. Two deterministic policies that differ just in

one state are called adjacent. Because of this adjacent property we can compare the vectors

vα(f∞1 , g∞) and vα(f∞2 , g∞), where f∞1 and f∞2 are adjacent: either vα(f∞2 , g∞) > vα(f∞1 , g∞),

i.e. vα
i (f∞2 , g∞) ≥ vα

i (f∞1 , g∞) for all i ∈ S and vα
i (f∞2 , g∞) > vα

i (f∞1 , g∞) for at least one i, or

vα(f∞2 , g∞) ≤ vα(f∞1 , g∞). The next lemma shows this property.

Lemma 10.5

Let g∞ be a deterministic policy for player 2, and let f∞1 and f∞2 be two adjacent deterministic

policies for player 1. Then, either vα(f∞2 , g∞) > vα(f∞1 , g∞) or vα(f∞2 , g∞) ≤ vα(f∞1 , g∞).

Proof

Consider the MDP induced by the fixed policy g∞ for player 2 and assume that the policies f∞1
and f∞2 differ only in state k. Then,

ri(f2, g)+α
∑

j pij(f2, g)v
α
j (f∞1 , g∞) = ri(f1, g)+α

∑

j pij(f1, g)v
α
j (f∞1 , g∞) = vα

i (f∞1 , g∞), i 6= k.

If rk(f2, g) + α
∑

j pkj(f2, g)v
α
j (f∞1 , g∞) > vα

k (f∞1 , g∞), then Lf2,gv
α(f∞1 , g∞) > vα(f∞1 , g∞).

Since Lf2,g is a monotone contraction with fixed point vα(f∞2 , g∞), we obtain the strict inequality

vα(f∞2 , g∞) > vα(f∞1 , g∞).

Otherwise, we have rk(f2, g) + α
∑

j pkj(f2, g)v
α
j (f∞1 , g∞) ≤ vα

k (f∞1 , g∞), which implies that

Lf2,gv
α(f∞1 , g∞) ≤ vα(f∞1 , g∞). In this case, we get the inequality vα(f∞2 , g∞) ≤ vα(f∞1 , g∞).

The key property of lexicographic improvements are based on effectively going back and forth

between the policies of both players in various iterations. Although the payoffs may be increasing

some times and decreasing at other times, old deterministic policies are never revisited and hence

there is no cycling. Since there are finitely many deterministic policies, the algorithm terminates

in finite steps with an optimal pair of policies.

10.2. DISCOUNTED REWARDS 581

By Theorem 10.4 and Corollary 10.2, we only need to find a pair (f∞∗ , g∞∗) of deterministic

policies such that vα(f∞, g∞∗) ≤ vα(f∞∗ , g∞∗) ≤ vα(f∞∗ , g∞) for all deterministic policies f∞ and

g∞ player 1 and 2, respectively.

For any pair (f∞, g∞) of deterministic policies, we say that (h∞, g∞) is an adjacent improve-

ment of type 1 of (f∞, g∞) if:

(1) h differs from f in exactly one state; (2) vα(h∞, g∞) > vα(f∞, g∞).

Similarly, we say that (f∞, h∞) is an adjacent improvement of type 2 of (f∞, g∞) if:

(1) h differs from g in exactly one state; (2) vα(f∞, h∞) < vα(f∞, g∞).

A pair of policies (f∞2 , g∞2) will be called an improvement of (f∞1 , g∞1) if it is an adjacent im-

provement of either type 1 or type 2.

Remark

Given a pair (f∞, g∞) of deterministic policies, we can find an adjacent improvement (h∞, g∞)

of type 1 as follows. Consider the MDP induced by the fixed policy g∞. Then, determine the

sets A(i, f), i ∈ S2, of improving actions as defined in (3.18).

If A(i, f) = ∅ for all i ∈ S2, then there is no adjacent improvement of type 1.

Otherwise, take k such that A(k, f) 6= ∅ and set h(i) :=

{

a ∈ A(k, f) if i = k;

f(i) if i 6= k.

Similarly, an adjacent improvement (f∞, h∞) of type 2 can be found, if such improvement exists.

We can also use linear programming, because an adjacent vertex corresponds with an adjacent

improvement (see also Theorem 3.19).

Algorithm 10.1 Policy iteration for discounted games with perfect information

Input: Instance of a two-person stochastic game with perfect information.

Output: A pair (f∞∗ , g∞∗) of deterministic optimal policies and the value vector.

1. Select an arbitrarily pair (f∞0 , g∞0) of deterministic policies; set k := 0.

2. Search lexicographically for an improvement of (f∞k , g∞k), where lexicographically means

looking first for an adjacent improvement of type 1 and, if such improvement does not

exist, then for an adjacent improvement of type 2.

3. if an adjacent improvement (h∞, g∞k) of type 1 is found then

begin fk+1 := h; gk+1 := gk; k := k + 1; go to step 2 end

else go to step 4.

4. if an adjacent improvement (f∞k , h∞) of type 2 is found then

begin fk+1 := fk; gk+1 := h; k := k + 1; go to step 2 end

else go to step 5.

5. (f∞∗ , g∞∗) := (f∞k , g∞k) is a pair of deterministic optimal policies and vα := vα(f∞∗ , g∞∗) is

the value vector of the game.

582 CHAPTER 10. STOCHASTIC GAMES

For what follows we require some notation. Let s ∈ S be a fixed state and assume s ∈ S2. For

any nonempty action subset A1 ⊆ A(s) we write Γs
A1

for the subgame in which only the actions

in A1 are allowed in state s. The value vector of the subgame Γs
A1

is denoted by vα(Γs
A1

).

Lemma 10.6

Let s ∈ S2 and let A1 and A2 be nonempty subsets of A(s) with A1 ∩ A2 = ∅. Then, either

vα(Γs
A1

) ≥ vα(Γs
A2

) or vα(Γs
A1

) ≤ vα(Γs
A2

). We also have vα
i (Γs

A1∪A2
) = max {vα

i (Γs
A1

), vα
i (Γs

A2
)}

for all i ∈ S.

Proof

An optimal policy f∞∗ for player 1 in the game Γs
A1∪A2

will have either f∗(s) ∈ A1 or f∗(s) ∈ A2.

Suppose f∗(s) ∈ A1. Then, since f∗(s) ∈ A1 ⊂ A1 ∪ A2, we have

vα(f∞∗ , g∞) ≥ vα(Γs
A1∪A2

) ≥ vα(Γs
A1

) for any policy g∞ for player 2,

where the last inequality vα(Γs
A1∪A2

) ≥ vα(Γs
A1

) is trivial, because player 1 has in state s more

actions in Γs
A1∪A2

than in Γs
A1

and player 2 has in state s only one action. Also, any optimal policy

g∞∗ for player 2 in the game Γs
A1∪A2

is found in Γs
A1

. Hence, vα(Γs
A1

) = vα(Γs
A1∪A2

) ≥ vα(Γs
A2

).

In case f∗(s) ∈ A2, we obtain similarly vα(Γs
A2

) = vα(Γs
A1∪A2

) ≥ vα(Γs
A1

). Therefore, we also

have shown vα
i (Γs

A1∪A2
) = max {vα

i (Γs
A1

), vα
i (Γs

A2
)} for all i ∈ S.

An obvious analogy for player 2 exists and is formulated in the following lemma.

Lemma 10.7

Let s ∈ S1 and let B1 and B2 be nonempty subsets of B(s) with B1 ∩ B2 = ∅. Then, either

vα(Γs
B1

) ≥ vα(Γs
B2

) or vα(Γs
B1

) ≤ vα(Γs
B2

). We also have vα
i (Γs

B1∪B2
) = max {vα

i (Γs
B1

), vα
i (Γs

B2
)}

for all i ∈ S.

Theorem 10.6

Algorithm 10.1 terminates with an optimal pair of deterministic policies.

Proof

We need to find a saddle point, i.e. a pair of deterministic policies (f∞∗ , g∞∗) such that

vα(f∞, g∞∗) ≤ vα(f∞∗ , g∞∗) ≤ vα(f∞∗ , g∞) for all deterministic policies f∞ and g∞).

The proof is by induction on n :=
∑N

i=1 {|A(i)|+ |B(i)|}, the total number of actions in all states.

Notice that n ≥ 2n. If n = 2N , both players have only one policy, say f∞∗ and g∞∗ , and the pair

(f∞∗ , g∞∗) is obviously an optimal pair of deterministic policies.

By induction we shall assume that the algorithm terminates at a saddle point whenever n ≤ k

and let n = k + 1. Let s be the largest value of i for which one player, say player 1, has more

than one action. Then s ∈ S2 and player 2 has one action in state s. It is sufficient to prove the

theorem for this case as the proof for the case s ∈ S1 is identical.

We now split the game at state s. The algorithm will pass through a sequence a1, a2, . . . , am

of actions in state s. Let f0(s) := a1, the first action in state s. Let Ai ⊆ A(s) be defined by

10.2. DISCOUNTED REWARDS 583

Ai := {a1, a2, . . . , ai} for i = 1, 2, . . . , m. By the induction assumption the algorithm will reach a

pair (f∞n1
, g∞n1

) which has no improvements in the subgame Γs
A1

and which is an optimal pair for

Γs
A1

, i.e.

vα(f∞, g∞n1
) ≤ vα(f∞n1

, g∞n1
) ≤ vα(f∞n1

, g∞) for all f∞ with f(s) = a1, and all g∞.

Consider the MDP induced on the original game, when player 2 restricts to g∞n1
. If no adjacent

policy of f∞n1
gives a strict improvement in any state, then

vα(f∞, g∞n1
) ≤ vα(f∞n1

, g∞n1
) ≤ vα(f∞n1

, g∞) for all f∞ and all g∞,

implying that the pair (f∞n1
, g∞n1

) is an optimal pair of deterministic policies in the original game.

An adjacent policy of (f∞n1
which changes the action at a state other than state s is a policy

available for player 1 in Γs
A1

and is not better than f∞n1
. Thus the only way any strict improvement

occurs via some adjacent policy of f∞n1
has to be one which changes the action in state s. Let

fn1+1(s) := a2 be such action. Then,

vα(f∞n1+1, g
∞
n1+1) = vα(f∞n1+1, g

∞
n1

) > vα(f∞n1
, g∞n1

).

After this improvement the algorithm continues and, by induction hypothesis, we shall reach a

saddle point (f∞n2
, g∞n2

) in the subgame Γs
A2\A1

. By Lemma 10.6, we get vα(f∞n2
, g∞n2

) = vα(Γs
A2

).

Lemma 10.4 we can conclude that there are no improvements of (f∞n2
, g∞n2

) in Γs
A2

, and further

by Lemma 10.6that vα(f∞n1
, g∞n1

) ≤ vα(f∞n2
, g∞n2

) with strict inequality in some coordinate. If there

are no improvements in the original game, then (f∞n2
, g∞n2

) is a saddle point of the original game

and the algorithm terminates. Otherwise an improvement in state s to an action outside A2 is

available. By repeating the same arguments as before, we obtain a saddle point (f∞n3
, g∞n3

) in

subgame Γs
A3\(A1∪A2)

, and we get vα(f∞n3
, g∞n3

) = vα(Γs
A3

). We can also conclude that there are no

improvements of (f∞n3
, g∞n3

) in Γs
A3

and that vα(f∞n2
, g∞n2

) ≤ vα(f∞n3
, g∞n3

) with strict inequality in

some coordinate. Since there only a finite number of actions in state s, we end the algorithm with

a saddle point (f∞nm
, g∞nm

) in subgame Γs
Am\(A1∪A2···Am−1) for which there are no improvements of

(f∞nm
, g∞nm

) in the original game. Hence, the pair (f∞nm
, g∞nm

) is a saddle point of the original game.

Example 10.2

S = {1, 2, 3, 4, 5}. A(1) = A(2) = {1, 2, 3}, A(3) = A(4) = A(5) = {1}.
B(1) = B(2) = {1}, B(3) = B(4) = {1, 2, 3}, B(5) = {1}.
r1(1, 1) = 5, r1(2, 1) = 4, r1(3, 1) = 3; r2(1, 1) = 6, r2(2, 1) = 1, r2(3, 1) = 0;

r3(1, 1) = 4, r3(1, 2) = 2, r3(1, 3) = 0; r4(1, 1) = 2, r4(1, 2) = 2, r4(1, 3) = 3; r5(1, 1) = 0.

p15(1, 1) = 1; p13(2, 1) = 0.2, p15(2, 1) = 0.8; p13(3, 1) = 0.6, p15(3, 1) = 0.4; .

p34(1, 1) = 0.9, p35(1, 1) = 0.1; p31(1, 2) = 1; p31(1, 3) = 0.3, p33(1, 3) = 0.2, p34(1, 3) = 0.5.

p42(1, 1) = 0.1; p43(1, 1) = 0.6, p44(1, 1) = 0.3; p41(1, 2) = 0.2, p43(1, 2) = 0.4, p44(1, 2) = 0.4.

p44(1, 3) = 0.9; p45(1, 3) = 0.1; p52(1, 1) = 0.1, p53(1, 1) = 0.2, p53(1, 1) = 0.3; p55(1, 1) = 0.4.

The other transition probabilities are 0. α = 0.999.

For player 1 only in the states 1 and 2 there are more actions; player 2 has only in the states 3

and 4 a choice of actions. Therefore, we specify only the actions f(1), f(2), g(3) and g(4).

584 CHAPTER 10. STOCHASTIC GAMES

We start with f0(1) = f0(2) = 1 and g0(3) = g0(4) = 1.

The vector vα(f∞0 , g∞0) = (25623.8, 25624.8, 25626.4, 25625.3, 25621.3).

Iteration 1:

We have an improvement of type 1 which yields f1(1) = 3, f1(2) = 1 and g1(3) = g1(4) = 1.

The vector vα(f∞1 , g∞1) = (25624.8, 25624.8, 25626.4, 25625.3, 25621.3).

Iteration 2:

We have an improvement of type 2 which gives f2(1) = 3, f2(2) = 1 and g2(3) = 2, g2(4) = 1.

The vector vα(f∞2 , g∞2) = (19259.9, 19261.2, 19260.0, 19260.2, 19257.1).

Iteration 3:

We have an improvement of type 1: f3(1) = 1, f3(2) = 1 and g3(3) = 2, g3(4) = 1.

The vector vα(f∞3 , g∞3) = (19771.2, 19772.2, 19771.3, 19771.4, 19768.2).

Iteration 4:

We have an improvement of type 2: f4(1) = 1, f4(2) = 1 and g4(3) = 2, g4(4) = 2.

The vector vα(f∞4 , g∞4) = (19601.2, 19602.2, 19601.2, 19601.2, 19598.1).

Iteration 5:

We have an improvement of type 2: f5(1) = 1, f5(2) = 1 and g5(3) = 3, g5(4) = 2.

The vector vα(f∞5 , g∞5) = (15060.1, 15061.1, 15057.7, 15059.4, 15057.0).

Iteration 6:

We have again an improvement of type 2: f6(1) = 1, f6(2) = 1 and g6(3) = 3, g6(4) = 1.

The vector vα(f∞6 , g∞6) = (14128.3, 14129.3, 14125.8, 14127.2, 14124.7).

Iteration 7:

There are no improvements, so the pair (f∞6 , g∞6) is an optimal pair of policies and the value

vector of the game is (14128.3, 14129.3, 14125.8, 14127.2, 14124.7).

Next, we shall discuss Blackwell optimality for stochastic games with perfect information. The

approach is similar to the analysis in section 7.7.

A policy R∗
1 is Blackwell optimal for player 1 if vα(R∗

1, R2) ≥ infR2 supR1 v
α(R1, R2) for all

policies R2 and for all α ∈ [α1, 1) for some α1. Similarly, a policy R∗
2 is Blackwell optimal for

player 2 if vα(R1, R
∗
2) ≤ supR1 infR2 v

α(R1, R2) for all policies R1 and for all α ∈ [α2, 1) for some

α2.

Let F (R) be the completely ordered field of rational functions with real coefficients. The

ordering is induced by
p(x)
q(x) >l 0 if and only if d(p)d(q)> 0, where the dominating coefficient d(p)

of a polynomial p(x) = a0 + a1x+ · · ·+ anx
n is the coefficient ak with k := min{i | ai 6= 0}. Two

rational functions
p(x)
q(x) and

r(x)
s(x) are identical, i.e. p

q =l
r
s if and only if p(x)s(x) = r(x)q(x) for all

x ∈ R.

Let π∞ and σ∞ be two stationary policies for player 1 and 2, respectively. Then,

vα(π∞, σ∞) = r(π, σ)+ αP (π, σ)vα(π∞, σ∞). (10.20)

Instead of the discount factor α we can also use the interest rate ρ, where α(1+ρ) = 1, and write

vρ(π∞, σ∞) instead of vα(π∞, σ∞). Hence, we have

(1 + ρ)vρ(π∞, σ∞) = (1 + ρ)r(π, σ)+ P (π, σ)vρ(π∞, σ∞). (10.21)

10.2. DISCOUNTED REWARDS 585

By solving the system (1 + ρ)x = (1 + ρ)r(π, σ)+ P (π, σ)x by Cramers rule, it is evident that

vρ
i (π

∞, σ∞) ∈ F (R) for all states i ∈ S. (10.22)

Lemma 10.8

Let π∞∗ and σ∞∗ be stationary Blackwell optimal policies for player 1 and 2. Then, there exists a

vector vρ with vρ
i ∈ F (R), i ∈ S, such that vρ(R1, σ

∞
∗) ≤l v

ρ(ρ∞∗ , σ
∞
∗) =l v

ρ ≤l v
ρ(ρ∞∗ , R2) for all

policies R1 and R2 for player 1 and 2, respectively.

Proof

By hypothesis, there exists ρ0 > 0 such that π∞∗ and σ∞∗ is an optimal pair of policies for all

interest rates ρ ∈ (0, ρ0]. Hence, vρ(R1, σ
∞
∗) ≤ vρ ≤ vρ(ρ∞∗ , R2) for all policies R1 and R2 and

for all interest rates ρ ∈ (0, ρ0], where vρ is some vector. Therefore, vρ(ρ∞∗ , σ
∞
∗) = vρ for all

interest rates ρ ∈ (0, ρ0]. By (10.22), vρ
i (π

∞, σ∞) ∈ F (R) for all states i ∈ S. This produces

vρ(R1, σ
∞
∗) ≤l v

ρ(ρ∞∗ , σ
∞
∗) =l v

ρ ≤l v
ρ(ρ∞∗ , R2) and vρ

i ∈ F (R), i ∈ S.

Remark

Generally, the components of the value vector of a discounted stochastic game are no elements

of F (R), but belong to the field of Puiseux series for ρ sufficiently small (see [25]). A vector

vρ ∈ F (R), satisfying vρ(R1, σ
∞
∗) ≤ vρ ≤ vρ(ρ∞∗ , R2) for all policies R1 and R2 and for all interest

rates ρ ∈ (0, ρ0] is called the Blackwell value vector of the game.

The following property holds, whose proof is analogous to the proof of Lemma 10.5.

Lemma 10.9

Let g∞ be a deterministic policy for player 2, and let f∞1 and f∞2 be two adjacent deterministic

policies for player 1. Then, either vρ(f∞2 , g∞) >l v
ρ(f∞1 , g∞) or vρ(f∞2 , g∞) ≤l v

ρ(f∞1 , g∞),

which means that the two vectors are partially ordered.

Lemma 10.9 allows us to give the following definition. Let (f∞, g∞) be a pair of deterministic

policies for player 1 and 2, respectively. We call h∞ a Blackwell adjacent improvement of type 1

for player 1 if and only if:

(1) h differs from f only in one state; (2) vρ(h∞, g∞) >l v
ρ(f∞, g∞).

Similarly, h∞ is a Blackwell adjacent improvement of type 2 for player 2 if and only if:

(1) h differs from g only in one state; (2) vρ(f∞, h∞) <l v
ρ(f∞, g∞).

From this definition the following property holds.

Lemma 10.10

A pair of deterministic policies (f∞∗ , g∞∗) is Blackwell optimal if and only if no Blackwell adjacent

improvements is possible for both players.

586 CHAPTER 10. STOCHASTIC GAMES

From the result of Lemma 10.4 we can derive the analogous property in the ordered field F (R).

Lemma 10.11

A pair of deterministic policies (f∞∗ , g∞∗) is Blackwell optimal if and only if vρ(f∞∗ , g∞∗) =l v
ρ,

where vρ is the Blackwell value vector of the game.

Proof

For the if-part assume that vρ(f∞∗ , g∞∗) =l v
ρ, where vρ is the Blackwell value vector of the game.

Then, there exists a ρ∗ > 0 such that vρ(f∞∗ , g∞∗) = vρ for all ρ ∈ (0, ρ∗). Hence, by Lemma 10.4,

(f∞∗ , g∞∗) is a pair of optimal policies for all ρ ∈ (0, ρ∗), which means that they are Blackwell

optimal.

Conversely, let (f∞∗ , g∞∗) be a pair of deterministic Blackwell optimal policies. Then, we have

vρ(f∞∗ , R2) ≥ vρ ≥ vρ(R1, g
∞
∗) for all policies R1, R2 and for all ρ ∈ (0, ρ∗) for some ρ∗ > 0.

Therefore, vρ(f∞∗ , g∞∗) = vρ for all ρ ∈ (0, ρ∗), i.e. vρ(f∞∗ , g∞∗) =l v
ρ, where vρ is the Blackwell

value vector of the game.

The proof of next lemma is analogous to the proof of Lemma 10.6 and is the version in the field

F (R).

Lemma 10.12

Let s ∈ S2 and let A1 and A2 be nonempty subsets of A(s) with A1 ∩ A2 = ∅. Then, either

vα(Γs
A1

) ≥l v
α(Γs

A2
) or vα(Γs

A1
) ≤l v

α(Γs
A2

). We also have vα
i (Γs

A1∪A2
) =l max {vα

i (Γs
A1

), vα
i (Γs

A2
)}

for all i ∈ S.

We shall present an algorithm to find Blackwell optimal policies for both players and the Blackwell

value vector of the game.

Algorithm 10.2 Blackwell optimality for discounted games with perfect information

Input: Instance of a two-person stochastic game with perfect information.

Output: A pair (f∞∗ , g∞∗) of deterministic Blackwell optimal policies and the Blackwell vector

vector.

1. Select an arbitrarily deterministic policy g∞∗ .

2. Determine in the field F (R) an optimal solution x∗(ρ) of the program

max

{

∑

(i,a) ri(a, g∗) · xia(ρ)

∣

∣

∣

∣

∣

∑

(i,a){(1 + ρ)δij − pij(a, g∗)} · xia(ρ) =l 1, j ∈ S
xia(ρ) ≥l 0, (i, a) ∈ S ×A

}

.

3. Take f∞∗ such that x∗i,f∗(i)(ρ) > 0 for all i ∈ S.

4. Determine in the field F (R) the simplex tableau corresponding to the program

max

{

−∑(i,b) ri(f∗, b) · yib(ρ)

∣

∣

∣

∣

∣

∑

(i,b){(1 + ρ)δij − pij(f∗, b)} · yib(ρ) =l 1, j ∈ S
yib(ρ) ≥l 0, (i, b) ∈ S × B

}

.

with as basic variables yig∗(i)(ρ), i ∈ S.

10.2. DISCOUNTED REWARDS 587

5. if all shadow prices, corresponding to the variables yib(ρ), in this tableau are ≥l 0,

then go to step 7

else go to step 6.

6. Determine an adjacent improvement h∞ of g∞∗ ; g∗ := h; go to step 2.

7. (f∞∗ , g∞∗) is a pair of deterministic optimal policies and vρ(f∞∗ , g∞∗) is the value vector of

the game.

Remark

The Blackwell value vector vρ(f∞∗ , g∞∗) can be found in the simplex tableau of step 4 in the last

iteration. By the same argument as in the discounted case with a fixed discount factor, we have

the property that the element vρ
i (f∞∗ , g∞∗) is the shadow price of the ith artificial variable of the

program. So, no additional calculation is required to obtain the value vector.

Theorem 10.7

Algorithm 10.2 terminates with a pair of Blackwell optimal deterministic policies and with the

Blackwell value vector.

Proof

The proof follows the lines analogous the one in the real field R (see Theorem 10.6). It proceeds

by induction on n, where n :=
∑N

i=1 {|A(i)|+ |B(i)|}, the total number of actions in all states,

and exploits Lemmas 10.10 and 10.12. The main difference with Algorithm 10.1 is that the policy

for player 1 is not constructed by adjacent improvements of type 1, but that does not effect the

correctness of the proof.

Similar to MDPs, Blackwell optimal policies are also optimal for the criterion of average rewards

as the next theorem shows.

Theorem 10.8

A pair of Blackwell optimal deterministic policies is also optimal for the criterion of average

rewards.

Proof

Let (f∞∗ , g∞∗) be a pair of Blackwell optimal deterministic policies. Then, we have for all deter-

ministic policies f∞ and g∞: vα(f∞, g∞∗) ≤ vα(f∞∗ , g∞∗) ≤ vα(f∞∗ , g∞) for all α ∈ (α0, 1) for

some α0. Hence, we also have (1 − α)vα(f∞, g∞∗) ≤ (1 − α)vα(f∞∗ , g∞∗) ≤ (1 − α)vα(f∞∗ , g∞)

for all deterministic policies f∞ and g∞, and for all α ∈ (α0, 1) for some α0. Taking α ↑ 1 and

using lim(1 − α)vα(f∞, g∞) = φ(f∞, g∞), we get φ(f∞, g∞∗) ≤ φ(f∞∗ , g∞∗) ≤ φ(f∞∗ , g∞) for all

deterministic policies f∞ and g∞, i.e. (f∞∗ , g∞∗) is a pair of average optimal deterministic policies.

588 CHAPTER 10. STOCHASTIC GAMES

Remark

Let SP , in the two optimal tableaux obtained in the steps 2 and 4 of the last iteration of Algorithm

10.2, be the set of shadow prices corresponding to the variables xia(ρ) and yib(ρ), respectively.

Let ρ∗ > 0 the smallest positive simple root of the elements of SP . Then, the pair (f∞∗ , g∞∗) of

Blackwell optimal deterministic policies obtained in step 7 of the algorithm, is a pair of discounted

optimal deterministic policies for all discount factors α ∈ [α∗, 1), where α∗ := 1
1+ρ∗ .

10.2.2 Mathematical programming

A vector v ∈ R
N is called superharmonic if there exists a policy ρ∞ ∈ Γ such that

vi ≥ ri(a, ρ) + α
∑

j pij(a, ρ)vj, a ∈ A(i), i ∈ S.

A vector v ∈ RN is called subharmonic if there exists a policy π∞ ∈ Π such that

vi ≤ ri(π, b) + α
∑

j pij(π, ρ)vj, b ∈ B(i), i ∈ S.

Theorem 10.9

(1) The value vector vα is the smallest superharmonic vector.

(2) The value vector vα is the largest subharmonic vector.

Proof

Let (π∗)∞ and (ρ∗)∞ be the policies mentioned in Theorem 10.5. If player 2 uses policy (ρ∗)∞,

then the game becomes an MDP. We know from Theorem 3.16 that x := supR1
vα
(

R1, (ρ
∗)∞

)

is

the smallest superharmonic vector. Since vα = vα
(

(π∗)∞, (ρ∗)∞
)

, we have x ≥ vα. On the other

hand, it follows from the proof of Corollary 10.1 that x = supR1 v
α
(

R1, (ρ
∗)∞

)

≤ vα.

The proof of part (2) is analogous to the proof of part (1).

Consider the two nonlinear programs

min

∑

i

vi

∣

∣

∣

∣

∣

∣

∣

∣

∑

j{δij − α
∑

b pij(a, b)ρib}vj −
∑

b ri(a, b)ρib ≥ 0, a ∈ A(i), i ∈ S
∑

b ρib = 1, i ∈ S
ρib ≥ 0, b ∈ B(i), i ∈ S

(10.23)

and

max

∑

i

wi

∣

∣

∣

∣

∣

∣

∣

∣

∑

j{δij − α
∑

a pij(a, b)πia}wj −
∑

a ri(a, b)πia ≤ 0, b ∈ B(i), i ∈ S
∑

a πia = 1, i ∈ S
πia ≥ 0, a ∈ A(i), i ∈ S

.

(10.24)

Theorem 10.10

The nonlinear programs (10.23) and (10.24) have both optimal solutions, say (v∗, ρ∗) and (w∗, π∗).

Furthermore, v∗ = w∗ = vα and (π∗)∞ and (ρ∗)∞ are optimal policies for player 1 and player 2.

10.2. DISCOUNTED REWARDS 589

Proof

From Theorem 10.9 it follows that both nonlinear programs have optimal solutions and that

v∗ = w∗ = vα. The constraints of the programs imply

r(π, ρ∗) + αP (π, ρ∗)vα ≤ vα ≤ r(π∗, ρ) + αP (π∗, ρ)vα for all π and ρ.

Therefore, {I −αP (π, ρ∗)}vα ≥ r(π, ρ∗) and {I −αP (π∗, ρ)}vα ≤ r(π∗, ρ) for all π and ρ. Hence,

vα(π∞, (ρ∗)∞) = {I − αP (π, ρ∗)}−1r(π, ρ∗) ≤ vα ≤ {I − αP (π∗, ρ)}−1r(π∗, ρ) = vα((π∗)∞, ρ∞)

for all π∞ ∈ Π and ρ∞ ∈ Γ. Then, by the proof of Corollary 10.1, it follows that (π∗)∞ and (ρ∗)∞

are optimal policies for player 1 and player 2.

10.2.3 Iterative methods

Since T is a contraction with fixed point the value vector vα, it follows that the value iteration

algorithm stated below approximately computes vα.

Algorithm 10.3 Value Iteration for discounted games

Input: Instance of a two-person stochastic game and some ε > 0.

Output: An ε-approximation of the value vector vα and a pair
(

(π∗)∞, (ρ∗)∞
)

of stationary

2ε-optimal policies.

1. Select x ∈ RN arbitrarily.

2. for all i ∈ S do

begin compute the matrixMx[i] with entries ri(a, b)+α
∑

j pij(a, b)xj, a ∈ A(i), b ∈ B(i);

yi := val(Mx[i])

end

3. if ‖y − x‖∞ > (1− α)α−1ε then begin x := y; go to step 2 end

else for each i ∈ S do

begin

determine an optimal strategy π∗ia, a ∈ A(i), for player 1 in the matrix game Mx[i];

determine an optimal strategy ρ∗ib, b ∈ B(i), for player 2 in the matrix game Mx[i]

end

4. y is an ε-approximation of the value vector vα and (π∗)∞ and (ρ∗)∞ are 2ε-optimal policies

for player 1 and 2, respectively (STOP).

590 CHAPTER 10. STOCHASTIC GAMES

Theorem 10.11

Algorithm 10.3 is correct.

Proof

Since T is a monotone contraction with contraction factor α and fixed point vα, it follows from

Corollary 3.1 that ‖vα− y‖∞ ≤ α(1−α)−1‖y−x‖∞ ≤ ε, i.e. y is a ε-approximation of the value

vector vα. For any two policies π∞ ∈ Π and ρ∞ ∈ Γ, we define the operator Lπ,ρ : R
N → R

N by

Lπ,ρx := r(π, ρ)+ αP (π, ρ)x.

It is straightforward to show that Lπ,ρ is a monotone contraction with contraction factor α and

fixed point vα(π∞, ρ∞). Because (π∗)∞ is an optimal policy in the matrix games of step 2 of

Algorithm 10.3, which have values yi, i ∈ S, we can write

Lπ∗,ρx = r(π∗, ρ) + αP (π∗, ρ)x ≥ y = x+ (y − x) ≥ x− ‖y − x‖∞ · e ≥ x−
1− α
α

ε · e (10.25)

Hence, applying Lπ∗ ,ρ to (10.25), L2
π∗ ,ρx ≥ Lπ∗ ,ρ{x− 1−α

α ε·e} = Lπ∗,ρx−(1−α)ε·e≥ y−(1−α)ε·e.
By iterating (10.25), we obtain Ln

π∗ ,ρx ≥ y − (1 − α){1 + α + · · ·+ αn−2}ε · e. Taking the limit

for n →∞ yields vα
(

(π∗)∞, ρ
)

≥ y − ε · e ≥ vα − 2ε · e. Since the fixed stationary policy (π∗)∞

induces an MDP, we also have vα
(

(π∗)∞, R2

)

≥ vα− 2ε · e, i.e. (π∗)∞ is an 2ε-optimal policy for

player 1. Similarly, it can be shown that (ρ∗)∞ is an 2ε-optimal policy for player 2.

Example 10.1 (continued)

We apply Algorithm 10.3 with ε = 0.2
(

(1− α)α−1ε = 0.2
)

and starting value x = (2, 2).

Iteration 1:

i = 1: Mx[1] =

(

3
2 2

4 5
2

)

; y1 = valMx[1] = 5
2 ; i = 2 : Mx[2] = (2); y2 = valMx[2] = 2;

‖y − x‖∞ = 0.5 > 0.2; x =
(

5
2 , 2
)

.

Iteration 2:

i = 1: Mx[1] =

19
12 2

4 21
8

; y1 = valMx[1] = 21
8 ; i = 2 : Mx[2] = (2); y2 = valMx[2] = 2;

‖y − x‖∞ = 0.125 ≤ 0.2;

i = 1: π∗11 = 0, π∗12 = 1; ρ∗11 = 0, ρ∗12 = 1; i = 2: π∗21 = 1; ρ∗21 = 1.
(

21
8 , 2

)

is a 0.2-approximation of the value vector vα; f∞∗ with f(1) = 2, f(2) = 1 is a 0.4-optimal

policy for player 1 and g∞∗ with g(1) = 2, g(2) = 1 is a 0.4-optimal policy for player 2.

Algorithm 10.3 does not utilize the information contained in the optimal strategies of the matrix

games at each iteration. The next algorithm attempts to improve the basis scheme of Algorithm

10.3 by using these optimal strategies. This algorithm iterates in both value space and policy

space.

10.2. DISCOUNTED REWARDS 591

Algorithm 10.4 Value Iteration for discounted games (Modification 1)

Input: Instance of a two-person stochastic game and some ε > 0.

Output: An ε-approximation of the value vector vα and a pair
(

(π∗)∞, (ρ∗)∞
)

of stationary

2ε-optimal policies.

1. Select a stationary policy (ρ∗)∞ for player 2.

2. Compute the value vector x of the MDP induced by the policy (ρ∗)∞,

i.e. x := maxf∞∈C(D) v
α
(

f∞, (ρ∗)∞
)

.

3. for all i ∈ S do

begin compute the matrixMx[i] with entries ri(a, b)+α
∑

j pij(a, b)xj, a ∈ A(i), b ∈ B(i);

determine an optimal stationary policy ρ∗ for player 2 in the matrix game Mx[i];

yi := val(Mx[i])

end

4. if ‖y − x‖∞ > (1− α)α−1ε then go to step 2

5. else for each i ∈ S do

determine an optimal strategy π∗ia, a ∈ A(i), for player 1 in the matrix game Mx[i].

6. y is an ε-approximation of the value vector vα and (π∗)∞ and (ρ∗)∞ are 2ε-optimal policies

for player 1 and 2, respectively (STOP).

Example 10.1 (continued)

We apply Algorithm 10.4 with ε = 0.2 and starting policy ρ∗11 = ρ∗12 = 1
2 ; ρ∗21 = 1.

Iteration 1:

r1(1, ρ
∗) = 3

4 , r1(2, ρ
∗) = 5

4 , r2(1, ρ
∗) = 1.

p11(1, ρ
∗) = 1

6 , p12(1, ρ
∗) = 5

6 ; p11(2, ρ
∗) = 1

4 , p12(2, ρ
∗) = 3

4 ; p21(2, ρ
∗) = 0, p22(2, ρ

∗) = 1.

x =
(

16
7 , 2

)

.

i = 1: Mx[1] =

50
21 2

4 18
7

; ρ∗11 = 0, ρ∗12 = 1; y1 = valMx[1] = 18
7 .

i = 2 : Mx[2] = (2); ρ∗21 = 1; y2 = val(2) = 2.

‖y − x‖∞ = 2
7 > 0.2.

Iteration 2:

r1(1, ρ
∗) = 1, r1(2, ρ

∗) = 3
2 , r2(1, ρ

∗) = 1.

p11(1, ρ
∗) = 1

6 , p12(1, ρ
∗) = 5

6 ; p11(2, ρ
∗) = 1

2 , p12(2, ρ
∗) = 1

2 ; p21(2, ρ
∗) = 0, p22(2, ρ

∗) = 1.

x =
(

8
3 , 2
)

.

i = 1: Mx[1] =

29
18 2

4 8
3

; ρ∗11 = 0, ρ∗12 = 1; y1 = valMx[1] = 8
3 .

i = 2 : Mx[2] = (2); ρ∗21 = 1; y2 = val(2) = 2.

592 CHAPTER 10. STOCHASTIC GAMES

‖y − x‖∞ = 0 ≤ 0.2.

i = 1 : π∗11 = 0, π∗12 = 1; i = 2 : π∗21 = 1.
(

8
3 , 2
)

is a 0.2-approximation of the value vector vα; f∞∗ with f(1) = 2, f(2) = 1 is a 0.4-optimal

policy for player 1 and g∞∗ with g(1) = 2, g(2) = 1 is a 0.4-optimal policy for player 2.

Theorem 10.12

Algorithm 10.4 is correct.

Proof

Let xn and yn be the values of x and y in iteration n; let f∞n be the optimal policy obtained in

step 2 in iteration n; let πn and ρn be the optimal mixed strategies of the two players obtained

in the steps 4 and 3, respectively, in iteration n. Then,

xn = r(fn, ρ
n−1 + αP (fn, ρ

n−1)xn ≥ r(π, ρn−1) + αP (π, ρn−1)xn, π∞ ∈ Π. (10.26)

and

r(πn, ρ)+αP (πn, ρ)xn ≥ r(πn, ρn)+αP (πn, ρn)xn = yn ≥ r(π, ρn)+αP (π, ρn)xn, π∞ ∈ Π, ρ∞ ∈ Γ.

(10.27)

Hence, yn ≤ r(πn, ρn−1) + αP (πn, ρn−1)xn ≤ xn. From (10.26) and the monotonicity of Lπ,ρ it

follows that yn ≥ Lfn+1,ρnxn ≥ Lfn+1,ρnxn, implying yn ≥ vα
(

f∞n+1, (ρ
n)∞

)

xn = xn+1.

So, we obtain the sequence x0 ≥ y0 ≥ x1 ≥ y1 ≥ · · · ≥ xn ≥ yn ≥ · · · , bounded below by
−1
1−α ·maxi,a,b |ri(a, b)| · e. Therefore, limn→∞ xn = limn→∞ yn = x∗ for some x∗ ∈ R

N .

Since the sets Π and Γ are compact, there are subsequences {nk}∞k=1 such that πnk → π∗ and

ρnk → ρ∗ for some (π∗)∞ ∈ Π and (ρ∗)∞ ∈ Γ. From (10.26) it follows that

r(π∗, ρ) + αP (π∗, ρ)x∗ ≥ x∗ ≥ r(π, ρ∗) + αP (π, ρ∗)x∗, π∞ ∈ Π, ρ∞ ∈ Γ,

implying vα
(

(π∗)∞, ρ∞
)

≥ x∗ ≥ vα
(

π∞, (ρ∗)∞
)

, π∞ ∈ Π, ρ∞ ∈ Γ. Hence, x∗ is the value, and

(π∗)∞ and (ρ∗)∞ are optimal policies and the algorithm terminates.

Let x and y be the vectors at termination of the algorithm. Then, we can write

‖y − vα‖∞ = ‖Tx− Tvα‖∞ ≤ α‖x− vα‖∞ ≤ α‖x− y‖∞ + α‖y − vα‖∞.

Therefore, ‖y−vα‖∞ ≤ α(1−α)−1‖x−y‖∞ < ε at termination, i.e. y is an ε-approximation of the

value vector vα. Similarly as in the proof of Theorem 10.11 we can show that the policies (π∗)∞

and (ρ∗)∞, defined in the steps 4a and 3b, respectively, are 2ε-optimal policy for the players.

In the next algorithm the optimal mixed strategies of the two players obtained by the matrix

game Mx[i] are used in another way.

Algorithm 10.5 Value Iteration for discounted games (Modification 2)

Input: Instance of a two-person stochastic game and some ε > 0.

Output: An ε-approximation of the value vector vα and a pair
(

(π∗)∞, (ρ∗)∞
)

of stationary
{

1+ 2
β(1+α)

}

ε-optimal policies, where β := α
1−α ·maxi

{
∑

j {max(a,b) pij(a, b)−min(a,b)pij(a, b)}
}

.

10.2. DISCOUNTED REWARDS 593

1. Select x ∈ R
N arbitrarily; β := α

1−α ·maxi

{
∑

j {max(a,b) pij(a, b)−min(a,b) pij(a, b)}
}

.

2. for all i ∈ S do

begin

compute the matrix Mx[i] with entries ri(a, b) + α
∑

j pij(a, b)xj, a ∈ A(i), b ∈ B(i);

determine an optimal stationary policy π∗ for player 1 in the matrix game Mx[i];

determine an optimal stationary policy ρ∗ for player 2 in the matrix game Mx[i];

yi := val(Mx[i])

end

3. z := vα
(

(π∗)∞, (ρ∗)∞
)

.

4. if ‖z − x‖∞ > 1−α
(1+α)β ε then begin x := z; go to step 2 end

else go to step 5.

5. z is an ε-approximation of the value vector vα and (π∗)∞ and (ρ∗)∞ are
{

1 + 2
β(1+α)

}

ε-

optimal policies for player 1 and 2, respectively (STOP).

The next example shows that Algorithm 10.5 does not converge in general.

Example 10.3

S = {1, 2}; A(1) = B(1) = {1, 2}, A(2) = B(2) = {1}; α = 3
4 .

r1(1, 1) = 3, r1(1, 2) = 6, r1(2, 1) = 2, r1(2, 2) = 1, r2(1, 1) = 0.

p11(1, 1) = 1, p12(1, 1) = 0, p11(1, 2) = 1
3 ; p12(1, 2) = 2

3 , p11(2, 1) = 1, p12(2, 1) = 0;

p11(2, 2) = 1, p12(2, 2) = 0; p21(1, 1) = 0, p22(1, 1) = 1.

Take ε = 0.2 (then β = 4 and 1−α
(1+α)β ε = 1

140) and select x = (0, 0).

Iteration 1:

i = 1 : Mx[1] =

3 6

2 1

 ; π∗11 = 1, π∗11 = 0; ρ∗11 = 1, ρ∗11 = 0; y1 = valM [1] = 3.

i = 2 : Mx[2] = (0); π∗21 = 1; ρ∗21 = 1; y2 = valM [2] = 0.

z = vα
(

(π∗)∞, (ρ∗)∞
)

= (12, 0); ‖z − x‖∞ = 12 > 1
140; x = (12, 0).

Iteration 2:

i = 1 : Mx[1] =

12 9

11 10

 ; π∗11 = 0, π∗11 = 1; ρ∗11 = 0, ρ∗11 = 1; y1 = valM [1] = 10.

i = 2 : Mx[2] = (0); π∗21 = 1; ρ∗21 = 1; y2 = valM [2] = 0.

z = vα
(

(π∗)∞, (ρ∗)∞
)

= (4, 0); ‖z − x‖∞ = 8 > 1
140 ; x = (4, 0).

Iteration 3:

i = 1 : Mx[1] =

6 7

5 4

 ; π∗11 = 1, π∗11 = 0; ρ∗11 = 1, ρ∗11 = 0; y1 = valM [1] = 6.

i = 2 : Mx[2] = (0); π∗21 = 1; ρ∗21 = 1; y2 = valM [2] = 0.

594 CHAPTER 10. STOCHASTIC GAMES

z = vα
(

(π∗)∞, (ρ∗)∞
)

= (12, 0); ‖z − x‖∞ = 8 > 1
140 ; x = (12, 0).

Hence, we are in the same situation as at the start of iteration 2 and there is no convergence.

Since the mapping T is a contraction, it is a continuous mapping. In case ∂(Tx)i

∂xj
, the partial

derivative in x, exists, then ∂(Tx)i

∂xj
= αpij(π, ρ), because (Tx)i = ri(π, ρ) + α

∑

j pij(π.ρ)xj,

where π and ρ are optimal mixed strategies in the matrix game Mx[i]. Let F : R
N → R

N be

defined by Fx := Tx − x. Then, the problem of finding the value vector of the stochastic game

is the same as solving the nonlinear equation Fx = 0. We will show that Algorithm 10.5 is

equivalent to Newton’s method for solving Fx = 0. From Algorithm 10.5 we obtain

xn+1 = vα
(

(πn)∞, (ρn)∞
)

= xn + vα
(

(πn)∞, (ρn)∞
)

− xn

= xn +
{

I − αP (πn, ρn)
}−1

r(πn, ρn)− xn

= xn +
{

I − αP (πn, ρn)
}−1

r(πn, ρn)−
{

I − αP (πn, ρn)
}−1{

I − αP (πn, ρn)
}

xn

= xn −
{

αP (πn, ρn)− I
}−1{r(πn, ρn) + αP (πn, ρn)xn − xn}.

Because
{

∂(Fx)i

∂xj

}

x=xn
= αpij(π

n, ρn)−δij and r(πn, ρn)+αP (πn, ρn)xn−xn = Txn−xn = Fxn,

we have

xn+1 = xn − {∇Fxn}−1Fxn. (10.28)

i.e. Algorithm 10.5 is Newton’s method for solving Fx = 0.

Let ∆xn := xn+1 − xn, ∆Tn := Txn+1 − Txn and ∆Fn := Fxn+1 − Fxn. Then,

∆Fn = (Txn+1 − xn+1)− (Txn− xn) = ∆Tn−∆xn; Fxn+1 = Fxn + ∆Fn = Fxn + ∆Tn−∆xn.

Similarly as in the proof of Lemma 10.3 it can be shown that

α ·∑j {min(a,b)pij(a, b)}(∆xn)j ≤ (∆Tn)i ≤ α ·
∑

j {max(a,b)pij(a, b)}(∆xn)j.

Then, (∆Tn)i is a convex combination of the upper and lower bound, i.e. (∆Tn)i =
∑

j qij(n)(∆xn)j,

where qij(n) = α{λ ·max(a,b) pij(a, b) + (1− λ) ·min(a,b) pij(a, b)} for some λ ∈ [0, 1]. Hence,

Fxn+1 = Fxn − {I −Q(n)}∆xn. (10.29)

From (10.29) and (10.28) it follows that

Fxn+1 = Fxn + {I −Q(n)}{∇Fxn}−1Fxn

= Fxn − {I −Q(n)}{I − αP (πn, ρn)}−1Fxn

=
{

I − {I −Q(n)}{I − αP (πn, ρn)}−1
}

Fxn

=
{

I − {I − αP (πn, ρn)}−1 +Q(n){I − αP (πn, ρn)}−1
}

Fxn

=
{

− αP (πn, ρn){I − αP (πn, ρn)}−1 +Q(n){I − αP (πn, ρn)}−1
}

Fxn

= {Q(n)− αP (πn, ρn)}{I − αP (πn, ρn)}−1Fxn.

Therefore,

10.2. DISCOUNTED REWARDS 595

(Fxn+1)i =
∑

j

{

{Q(n)− αP (πn, ρn)}{I − αP (πn, ρn)}−1
}

ij
(Fxn)j

=
∑

j

{
∑

k {Q(n)− αP (πn, ρn)}ik{{I − αP (πn, ρn)}−1}kj

}

(Fxn)j

=
∑

k {Q(n)− αP (πn, ρn)}ik ·
∑

j

{

{I − αP (πn, ρn)}−1}kj(Fx
n)j

=
∑

k {Q(n)− αP (πn, ρn)}ik · 1
1−α · ‖Fxn‖.

Notice that

|∑k {Q(n)− αP (πn, ρn)}ik| = α
∑

k |λ ·max(a,b) pik(a, b) + (1− λ) ·min(a,b) pik(a, b)− pik(π
n, ρn)|

≤ α ·maxi

{
∑

k {max(a,b) pik(a, b)−min(a,b) pik(a, b)}
}

= (1− α)β.

Hence, ‖Fxn+1‖∞ ≤ β · ‖Fxn‖∞, i.e. the process converges if β < 1.

Remark

The condition β < 1 is very restrictive. However, for problems that do not satisfy β < 1 the

algorithm terminates in most cases.

Theorem 10.13

Assume that β < 1. Then, Algorithm 10.5 is correct.

Proof

For β < 1, we have shown that Fxn → 0 for n→∞, implying that ‖xn+1− xn‖ → 0 for n→∞,

i.e. the algorithm terminates. At termination with z = xn+1 and x = xn, we have

‖xn+1 − vα‖∞ = ‖Txn+1 − Fxn+1 − Tvα‖∞ ≤ ‖Txn+1 − Tvα‖∞ + ‖Fxn+1‖∞
≤ α · ‖xn+1 − vα‖∞ + β · ‖Fxn‖∞.

Hence,

‖xn+1 − vα‖∞ ≤ β
1−α · ‖Fxn|∞ = β

1−α · ‖∇Fxn(xn+1 − xn)‖∞
≤ β

1−α · ‖I − αP (πn, ρn)‖∞ · ‖xn+1 − xn)‖∞
≤ 1+α

1−α · β · ‖xn+1 − xn)‖∞ ≤ ε.

Let γ := ε
β · 1−α

1+α , then −γ · e ≤ xn+1 − xn ≤ γ · e. We can also write for any ρ∞ ∈ Γ,

Lπn,ρx
n = r(πn, ρ) + αP (πn, ρ)xn ≥ r(πn, ρn) + αP (πn, ρn)xn

= r(πn, ρn) + αP (πn, ρn)xn+1 + αP (πn, ρn)(xn − xn+1)

= xn+1 + αP (πn, ρn)(xn − xn+1)

≥ xn+1 − αγP (πn, ρn)e = xn+1 − αγ · e ≥ xn − (1 + α)γ · e = xn − δ · e,

with δ := (1+α)γ. The monotonicity of Lπn,ρ yields Lk
πn,ρx

n ≥ xn−δ(1+α+ · · ·+αk) · e, k ∈ N,

implying

vα
(

(πn)∞, ρ∞
)

≥ xn − δ(1− α)−1 · e = xn+1 + (xn − xn+1)− (1− α)−1δ · e
≥ vα − ε · e − 1+α

1−αγ · e = vα − {1 + 2
β(1+α)

ε · e.

From this result it follows that (πn)∞ is a {1 + 2
β(1+α)}ε-optimal policy for player 1. Similarly it

can be shown that (ρn)∞ is a {1 + 2
β(1+α)}ε-optimal policy for player 2.

596 CHAPTER 10. STOCHASTIC GAMES

The last method in this section uses an integer k, where 1 ≤ k ≤ ∞. For k = 1 we obtain

Algorithm 10.3 and for k = ∞ Algorithm 10.5. So, this algorithm is of the type of modified

policy iteration as analyzed in Section 3.8 for the MDP model.

Algorithm 10.6 Modified policy iteration for discounted games

Input: Instance of a two-person stochastic game, some ε > 0 and some integer 1 ≤ k ≤ ∞.

Output: An ε-approximation of the value vector vα and a pair
(

(π∗)∞, (ρ∗)∞) of stationary
1
αε-optimal

policies.

1. Select x ∈ R
N such that Tx ≤ x.

2. for all i ∈ S do

begin

compute the matrix Mx[i] with entries ri(a, b) + α
∑

j pij(a, b)xj, a ∈ A(i), b ∈ B(i);

determine an optimal stationary policy π∗ for player 1 in the matrix game Mx[i];

determine an optimal stationary policy ρ∗ for player 2 in the matrix game Mx[i];

yi := val(Mx[i])

end

3. z := Uk(ρ∗)x, where U(ρ∗)x is defined by {U(ρ∗)x}i := maxa {ri(a, ρ∗)+α
∑

j pij(a, ρ
∗)xj}.

4. if ‖z − x‖∞ > 1−α
α) ε then begin x := z; go to step 2 end

else go to step 5.

5. z is an ε-approximation of the value vector vα and (π∗)∞ and (ρ∗)∞ are 1
αε-optimal policies

for player 1 and 2, respectively (STOP).

We denote the vectors x, y, z, the strategies π∗ and ρ∗ and the operator U(ρ∗) in the n-th iteration

by xn, yn, zn, πn, ρn and Un, respectively. For any fixed ρ∞ ∈ Γ and x ∈ RN , we have the property

U(ρ)x = maxπ {r(π, ρ)+ αP (π, ρ)x} ≥ maxπminρ {r(π, ρ)+ αP (π, ρ)x} = Tx, (10.30)

implying that Um(ρ)x ≥ Tmx for all ρ∞ ∈ Γ, x ∈ RN and m ∈ N. Furthermore, notice that

yn = Txn = Unx
n for all n.

Lemma 10.13

xn ≥ Txn ≥ xn+1 ≥ vα for n = 0, 1,

Proof

We apply induction on n.

For n = 0, we have x0 ≥ Tx0 = y0 = U0x
0 (the first inequality by step 1 of the algorithm).

10.2. DISCOUNTED REWARDS 597

Since U0 is monotone and x0 ≥ U0x
0, we obtain x1 = Uk

0 x
0 ≤ U0x

0 = Tx0 ≤ x0.

From x1 ≤ Tx0 ≤ x0 and the monotonicity of T it follows that Tmx1 ≤ x0 for m = 0, 1, 2,

Hence, vα = limm→∞ Tmx1 ≤ x0. Therefore, x1 = Uk
0 x

0 ≥ T kx0 ≥ Tvα = vα, and we have

shown that xn ≥ Txn ≥ xn+1 ≥ vα for n = 0.

Suppose that xn ≥ Txn ≥ xn+1 ≥ vα. Now, we will show that xn+1 ≥ Txn+1 ≥ xn+2 ≥ vα.

We have, Unx
n+1 = Txn+1 = T{Uk

nx
n} ≤ Uk+1

n xn ≤ Uk
nx

n = xn+1, the last inequality since

Unx
n = Txn ≤ xn and the monotonicity of Un. From Unx

n+1 ≤ xn+1 follows

xn+2 = Uk
n+1x

n+1 ≤ Uk−1
n+1x

n+1 ≤ · · · ≤ Un+1x
n+1 = Txn+1.

Since xn+1 ≥ vα, we obtain xn+2 = Uk
n+1x

n+1 ≥ T kxn+1 ≥ T kvα = vα.

Corollary 10.3

limn→∞ xn = vα.

Proof

From Lemma 10.13 it follows that vα ≤ xn ≤ Txn−1 ≤ T 2xn−2 ≤ · · · ≤ T n−1x1 ≤ T nx0 for

n = 0, 1, 2, Since limn→∞ T nx0 = vα, we also have limn→∞ xn = vα.

Theorem 10.14

Algorithm 10.6 is correct.

Proof

Because limn→∞ xn = vα, the algorithm terminates. Let xn and zn be the vectors x and z in the

final iteration. Since 0 ≤ xn+1 − vα ≤ Txn − vα, we obtain

‖xn+1 − vα‖∞ ≤ ‖Txn − vα‖∞ = ‖Txn − Tvα‖∞ ≤ α · ‖xn − vα‖∞
≤ α · ‖xn − xn+1‖∞ + α · ‖xn+1 − vα‖∞.

.

Hence, ‖zn − vα‖∞ = ‖xn+1 − vα‖∞ ≤ α
1−α · ‖xn − xn+1‖∞ = α

1−α · ‖zn− xn‖∞ < ε, i.e. zn is an

ε-approximation of the value vector. Furthermore, we have for any ρ∞ ∈ Γ,

Lπn,ρx
n = r(πn, ρ) + αP (πn, ρ)xn ≥ Txn ≥ xn+1 ≥ xn − ‖xn − xn+1‖∞ · e ≥ xn − 1−α

α ε · e.
Hence, Lm

πn,ρx
n ≥ xn − {1 + α + · · · + αm−1}1−α

α ε · e for m = 1, 2, Therefore, we obtain

vα
(

(πn)∞, ρ∞
)

= limm→∞ Lm
πn,ρx

n ≥ xn − 1
αε · e ≥ vα − 1

αε · e. From this result it follows that

(πn)∞ is a 1
αε-optimal policy for player 1. Similarly it can be shown that (ρn)∞ is a 1

αε-optimal

policy for player 2.

10.2.4 Finite methods

In general, solutions to stochastic games lack an important algebraic property, which suggests

that effectively solving is essentially more difficult than solving matrix games. This is illustrated

by the following example.

598 CHAPTER 10. STOCHASTIC GAMES

Example 10.4

S = {1, 2}; A(1) = B(1) = {1, 2}, A(2) = B(2) = {1}; α = 1
2 .

r1(1, 1) = 1, r1(1, 2) = 0, r1(2, 1) = 0, r1(2, 2) = 3, r2(1, 1) = 0.

p11(1, 1) = 1, p12(1, 1) = 0; p11(1, 2) = 0, p12(1, 2) = 1; p11(2, 1) = 0, p12(2, 1) = 1;

p11(2, 2) = 1, p12(2, 2) = 0; p21(1, 1) = 0, p22(1, 1) = 1.

Consider the fixed point equation x = Tx, i.e.

x1 = val

1 + 1
2x1 0 + 1

2x2

0 + 1
2x2 3 + 1

4x1

 ; x2 = val
(

0 + 1
2x2

)

→ vα
2 = x2 = 0.

x1 = val

1 + 1
2x1 0

0 3 + 1
2x1

 → x1 =
(1+ 1

2
x1)(3+ 1

2
x1)

(1+ 1
2
x1)+(3+ 1

2
x1)
→ vα

1 = x1 = 2
3{−2 +

√
13}.

The optimal policies are for both players
(

7+
√

13
8+2

√
13
, 1+

√
13

8+2
√

13

)

.

The above example shows that while all the data defining the stochastic game (the rewards,

the transition probabilities and the discount factor) are rational, the value vector has irrational

entries. Thus the data and the solution are not in the same ordered Archimedean field. This

phenomenon is called lack of the ordered field property. It essentially eliminates the possibility

of solving discounted stochastic games by performing only finitely many arithmetic operations.

Note that since linear programs solve a general matrix game, and since an optimal basis of that

program can be found via finitely many pivots of the simplex method, matrix games possess the

ordered field property.

One line of research that has evolved from the preceding considerations is focussed on identi-

fying those natural classes of stochastic games for which the ordered field property holds, and on

developing algorithms for their solution. We will consider the following special games:

(1) The single-controller stochastic game.

(2) The switching-controller stochastic game.

(3) The separable reward - state independent transitions (SER-SIT) stochastic game.

(4) The additive reward - additive transitions (ARAT) stochastic game.

Single-controller stochastic game

In the single-controller stochastic game is player 1 the ’single-controller’. This means that the

transition probabilities pij(a, b) are independent of b. Therefore, we denote these probabilities

as pij(a). Under this assumption the nonlinear program (10.23) becomes the following linear

program

min

∑

i

vi

∣

∣

∣

∣

∣

∣

∣

∣

∑

j{δij − αpij(a)}vj −
∑

b ri(a, b)ρib ≥ 0, a ∈ A(i), i ∈ S
∑

b ρib = 1, i ∈ S
ρib ≥ 0, b ∈ B(i), i ∈ S

. (10.31)

10.2. DISCOUNTED REWARDS 599

The dual program is

max

∑

i

zi

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a){δij − αpij(a)}xi(a) = 1, j ∈ S
−∑a ri(a, b)xi(a) + zi ≤ 0, (i, b) ∈ S ×B

xi(a) ≥ 0, (i, a) ∈ S ×A

. (10.32)

The following theorem shows that the value vector and optimal stationary policies for both players

can be obtained from the optimal solutions of the dual pair of linear programs.

Theorem 10.15

Let (v∗, ρ∗) and (x∗, z∗) be optimal solutions of the linear programs (10.31) and (10.32), respec-

tively. Define the stationary policy (π∗)∞ by π∗ia :=
x∗

i (a)
P

a x∗
i (a) , (i, a) ∈ S×A. Then, v∗ is the value

vector and (π∗)∞ and (ρ∗)∞ are optimal stationary policies for player 1 and 2, respectively.

Proof

Theorem 10.9 implies that v∗ is the value vector of the stochastic game. Since
∑

a x
∗
i (a) = 1 + α

∑

(i,a) pij(a)xi(a) > 0, j ∈ S,

the stationary policy (π∗)∞ is well defined. From the constraints of program (10.31) it follows

that {I − αP (π)}v∗ ≥ r(π, ρ∗) for every π∞ ∈ Π. Therefore,

v∗ ≥ {I − αP (π)}−1r(π, ρ∗) = vα
(

π∞, (ρ∗)∞
)

for every π∞ ∈ Π. (10.33)

From the complementary slackness property of linear programming it follows that

x∗i (a) ·
{

∑

j{δij − αpij(a)}v∗j −
∑

b ri(a, b)ρ
∗
ib

}

= 0 for all (i, a) ∈ S × A.

Since x∗i (a) > 0 if and only if π∗ia > 0, we also have

π∗ia ·
{

∑

j{δij − αpij(a)}v∗j −
∑

b ri(a, b)ρ
∗
ib

}

= 0 for all (i, a) ∈ S × A.

Therefore,
∑

a π
∗
ia ·
{

∑

j{δij − αpij(a)}v∗j −
∑

b ri(a, b)ρ
∗
ib

}

= 0 for all i ∈ S, implying
∑

j{δij − αpij(π
∗)}v∗j = ri(π

∗, ρ∗) for all i ∈ S, i.e. {I − αP (π∗)}v∗ = r(π∗, ρ∗).

So, v∗ = {I −αP (π∗)}−1r(π∗, ρ∗) = vα
(

(π∗)∞, (ρ∗)∞)
)

. Since the optimum values of (10.31) and

(10.32) are equal, we can write

∑

j

vα
j

(

(π∗)∞, (ρ∗)∞)
)

=
∑

i

z∗i . (10.34)

Since z∗i ≤
∑

a ri(a, b)x
∗
i (a) for all b ∈ B(i), we also have z∗i ≤

∑

a ri(a, ρ)x
∗
i(a) for all ρ∞ ∈ Γ.

From the constraints of (10.32) it follows that, with x∗i :=
∑

a x
∗
i (a), i ∈ S,

1 =
∑

(i,a) {δij − αpij(a)}π∗ia · x∗i =
∑

i {δij − αpij(π
∗)} · x∗i ,

or, in vector notation, eT = (x∗)T{I − αP (π∗)}, implying (x∗)T = eT{I − αP (π∗)}−1. Then,

because z∗i ≤
∑

a ri(a, ρ)x
∗
i (a),

∑

i z
∗
i ≤ ∑

(i,a) ri(a, ρ)x
∗
i (a) =

∑

(i,a) ri(a, ρ)π
∗
iax

∗
i

=
∑

i ri(π
∗, ρ)x∗i = (x∗)T r(π∗, ρ) = eT {I αP (π∗)}−1r(π∗, ρ)

= eTvα
(

(π∗)∞, ρ∞
)

=
∑

j v
α
j

(

(π∗)∞, ρ∞
)

.

600 CHAPTER 10. STOCHASTIC GAMES

With (10.34) we obtain
∑

j v
α
j

(

(π∗)∞, ρ∞)
)

≥ ∑j v
α
j

(

(π∗)∞, (ρ∗)∞)
)

for all ρ∞ ∈ Γ. Hence,

(ρ∗)∞ is an optimal policy for player 2 in the MDP induced by policy (π∗)∞. Therefore,

vα
(

(π∗)∞, ρ∞
)

≥ v∗ = vα
(

(π∗)∞, (ρ∗)∞)
)

for all ρ∞ ∈ Γ. (10.35)

Hence, by (10.33 and (10.35, we have

vα
(

(π∗)∞, ρ∞
)

≥ v∗ = vα
(

(π∗)∞, (ρ∗)∞)
)

≥ vα
(

π∞, (ρ∗)∞
)

, π∞ ∈ Π, ρ∞ ∈ Γ,

i.e. (π∗)∞ and (ρ∗)∞ are optimal stationary policies for player 1 and 2, respectively.

Algorithm 10.7 Single-controller game with discounting

Input: Instance of a two-person single-controller stochastic game

Output: The value vector vα and a pair
(

(π∗)∞, (ρ∗)∞
)

of stationary optimal policies.

1. Compute optimal solutions (v∗, ρ∗) and (x∗, z∗) of the linear programs (10.31) and (10.32).

2. Define the stationary policy (π∗)∞ by π∗ia :=
x∗

i (a)
P

a x∗
i (a)

, (i, a) ∈ S ×A.

3. v∗ is the value vector and (π∗)∞ and (ρ∗)∞ optimal stationary policies for player 1 and 2

(STOP).

Example 10.5

S = {1, 2}; A(1) = {1, 2}, B(1) = {1, 2, 3}, A(2) = {1, 2, 3}, B(2) = {1, 2}; α = 1
2 .

r1(1, 1) = 5, r1(1, 2) = 1, r1(1, 3) = 6, r1(2, 1) = 4, r1(2, 2) = 6, r1(2, 3) = 2;

r2(1, 1) = 6, r2(1, 2) = 0, r2(2, 1) = 3, r2(2, 2) = 4, r2(3, 1) = 0, r2(3, 2) = 6.

p11(1) = 1, p12(1) = 0; p11(2) = 0, p12(2) = 1; p21(1) = 1, p22(1) = 0;

p21(2) = 0, p22(2) = 1; p21(3) = 1, p22(3) = 0.

The linear programs (10.31) and (10.32) are

min

v1 + v2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
2v1 − 5ρ11 − ρ12 − 6ρ13 ≥ 0

v1 − 1
2v2 − 4ρ11 − 6ρ12 − 2ρ13 ≥ 0

− 1
2v1 + v2 − 6ρ21 ≥ 0

1
2v2 − 3ρ21 − 4ρ22 ≥ 0

− 1
2v1 + v2 − 6ρ22 ≥ 0

ρ11 + ρ12 + ρ13 = 1; ρ21 + ρ22 = 1; ρ11, ρ12, ρ13, ρ21, ρ22 ≥ 0

and

max

z1 + z2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
2x11 + x12 − 1

2x21 − 1
2x23 = 1

− 1
2x12 + x21 + 1

2x22 + x23 = 1

− 5x11 − 4x12 + z1 ≤ 0

− x11 − 6x12 + z1 ≤ 0

− 6x11 − 2x12 + z1 ≤ 0

− 6x21 − 3x22 + z2 ≤ 0

− 4x22 − 6x23 + z2 ≤ 0

x11, x12, x21, x22, x23 ≥ 0

10.2. DISCOUNTED REWARDS 601

The optimal solutions are:

v∗1 = 7.327, v∗2 = 6.916; ρ∗11 = 0, ρ∗12 = 0.467, ρ∗13 = 0.533, ρ∗21 = 0.542, ρ∗22 = 0.458 and

z∗1 = 5.720, z∗2 = 8.523; x∗11 = 0.673, x∗12 = 0.841, x∗21 = 0.355, x∗22 = 2.131, x∗23 = 0.

The optimal policy for player 1 is: π∗11 = 0.446, π∗12 = 0.554, π∗21 = 0.856, π∗22 = 0.144, π∗23 = 0.

Switching-controller stochastic game

In a switching-controller stochastic game we assume that the set of states is the union of two

disjoint sets S1 and S2 such that player 1 controls the transitions in S1 and player 2 in S2. Notice

that a game with perfect information and the single-controller stochastic game are special cases

of the switching-controller stochastic game.

Denote the transitions by pij(a, b) =

pij(a), i ∈ S1, a ∈ A(i), b ∈ B(i), j ∈ S;

pij(b), i ∈ S2, a ∈ A(i), b ∈ B(i), j ∈ S.
It appears that to solve such a game by a finite algorithm, a finite sequence of linear programs

and matrix games needs to be solved instead of only a single one. The linear programs are the

programs of the type of linear programs for single-controller stochastic games.

Suppose that player 2 fixes his strategy ρ∞ in the states of S2. Then, we denote the corresponding

single-controller stochastic game by SCSG(ρ) with data

ri(a, b) =

ri(a, b) , i ∈ S1, a ∈ A(i), b ∈ B(i)

ri(a, ρ) =
∑

b ri(a, b)ρib , i ∈ S2, a ∈ A(i), b ∈ B(i)

and

pij(a, b) =

pij(a) , i ∈ S1, a ∈ A(i), b ∈ B(i), j ∈ S
pij(ρ) =

∑

b pij(b)ρib , i ∈ S2, a ∈ A(i), b ∈ B(i), j ∈ S.
Notice that the transitions in the states of S2 are independent of any choice of the players and

the rewards depend only on the action taken by player 1. So, in the states of S2 player 2 is a

dummy and the first player will choose the action which maximizes ri(a, ρ) over the action set

A(i). Let a[i, ρ] be that action, i.e. a[i, ρ] := argmaxa∈A(i) ri(a, ρ), i ∈ S2. The linear program

for the single-controller stochastic game by SCSG(ρ) is:

min

∑

i

vi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

j{δij − αpij(a)}vj −
∑

b ri(a, b)ρib ≥ 0, a ∈ A(i), i ∈ S1
∑

j{δij − αpij(ρ)}vj − ri(a, ρ) ≥ 0, a ∈ A(i), i ∈ S2

∑

b ρib = 1, i ∈ S1

ρib ≥ 0, b ∈ B(i), i ∈ S1

. (10.36)

The inequalities for i ∈ S2 can be written as vi ≥ α
∑

j pij(ρ)vj + ri(a, ρ), a ∈ A(i), i ∈ S2,

and are equivalent to a single inequality for each i ∈ S2, namely vi ≥ α
∑

j pij(ρ)vj + ri(a[i, ρ]).

Therefore, program (10.36) is equivalent to the program

min

∑

i

vi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

j{δij − αpij(a)}vj −
∑

b ri(a, b)ρib ≥ 0, a ∈ A(i), i ∈ S1

∑

j{δij − αpij(ρ)}vj − ri(a[i, ρ]) ≥ 0, i ∈ S2
∑

b ρib = 1, i ∈ S1

ρib ≥ 0, b ∈ B(i), i ∈ S1

. (10.37)

602 CHAPTER 10. STOCHASTIC GAMES

Note

For different choices of ρ in S2, the linear programs (10.37) only differ in the inequalities for the

states S2. This property can be used, e.g. by using the dual simplex method for the solution of

subsequent programs (10.37).

Example 10.6

S = {1, 2}; S1 = {1}, S2 = {2}; A(1) = B(1) = A(2) = B(2) = {1, 2}; α = 1
2 .

r1(1, 1) = 3, r1(1, 2) = 1, r1(2, 1) = 1, r1(2, 2) = 4;

r2(1, 1) = 4, r2(1, 2) = 6, r2(2, 1) = 7, r2(2, 2) = 5.

p11(1) = 0, p12(1) = 1; p11(2) = 1, p12(2) = 0; p21(1) = 1, p22(1) = 0; p21(2) = 0, p22(2) = 1.

Let player 2 choose in state 2 both action 1 and 2 with probability 1
2 .

The rewards and probabilities in state 2 are r2(1, ρ) = 1
2 · 4+ 1

2 · 6 = 5; r2(2, ρ) = 1
2 · 7 + 1

2 · 5 = 6.

p21(ρ) = 1
2 · 1 + 1

2 · 0 = 1
2 ; p22(ρ) = 1

2 · 0 + 1
2 · 1 = 1

2 .

Program (10.36) becomes

min

v1 + v2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

v1 − 1
2v2 − 3ρ11 − ρ12 ≥ 0

1
2v1 − ρ11 − 4ρ12 ≥ 0

−1
4v1 + 3

4v2 ≥ 5

−1
4v1 + 3

4v2 ≥ 6

ρ11 + ρ12 = 1

ρ11, ρ12 ≥ 0

,

which is equivalent to

min

v1 + v2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

v1 − 1
2v2 − 3ρ11 − ρ12 ≥ 0

1
2v1 − ρ11 − 4ρ12 ≥ 0

−1
4v1 + 3

4v2 ≥ 6

ρ11 + ρ12 = 1

ρ11, ρ12 ≥ 0

.

The solution of this program is: v1 = 6.57, v2 = 10.19, ρ11 = 0.24, ρ12 = 0.76.

Denote the value vector of the single controller stochastic game SCSG(ρ) by vρ. This value

vector satisfies the fixed point equation x = T ρx, i.e. xi = val
(

Mρ
x [i]
)

, i ∈ S, where Mρ
x [i] has

the elements

{

ri(a, b) + α
∑

j pij(a)xj , i ∈ S1;

ri(a, ρ) + α
∑

j pij(ρ)xj , i ∈ S2.

If it turns out that x = Tx, with (Tx)i := val
(

Mx[i]
)

, i ∈ S, where Mx[i] has the elements
{

ri(a, b) + α
∑

j pij(a)xj , i ∈ S1

ri(a, b) + α
∑

j pij(b)xj , i ∈ S2

, then x is the value vector of the original game.

Therefore, we compute val
(

Mvρ [i]
)

, i ∈ S2, and check whether vρ
i = val

(

Mvρ [i]
)

, i ∈ S2. If this

is the case, we have found the value vector and the corresponding optimal stationary policies of

10.2. DISCOUNTED REWARDS 603

the two players; if not, our ’guess’ for ρib, i ∈ S2, b ∈ B(i), was not optimal and we try another

ρ for the states in S2, namely the ρ’s we found in the matrix games Mvρ [i], i ∈ S2.

For a matrix game it is well known that the optimal strategy spaces are polytopes. We need

for our algorithm extreme optimal strategies. If we use linear programming to compute the value

and optimal strategies of the game we find extreme optimal strategies. The algorithm for the

switching-controller game with discounting is as follows.

Algorithm 10.8 Switching-controller game with discounting

Input: Instance of a two-person switching-controller stochastic game

Output: The value vector vα and a pair
(

(π∗)∞, (ρ∗)∞
)

of stationary optimal policies.

1. n := 0; select an arbitrary x0 ∈ R
N ;

for all i ∈ S2 do

determine an optimal extreme stationary policy ρ0 for player 2 in the matrix game Mx0[i]

with entries ri(a, b) + α
∑

j pij(b)xj, a ∈ A(i), b ∈ B(i).

2. n := n + 1; solve the single-controller stochastic game SCSG(ρn−1), i.e. solve the linear

program (10.37) and denote the value vector by xn.

3. for all i ∈ S2 do

begin

compute the matrix Mxn [i] with entries ri(a, b) + α
∑

j pij(b)xj, a ∈ A(i), b ∈ B(i).

determine an optimal extreme policy ρn for player 2 in the matrix game Mxn [i];

yn
i := val(Mxn[i])

end

4. if yn
i = xn

i for all i ∈ S2 then go to step 5

else return to step 2

5. vα := xn is the value vector and ρ∗ib := ρn
ib, i ∈ S2, b ∈ B(i) is part of an optimal policy

for player 2; the optimal actions for player 1 in the states i ∈ S2 follow from an optimal

extreme policy πn for player 1 in the matrix game Mxn [i]; the optimal actions for player 2

and 1 in the states i ∈ S1 follow from the linear program (10.37) and its dual, respectively

(STOP).

Example 10.6 (continued)

Start:

Note that Mx[2] =

(

4 + 1
2x1 6 + 1

2x2

7 + 1
2x1 5 + 1

2x2

)

.

n = 0; choose x0 = (12, 0); Mx0 [2] =

(

10 6

13 5

)

with val
(

Mx0[2]
)

= 6 and ρ0
21 = 0, ρ0

22 = 1.

604 CHAPTER 10. STOCHASTIC GAMES

Iteration 1:

n = 1; r2(1, ρ
0) = 6, r2(2, ρ

0) = 5, p21(ρ
0) = 0, p22(ρ

0) = 1.

The linear program for SCSG(ρ0) is

min

v1 + v2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

v1 − 1
2v2 − 3ρ11 − ρ12 ≥ 0

1
2v1 − ρ11 − 4ρ12 ≥ 0

1
2v2 ≥ 6

ρ11 + ρ12 = 1

ρ11, ρ12 ≥ 0

.

The solution of this program is: v1 = 29
4 , v2 = 12, ρ11 = 1

8 , ρ12 = 7
8 and x1 = (7.25, 12).

i = 2: Mx1[2] =

(

75
8 12

105
8 11

)

with val
(

Mx1[2]
)

= 105
8 and ρ1

21 = 1, ρ1
22 = 0; y1

2 = 105
8 .

Iteration 2:

n = 2; r2(1, ρ
1) = 4, r2(2, ρ

1) = 7, p21(ρ
1) = 1, p22(ρ

1) = 0.

The linear program for SCSG(ρ1) is

min

v1 + v2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

v1 − 1
2v2 − 3ρ11 − ρ12 ≥ 0

1
2v1 − ρ11 − 4ρ12 ≥ 0

−1
2v1 + v2 ≥ 7

ρ11 + ρ12 = 1

ρ11, ρ12 ≥ 0

with solution: v1 = 6.62, v2 = 10.31, ρ11 = 0.23, ρ12 = 0.77 and x2 = (6.62, 10.31).

i = 2: Mx2[2] =

(

7.31 11.15

10.31 10.15

)

with val
(

Mx2 [2]
)

= 10.19 and ρ2
21 = 1

4 , ρ
2
22 = 3

4 ; y2
2 = 10.19.

Iteration 3:

n = 3; r2(1, ρ
2) = 51

2 , r2(2, ρ
2) = 51

2 , p21(ρ
2) = 1

4 , p22(ρ
2) = 3

4 .

The linear program for SCSG(ρ2) is

min

v1 + v2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

v1 − 1
2v2 − 3ρ11 − ρ12 ≥ 0

1
2v1 − ρ11 − 4ρ12 ≥ 0

−1
8v1 + 5

8v2 ≥ 51
2

ρ11 + ρ12 = 1

ρ11, ρ12 ≥ 0

with solution: v1 = 6.54, v2 = 10.11, ρ11 = 1
4 , ρ12 = 3

4 and x3 = (6.54, 10.11).

i = 2: Mx3[2] =

(

7.27 11.05

10.27 10.05

)

with val
(

Mx3 [2]
)

= 10.11 and ρ3
21 = 1

4 , ρ
3
22 = 3

4 ; y3
2 = 10.11.

Since y3
2 = x3

2 = 10.11, we have found the optimal solution: vα = (6.54, 10.11), ρ∗21 = ρ3
21 = 1

4 ,

ρ∗22 = ρ3
22 = 3

4 . From the optimal solution of the matrix game Mx3[2] we also obtain π∗21 = 0.055,

π∗22 = 0.945. The optimal solution of the linear program SCSG(ρ2) provides ρ∗11 = ρ11 = 1
4 ,

ρ∗12 = ρ22 = 3
4 . In order to find π∗11 and π∗12 we have to solve the dual of SCSG(ρ2), i.e. the linear

program

10.2. DISCOUNTED REWARDS 605

max

51
2y + z

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x11 + 1
2x12 − 1

8y = 1

−1
2x11 + 5

8y = 1

−3x11 − x12 + z ≤ 0

−x11 − 4x12 + z ≤ 0

x11, x12, y ≥ 0

.

The optimal solution of this program is: x11 = 0.97, x12 = 0.65, y = 2.38 and z = 3.57. Hence,

π∗11 = 0.97
1.62 = 0.6 and π∗12 = 0.65

1.62 = 0.4.

Lemma 10.14

For n = 1, 2, . . . , we have xn+1 ≤ xn. Furthermore, if val
(

Mxn [i]
)

6= xn
i for some i ∈ S2, then

xn+1 < xn, i.e. xn+1
i ≤ xn

i , i ∈ S, with at least one strict inequality.

Proof

xn is the value vector of the single-controller stochastic game SCSG(ρn−1). Therefore, we have

xn
i = val

(

Mρn−1

xn [i]
)

, i ∈ S. Since Mρn−1

xn [i] = Mxn [i], i ∈ S1, and ρn is optimal policy for player

2 in the matrix game Mxn [i] for all i ∈ S2, we have

xn
i = val

(

Mxn [i]
)

, i ∈ S1 and xn
i = maxa {ri(a, ρn) + α

∑

j

pij(ρ
n)xn

j }, i ∈ S2. (10.38)

Let {ρn
ib, i ∈ S1, b ∈ B(i)} be the optimal strategy for player 2 in the matrix gamesMxn [i], i ∈ S1.

From (10.38) and the definition of ρn it follows that

xn
i ≥ ri(a, ρn) + α

∑

j

pij(ρ
n)xn

j , i ∈ S1, a ∈ A(i). (10.39)

By (10.38) and (10.39), we obtain

xn ≥ r(f, ρn) + αP (f, ρn)xn for all f∞ ∈ C(D), (10.40)

from which it follows that xn ≥ vα
(

f∞, (ρn)∞
)

for all f∞ ∈ C(D). Hence, we can write

xn ≥ maxf∞∈C(D) v
α
(

f∞, (ρn)∞
)

= maxπ∞∈Π v
α
(

π∞, (ρn)∞
)

≥ maxπ∞∈Π inf{ρ∞∈Γ | ρib=ρn
ib

, i∈S2, b∈B(i)} v
α
(

π∞, (ρn)∞
)

= value vector of SCSG(ρn) = xn+1,

which proves the first part of the lemma. If val
(

Mxn [i]
)

6= xn
i for some i ∈ S2, then (10.40) holds

with a strict inequality for at least one i ∈ S2, i.e. xn > r(f, ρn)+αP (f, ρn)xn for all f∞ ∈ C(D),

implying xn > xn+1.

Lemma 10.15

Let C = (aij + bj) be a square and nonsingular matrix with aij > 0 for all i, j. Furthermore,

let Cx = γ · e have a nonnegative solution x with
∑

i xi = 1. Then, the matrix A = (aij) is

nonsingular and Ax = δ · e for some scalar d.

606 CHAPTER 10. STOCHASTIC GAMES

Proof

Assume that A is singular. Then, there exists a y 6= 0 with Ay = 0. Therefore, we have
∑

j cijyj =
∑

j aijyj +
∑

j bjyj =
∑

j bjyj for all i. Hence, Cy = β · e with β :=
∑

j bjyj ,

implying y = β · C−1e. Because y 6= 0, also β 6= 0. Furthermore, we have x = γ · C−1e 6= 0.

Thus, y = β
γ · x and

∑

j yj = β
γ 6= 0. Therefore, we may assume that y is such that Ay = 0 and

∑

j yj = 1. From
∑

j yj = β
γ = 1 it follows that β = γ, so y = x and Ax = 0. However, since A

has positive entries and x is a probability vector, Ax = 0 is impossible and we have shown that

A is nonsingular. Since
∑

j aijyj =
∑

j cijyj −
∑

j bjyj = γ −∑j bjyj , which is independent of

i, we obtain Ax = δ · e for some scalar d.

Without loss of generality, we may assume that ri(a, b) > 0 for all i, a, b (otherwise add a positive

scalar c > −mini,a,b ri(a, b) to all these rewards). In that case all elements of the matrix game

Mxn [i] are also strictly positive if xn ≥ 0. From a theorem by Shapley and Snow ([268]), and also

from the linear programming approach of matrix games, we know that optimal strategies can be

found in a submatrix game, where this submatrix is square and nonsingular. For any i ∈ S2,

the matrix game Mxn [i], has elements ri(a, b)+α
∑

j pij(b)xj. These elements are of the type of

the elements of C in Lemma 10.15 (a and b in the elements of Mxn [i] play the role of i and j in

C). Therefore, Lemma 10.15 implies that an extreme optimal strategy for player 2 in the matrix

game Mxn [i] is also an extreme optimal action in some square and nonsingular submatrix of a

matrix with elements ri(a, b), (a, b) ∈ A(i)×B(i) (the matrix with elements ri(a, b) corresponds

to matrix A in Lemma 10.15. Since there are only a finite number of submatrices from the matrix
(

ri(a, b)
)

, we see that for all i ∈ S2 and n ∈ N, the extreme optimal strategy ρn
ib, b ∈ B(i), is

chosen from a finite set.

Theorem 10.16

Algorithm 10.8 is finite and correct.

Proof

Assume that the algorithm is not finite. Then, by Lemma 10.14, x1 > x2 > · · · > xn > · · · .
Hence, the subsequent extreme strategies ρn, n = 1, 2, · · · are different. Since, in step 3 of

Algorithm 10.8 the extreme optimal strategies ρn
ib, b ∈ B(i), are chosen from a finite set (see

above), this yields a contradiction. Hence, the algorithm is finite.

Let the algorithm terminate at the nth iteration, i.e. xn = val(Mxn[i]) for all i ∈ S2. Since we

always have xn = val(Mxn[i]) for all i ∈ S1 (see (10.38)), we have xn = val(Mxn) implying that

xn is the value vector vα of the discounted stochastic game.

The optimal stationary strategies in the matrix games Mxn [i], i ∈ S, say πn
ia, a ∈ A(i) and

ρn
ib, b ∈ B(i), are optimal policies in the stochastic game, because r(π, ρn) + αP (π, ρn)vα ≤ vα

implies vα
(

π∞, (ρn)∞
)

= {I − αP (π, ρn)}−1r(π, ρn) ≤ vα for all π∞ ∈ Π. Similarly, we derive

vα
(

(πn)∞, ρ∞
)

≥ vα for all ρ∞ ∈ Γ.

10.2. DISCOUNTED REWARDS 607

Remark

The correctness of Algorithm 10.8 provides also the proof that the value vector and the optimal

policies lie in the same ordered field as the data: linear programming is used and the data of the

stochastic games SCSG(ρn) are also in the same field. Hence, the ordered field property holds

also for switching control stochastic games.

SER-SIT stochastic game

In this game we assume that the rewards are separable, i.e. ri(a, b) = si + t(a, b) for all i.a, b

(SER property), and the transitions are state independent, i.e. pij(a, b) = pj(a, b), j ∈ S for all

i.a, b (SIT property). Note that the above is meaningful if the set {(a, b)} is independent of the

states. Therefore, we assume that |A(i)| = m and |B(i)| = n for all i ∈ S. Thus a fixed pair of

actions (a, b) determines the same transition law, pj(a, b), j ∈ S, in every i ∈ S. In addition, the

SER property implies that all rewards are a sum of a contribution due the current state (si) and

a contribution due to the action pair selected (t(a, b)).

Let s = (s1, s2, . . . , sN)T and define them×nmatrixM = (mab) bymab := t(a, b)+α
∑

j pj(a, b)sj,

1 ≤ a ≤ m, 1 ≤ b ≤ n, which is, unlike the matrix Mx[i] in the previous section, independent of

the state i.

Lemma 10.16

Let π = (π1, π2, . . . , πm) and ρ = (ρ1, ρ2, . . . , ρn) be an arbitrary pair of mixed strategies of the

matrix game with matrix M . Then, vα(π∞, ρ∞) = s+ (1− α)−1πTMρ · e.

Proof

Since vα(π∞, ρ∞) = r(π, ρ)+αP (π, ρ)vα(π∞, ρ∞) = s+ t(π, ρ) · e+αP (π, ρ)vα(π∞, ρ∞), we have

vα
i (π∞, ρ∞)− si = t(π, ρ) + α

∑

j pj(π, ρ)sj + α
∑

j pj(π, ρ){vα
j (π∞, ρ∞)− sj}, i ∈ S.

In vector notation: {I −αP (π, ρ)}{vα(π∞, ρ∞)− s} = t(π, ρ) · e+αP (π, ρ)s = πTMρ · e. Hence,

vα(π∞, ρ∞)−s = πTMρ ·{I−αP (π, ρ)}−1·e = πTMρ ·∑∞
t=0 {αP (π, ρ)}t ·e = πTMρ ·(1−α)−1 ·e,

i.e. vα(π∞, ρ∞) = s + (1− α)−1πTMρ · e.

Corollary 10.4

Let v∗ := val(M) and let π∗ = (π∗1, π
∗
2, . . . , π

∗
m) and ρ∗ = (ρ∗1, ρ

∗
2, . . . , ρ

∗
n) be a pair of optimal

mixed strategies of the matrix game with matrix M . Then the value vector of the stochastic game

vα = s+ 1
1−αv

∗ ·e and (π∗)∞ and (ρ∗)∞ are optimal policies for player 1 and player 2, respectively.

Proof

Since π∗ and ρ∗ are optimal strategies for the matrix game with matrix M , we have for all

strategies π and ρ: πTMρ∗ ≤ (π∗)TMρ∗ ≤ (π∗)TMρ. Therefore, by Lemma 10.16, for all π∞ ∈ Π

and all ρ∞ ∈ Γ: vα
(

π∞, (ρ∗)∞
)

≤ vα
(

(π∗)∞, (ρ∗)∞
)

≤ vα
(

(π∗)∞, ρ∞
)

. Hence, by Theorem 10.4,

the value vector of the stochastic game is s+ 1
1−αv

∗ · e and (π∗)∞ and (ρ∗)∞ are optimal policies

for player 1 and player 2, respectively.

608 CHAPTER 10. STOCHASTIC GAMES

Algorithm 10.9 SER-SIT game with discounting

Input: Instance of a two-person SER-SIT stochastic game

Output: The value vector vα and a pair
(

(π∗)∞, (ρ∗)∞
)

of optimal stationary policies.

1. Compute the matrix M with entries mab := t(a, b) + α
∑

j pj(a, b)sj, a ∈ A(i), b ∈ B(i).

2. Determine the value v∗ and optimal mixed strategies π∗ and ρ∗ of the matrix game with

matrix M .

3. vα := s+ 1
1−αv

∗ · e is the value vector; (π∗)∞ and (ρ∗)∞ are optimal stationary policies for

player 1 and player 2, respectively (STOP).

Remark

Since the value v∗ and the optimal stationary strategies π∗ and ρ∗ can be computed by linear

programming, SER-SIT games possess the ordered field property.

Example 10.7

Consider the following example, which is a SIT game but no SER game.

S = {1, 2, 3}; A(1) = A(2) = A(3) = {1, 2}; B(1) = B(2) = B(3) = {1, 2}.
r1(1, 1) = 0, r1(1, 2) = 0, r1(2, 1) = 0, r1(2, 2) = 1; r2(1, 1) = −1, r2(1, 2) = −1;

r2(2, 1) = −1, r2(2, 2) = −1, r3(1, 1) = −2, r3(1, 2) = −2; r3(2, 1) = 2, r3(2, 2) = 1.

p1(1, 1) = 1, p2(1, 1) = 0, p3(1, 1) = 0; p1(1, 2) = 0, p2(1, 2) = 0, p3(1, 2) = 1;

p1(2, 1) = 0, p2(2, 1) = 1, p3(2, 1) = 0; p1(2, 2) = 1, p2(2, 2) = 0, p3(2, 2) = 0.

For the value vector vα, we have

vα
1 = val

αvα
1 αvα

3

αvα
2 αvα

1

 ; vα
2 = val

−1 + αvα
1 −1 + αvα

3

−1 + αvα
2 −1 + αvα

1

 ; vα
3 = val

−2 + αvα
1 −2 + αvα

3

−1 + αvα
2 −1 + αvα

1

 .

The matrix of vα
1 has entries which are all 1 larger than the entries of the matrix of vα

2 : vα
1 = vα

2 +1.

Furthermore, we see in the matrix of vα
3 that the entry at position (2,1), i.e. −1 + αvα

2 , is the

largest in the first column and the smallest in the second row. So, this entry is a saddle point,

i.e. vα
3 = −1 + αvα

2 . Hence, we obtain from the equation for vα
1 ,

1
αv

α
1 = val

vα
1 vα

3

vα
2 vα

1

 = val

vα
1 αvα

1 − 1− α
vα
1 − 1 vα

1

 .

Hence, 1
αv

α
1 =

vα
1 ·vα

1 −(vα
1 −1)·(αvα

1 −1−α)
vα
1 +vα

1 −(vα
1 −1)−(αvα

1 −1−α)
=

(1−α)
(

vα
1)2+vα

1 (1+2α)−(1+α)

(1−α)vα
1 +2+α

.

The solution of this quadratic equation yields vα
1 =

−(1+α)+
√

(1+α)

1−α . Let α = 1
2 , then vα

1 = −3+
√

6.

So, we conclude that the SIT game without the SER property does not possess the ordered field

property.

Remark

It can also be shown (see Exercise 10.9) that a SER game without the SIT property does not

possess the ordered field property.

10.2. DISCOUNTED REWARDS 609

SER-SIT/SC stochastic game

We have seen that both the Switching-controller and the SER-SIT stochastic game have the

ordered field property. A natural generalization of the above types of games is a game where in

some states the law of transition is as in switching control and in the rest of the states the game

is SER-SIT . We call such games SER-SIT/SC stochastic games.

A zero-sum stochastic game is a SER-SIT/SC stochastic game if:

(1) S = S1 ∪ S2 ∪ S3, where S1 ∩ S2 = S1 ∩ S3 = S2 ∩ S3 = ∅;

(2) pij(a) =

{

pij(a), i ∈ S1, a ∈ A(i), b ∈ B(i), j ∈ S
pij(b), i ∈ S2, a ∈ A(i), b ∈ B(i), j ∈ S

(3a) ri(a, b) = si + t(a, b), i ∈ S3, a ∈ A(i), b ∈ B(i);

(3b) pij(a, b) = pj(a, b), i ∈ S3, a ∈ A(i), b ∈ B(i), j ∈ S;

(3c) |A(i)| = m and |B(i)| = n for all i ∈ S3.

A first question is: Do these games also possess the ordered field property? Unfortunately the

answer is no as the next example shows.

Example 10.4 (continued)

Take S1 = 2, S2 = ∅, S3 = {1}. Notice that this is trivially a SER-SIT/SC stochastic game.

Since vα = 2
3{−2 +

√
13}, the ordered field property does not hold.

Remark

One might wonder whether there exists a subclass which has the ordered field property. Sinha

([272]) claims that under the assumption that
∑

j∈S3
pj(a, b) is constant for all (a, b) ∈ A(i)×B(i),

i ∈ S3 this game has the ordered field property. Furthermore, he presents for both the discounted

and the undiscounted case finite algorithms. These algorithms contain a finite sequence of linear

programs and matrix games as in the switching-controller stochastic games.

ARAT stochastic game

An additive reward and additive transition (ARAT) stochastic game is defined by the property

that the rewards as well as the transitions can be written as the sum of a term determined by

player 1 and a term determined by player 2: ri(a, b) = r1i (a) + r2i (b), i ∈ S, a ∈ A(i), b ∈ B(i)

and pij(a, b) = p1
ij(a) + p2

ij(b), i, j ∈ S, a ∈ A(i), b ∈ B(i).

Theorem 10.17

(1) Both players have optimal deterministic and stationary policies.

(2) The ordered field property holds.

Proof

(1) By the additivity of ri(a, b) and pij(a, b), the matrixMx[i], with entries ri(a, b)+α
∑

j pij(a, b)xj

can be written as the sum of two matrices: Mx[i] = Ax[i] +Bx[i], where Ax[i] and Bx[i] have

610 CHAPTER 10. STOCHASTIC GAMES

elements r1i (a) + α
∑

j p
1
ij(a)xj and r2i (b) +α

∑

j p
2
ij(b)xj, respectively. The matrix Ax[i] has

identical columns and matrix Bx[i] has identical rows. Consider the equation xi = val(Mx[i]),

which has as unique solution vα
i . Effectively, this means that player 1 is only interested in the

matrix Avα [i] with identical columns, and player 2 is only interested in the matrix Bvα [i] with

identical rows. Hence, in each state i, both players possess deterministic optimal strategies.

Hence, the stochastic game has optimal deterministic and stationary policies.

(2) Let f∞∗ and g∞∗ be optimal deterministic and stationary optimal policies for player 1 and 2,

respectively. Then, the value vector vα = vα(f∞∗ , g∞∗) = {I−αP (f, g)}−1r(f, g), which shows

the ordered field property.

Since there are only a finite number of deterministic and stationary policies, there is a finite

algorithm. The next algorithm is a special version of Algorithm 10.4 with ε = 0.

Algorithm 10.10 ARAT game with discounting

Input: Instance of a two-person ARAT stochastic game

Output: The value vector vα and a pair (f∞∗ , g∞∗) of deterministic optimal policies.

1. Select any deterministic policy g∞∗ for player 2.

2. Solve the MDP induced by the policy g∞∗ : x := maxf∞∈C(D) v
α(f∞, g∞).

3. for all i ∈ S do

begin determine the matrixMx[i] with entries ri(a, b)+α
∑

j pij(a, b)xj, a ∈ A(i), b ∈ B(i);

compute yi := val(Mx[i]);

determine a deterministic optimal strategy g∗(i) for player 2 in the matrix Mx[i]

end

4. if ‖y − x‖∞ = 0 then go to step 5

else return to step 2.

5. for all i ∈ S do

determine an optimal deterministic strategy f∗(i) for player 1 in the matrix Mx[i].

6. vα := y.

7. vα is the value vector and (f∞∗ , g∞∗) is a pair of deterministic optimal policies (STOP).

10.3. TOTAL REWARDS 611

10.3 Total rewards

10.3.1 Value and optimal policies

We make the following assumptions:

(1) The model is substochastic, i.e.
∑

j pij(a, b) ≤ 1 for all (i, a, b) ∈ S × A×B.

(2) The model is transient, i.e. for any initial state i and any two policies R1, R2 the expected

total reward vi(R1, R2) is finite.

A policy R∗
1 is optimal for player 1 if v(R∗

1, R2) ≥ infR2 supR1
v(R1, R2) for all policies R2.

A policy R∗
2 is optimal for player 2 if v(R1, R

∗
2) ≤ supR1

infR2 v(R1, R2) for all policies R1.

The stochastic game with total rewards has a value if infR2 supR1
v(R1, R2) = supR1

infR2 v(R1, R2).

The value vector is denoted by v.

Most of the results for transient Markov games are similar to the results for discounted Markov

games. Below we give an overview of these results; for the proofs we often refer to the section

discounted rewards.

Theorem 10.18

If the policies R∗
1 and R∗

2 satisfy v(R1, R
∗
2) ≤ v(R∗

1, R
∗
2) ≤ v(R∗

1, R2) for all policies R1 and R2,

then the game has a value, and R∗
1 and R∗

2 are optimal policies.

Proof

The proof is analogous to the proof of Theorem 10.4.

Theorem 10.19

The game has a value and both players have optimal policies.

Proof

We shall use the following properties:

(1) When one of the players uses a stationary policy, then the Markov game is an MDP for

which the other player is the decision maker.

(2) An MDP has an optimal deterministic policy.

(3) v(π∞, ρ∞) is finite and equal to {I − P (π, ρ)}−1r(π, ρ) for every π∞ ∈ C1(S) and every

ρ∞ ∈ C2(S).

Let w := infρ∞∈Γ supπ∞∈Π v(π∞, ρ∞). Define for any x ∈ R the mapping T : R
N → R

N by

(Tx)i := inf
ρ∞∈Γ

sup
π∞∈Π

{ri(π, ρ) +
∑

j

pij(π, ρ)xj}, i ∈ S. (10.41)

(Tx)i is the value of a matrix game with pay-off matrix Mx[i]. The matrix Mx[i] has m = |A(i)|
rows and n = |B(i)| columns and the payoff, if player 1 chooses row a and player 2 column b, is

ri(a, b) +
∑

j pij(a, b)xj.

612 CHAPTER 10. STOCHASTIC GAMES

Let wi(ρ
∞) := supπ∞∈Π v(π∞), ρ∞) and wi(π

∞) := infρ∞∈Gamma v(π
∞, ρ∞) for every ρ∞ ∈ Γ

and every π∞ ∈ Π. Obviously, w ≤ w(ρ∞) for every ρ∞ ∈ Γ. If we fix ρ∞ ∈ Γ as policy for player

2, the game becomes a transient MDP. From the results of Section 4.7 it follows that w(ρ∞) is

the unique solution of the equation x = supπ∞ {r(π, ρ)+ P (π, ρ)x}. Hence,

Tw = inf
ρ∞∈Γ

sup
π∞∈Π

{r(π, ρ)+ P (π, ρ)w}

≤ inf
ρ∞∈Γ

sup
π∞∈Π

{r(π, ρ)+ P (π, ρ)w(ρ∞)} (10.42)

= inf
ρ∞∈Γ

w(ρ∞) = inf
ρ∞∈Γ

sup
π∞∈Π

v(π∞, ρ∞) = w.

Since (Tw)i is the value of the matrix game Mw[i], there are optimal strategies π∗ia, a ∈ A(i),

and ρ∗ib, b ∈ B(i), such that

ri(π, ρ
∗)+

∑

j pij(π, ρ
∗)wj ≤ (Tw)i = ri(π

∗, ρ∗)+
∑

j pij(π
∗, ρ∗)wj ≤ ri(π∗, ρ)+

∑

j pij(π
∗, ρ)wj

for all strategies πia, a ∈ A(i) and ρib, b ∈ B(i). In vector notation,

r(π, ρ∗) + P (π, ρ∗)w ≤ Tw = r(π∗, ρ∗) + P (π∗, ρ∗)w ≤ r(π∗, ρ) + P (π∗, ρ)w, π∞ ∈ Π, ρ∞ ∈ Γ.

(10.43)

Suppose that Tw 6= w. Then, it follows from (10.42) and (10.43) that

wi ≥ (Tw)i ≥ {r(π, ρ∗) + P (π, ρ∗)w}i, i ∈ S, π∞ ∈ Π, (10.44)

where the first inequality is strict for at least one i, say for i = k. By iterating (10.44), we obtain

wk > {
∑∞

t=1 P
t−1(π, ρ∗)r(π, ρ∗)}k = vk

(

π∞, (ρ∗)∞
)

for every π∞ ∈ Π.

Then, it follows that

wk > maxπ∞∈Π vk

(

π∞, (ρ∗)∞
)

= supπ∞∈Π vk

(

π∞, (ρ∗)∞
)

≥ infρ∞∈Γ supπ∞∈Π vk(π
∞, ρ∞) = wk,

implying a contradiction. Hence, Tw = w and r(π, ρ∗) + P (π, ρ∗)w ≤ w ≤ r(π∗, ρ) + P (π∗, ρ)w

for every π∞ ∈ Π and ρ∞ ∈ Γ. Consequently,

v
(

π∞, (ρ∗)∞
)

≤ v
(

(π∗)∞, (ρ∗)∞
)

≤ v
(

(π∗)∞, ρ∞
)

for every π∞ ∈ Π and ρ∞ ∈ Γ. (10.45)

Since in any Markov decision problem an optimal policy can be found in the class of stationary

policies, we also have v
(

R1, (ρ
∗)∞

)

≤ v
(

(π∗)∞, (ρ∗)∞
)

≤ v
(

(π∗)∞, R2

)

for every pair (R1, R2)

of policies for player 1 and 2, respectively. By Theorem 10.18, the game has a value and both

players have stationary optimal policies.

10.3.2 Mathematical programming

A vector v ∈ RN is called superharmonic if there exists a policy ρ∞ ∈ Γ such that

vi ≥ ri(a, ρ) +
∑

j pij(a, ρ)vj, a ∈ A(i), i ∈ S.

A vector v ∈ RN is called subharmonic if there exists a policy π∞ ∈ Π such that

vi ≤ ri(π, b) +
∑

j pij(π, b)vj, b ∈ B(i), i ∈ S.

10.3. TOTAL REWARDS 613

Theorem 10.20

(1) The value vector v is the smallest superharmonic vector.

(2) The value vector v is the largest subharmonic vector.

Proof

The proof is analogous to the proof of Theorem 10.9.

Consider the two nonlinear programs

min

∑

i

vi

∣

∣

∣

∣

∣

∣

∣

∣

∑

j{δij −
∑

b pij(a, b)ρib}vj − ∑

b ri(a, b)ρib ≥ 0, a ∈ A(i), i ∈ S
∑

b ρib = 1, i ∈ S
ρib ≥ 0, b ∈ B(i), i ∈ S

(10.46)

and

max

∑

i

wi

∣

∣

∣

∣

∣

∣

∣

∣

∑

j{δij −
∑

a pij(a, b)πia}wj −
∑

a ri(a, b)πia ≤ 0, b ∈ B(i), i ∈ S
∑

a πia = 1, i ∈ S
πia ≥ 0, a ∈ A(i), i ∈ S

.

(10.47)

Theorem 10.21

The nonlinear programs (10.46) and (10.47) have both optimal solutions, say (v∗, ρ∗) and (w∗, π∗).

Furthermore, v∗ = w∗ = v, the value vector, and (p∗)∞ and (ρ∗)∞ are optimal policies for player

1 and player 2, respectively.

Proof

The proof is analogous to the proof of Theorem 10.10.

Consider for a given initial distribution β, i.e. βj ≥ 0, j ∈ S, and
∑

j βj = 1, the nonlinear

system

∑

a πia = 1, i ∈ S; πia ≥ 0, a ∈ A(i), i ∈ S
∑

b ρib = 1, i ∈ S; ρib ≥ 0, b ∈ B(i), i ∈ S
∑

i {δij − pij(π, ρ)}xi = βj, j ∈ S
(10.48)

Any solution (π, ρ, x) of this system satisfies xT{I−P (π, ρ)} = βT . By iterating this equality, we

obtain xT = βT
∑∞

t=1 P
t−1(π, ρ), from which it follows that xi is the expected number of times

that the process visits state i, given initial distribution β and the stationary policies π∞ and ρ∞

for player 1 and 2, respectively. Furthermore, we have

βT v(π∞, ρ∞) = βT
∑∞

t=1 P
t−1(π, ρ)r(π, ρ) = xT r(π, ρ) =

∑

i

∑

a

∑

b ri(a, b)xiπiaρib.

Conversely, any pair of decision rules (π, ρ) gives a solution of (10.48) with xT = βT
∑∞

t=1 P
t−1(π, ρ).

Inequality (10.45) implies

βT v = minρ∞∈Γ maxπ∞∈Π βT v(π∞, ρ∞) = minρ∞∈Γ maxπ∞∈Π

∑

i

∑

a

∑

b ri(a, b)xiπiaρib.

Hence, we can state the following result.

614 CHAPTER 10. STOCHASTIC GAMES

Theorem 10.22

βTv is the value of the following minimax game problem:

minρ maxπ {
∑

i

∑

a

∑

b ri(a, b)xiπiaρib | (π, ρ, x) is a feasible solution of (10.48)}.

10.3.3 Single-controller stochastic game: the transient case

In the single-controller stochastic game is player 1 the single-controller. This means that the

transition probabilities pij(a, b) are independent of b. Therefore, we denote these probabilities as

pij(a). Under this assumption the nonlinear program (10.46) (with objective function
∑

j βjvj

instead of
∑

j vj, where βj > 0, j ∈ S) becomes the following linear program

min

∑

i

βvi

∣

∣

∣

∣

∣

∣

∣

∣

∑

j{δij − pij(a)}vj −
∑

b ri(a, b)ρib ≥ 0, a ∈ A(i), i ∈ S
∑

b ρib = 1, i ∈ S
ρib ≥ 0, b ∈ B(i), i ∈ S

. (10.49)

The dual program is

max

∑

i

zi

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a){δij − pij(a)}xi(a) = βj, j ∈ S
−∑a ri(a, b)xi(a) + zi ≤ 0, (i, b) ∈ S ×B

xi(a) ≥ 0, (i, a) ∈ S × A

. (10.50)

The following theorem shows that the value vector and optimal stationary policies for both players

can be obtained from the optimal solutions of the dual pair of linear programs.

Theorem 10.23

Let (v∗, ρ∗) and (x∗, z∗) be optimal solutions of the linear programs (10.49) and (10.50), respec-

tively. Define the stationary policy (π∗)∞ by π∗ia :=
x∗

i (a)
P

a x∗
i (a) , (i, a) ∈ S×A. Then, v∗ is the value

vector and (π∗)∞ and (ρ∗)∞ are optimal stationary policies for player 1 and 2, respectively.

Proof

The proof is analogous to the proof of Theorem 10.15.

Algorithm 10.11 Single-controller game (transient case)

Input: Instance of a two-person single-controller transient stochastic game

Output: The value vector v∗ and a pair
(

(π∗)∞, (ρ∗)∞
)

of stationary optimal policies.

1. Compute optimal solutions (v∗, ρ∗) and (x∗, z∗) of the linear programs (10.49) and (10.50).

2. Define the stationary policy (π∗)∞ by π∗ia :=
x∗

i (a)
P

a x∗
i (a) , (i, a) ∈ S ×A.

3. v∗ is the value vector and (π∗)∞ and (ρ∗)∞ optimal stationary policies for player 1 and 2

(STOP).

10.3. TOTAL REWARDS 615

Additional constraints

We assume that the constraints are imposed on the expected total state-action frequencies for

the player who controls the transitions (player 1). For the additional constraints we assume

that, besides the immediate rewards, there are for k = 1, 2, . . . , m also certain immediate costs

cki (a), (i, a) ∈ S ×A. The constraints are:

ck(R1) :=
∑

j βj ·
∑∞

t=1

∑

i,a P{Xt = i, Yt = a | X1 = j} · cki (a) ≤ bk for k = 1, 2, . . . , m,

for some real numbers b1, b2, . . . , bm and some initial distribution β with βj > 0, j ∈ S.

Let C1, C2 be the set of policies for player 1 and 2, respectively. For any policy R1 ∈ C1 we

denote the total expected number of times of being in state i and choosing action a by

xia(R1) =
∑

j

βj ·
∞
∑

t=1

∑

i,a

P{Xt = i, Yt = a | X1 = j}. (10.51)

Let C1(S), C2(S) be the set of stationary policies for player 1 and 2, respectively. We define the

vector sets K,K(S) and P , with components (i, a) ∈ S × A, by

K = {x(R1) | R1 ∈ C1};

K(S) = {x(R1) | R1 ∈ C1(S)};

P =

x

∣

∣

∣

∣

∣

∣

∑

(i,a) {δij − pij(a)}xia = βj, j ∈ S
xia = 0, (i, a) ∈ S ×A

.

Theorem 10.24

K = K(S) = P .

Proof

The result was shown in Theorem 9.18.

Let C1
0 := {R1 ∈ C1 | ck(R1) ≤ bk for k = 1, 2, . . . , m} the set of feasible solutions for player 1.

A policy R∗
1 is optimal for player 1 in the constrained Markov game if R∗ ∈ C1

0 and

inf
R2∈C2

∑

j

βjvj(R
∗
1, R2) = supR1 ∈ C1

0 inf
R2∈C2

∑

j

βjvj(R1, R2). (10.52)

A policy R∗
2 is optimal for player 2 in the constrained Markov game if

sup
R1∈C1

0

∑

j

βjvj(R1, R
∗
2) = inf

R2∈C2
sup

R1∈C1
0

∑

j

βjvj(R1, R2). (10.53)

The constrained Markov game has a value if

sup
R1∈C1

0

inf
R2∈C2

∑

j

βjvj(R1, R2) = inf
R2∈C2

sup
R1∈C1

0

∑

j

βjvj(R1, R2). (10.54)

616 CHAPTER 10. STOCHASTIC GAMES

From Theorem 10.24 it follows that for any R1 ∈ C1 there exists x ∈ P such that x = x(R1). Since

ck(R1) =
∑

i,a xia(R1)c
k
i (a) for k = 1, 2, . . . , m, the constrained Markov game can be converted

in the following polyhedral game

sup
P0

inf
ρ∞∈Γ

∑

i,a

∑

b

ri(a, b)xiaρib where P0 := {x ∈ P |
∑

i,a

cki (a)xia ≤ bk, 1 ≤ k ≤ m}. (10.55)

Theorem 10.25

Let (x∗, z∗) and (v∗, w∗, ρ∗) be optimal solutions of the following dual pair of linear programs

max

∑

i

zi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a){δij − pij(a)}xi(a) = βj, j ∈ S
−∑a ri(a, b)xi(a) + zi ≤ 0, (i, b) ∈ S ×B
∑

(i,a) c
k
i (a, b)xi(a) ≤ bk, k = 1, 2, . . . , m

xi(a) ≥ 0, (i, a) ∈ S × A

(10.56)

and

min

∑

j

βjvj +
∑

k

bkwk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

j{δij − pij(a)}vj −
∑

b ri(a, b)ρib +
∑

k c
k
i (a)wk ≥ 0, a ∈ A(i), i ∈ S
∑

b ρib = 1, i ∈ S
ρib ≥ 0, b ∈ B(i), i ∈ S
wk ≥ 0, k = 1, 2, . . . , m

(10.57)

Define the stationary policy (π∗)∞ by π∗ia :=
x∗

i (a)
P

a x∗
i (a) , (i, a) ∈ S×A. Then, (π∗)∞ and (ρ∗)∞ are

optimal stationary policies for the constrained Markov game and
∑

i z
∗
i =

∑

j βjv
∗
j +
∑

k bkw
∗
k is

the value of the constrained game.

If program (10.56) is infeasible, then C1
0 = ∅.

Proof

If program (10.56) is infeasible, then obviously C1
0 = ∅.

If program (10.56) is feasible, then - since P is a compact set - (10.56) has a finite optimal solution,

say (x∗, z∗). Consequently, (10.57) has also a finite optimal solution, say (v∗, w∗, ρ∗).

We have to show that for every R1 ∈ C1
0 and every R2 ∈ C2

∑

j βjvj

(

R1, (ρ
∗)∞

)

≤∑j βjvj

(

(π∗)∞, (ρ∗)∞
)

=
∑

j βjv
∗
j +
∑

k bkw
∗
k =

∑

i z
∗
i ≤

∑

j βjvj

(

(π∗)∞, R2

)

.

We have for every x ∈ P0,
∑

(i,a)

∑

b ri(a, b)ρ
∗
ibxi(a) ≤

∑

(i,a)

{
∑

j {δij − pij(a)}v∗j +
∑

k c
k
i (a)w

∗
k

}

xi(a)

=
∑

j

{
∑

(i,a) {δij − pij(a)}v∗j
}

xi(a) +
∑

k

{
∑

(i,a) c
k
i (a)w

∗
k

}

xi(a)

=
∑

j

{
∑

(i,a) {δij − pij(a)}xi(a)
}

v∗j +
∑

k

{
∑

(i,a) c
k
i (a)xi(a)

}

w∗
k

≤ ∑

j βjv
∗
j +

∑

k bkw
∗
k =

∑

i z
∗
i .

Furthermore, we obtain for every ρ∞ ∈ C2(S)
∑

(i,a)

∑

b ri(a, b)ρibx
∗
i (a) =

∑

(i,b) ρib{
∑

a ri(a, b)x
∗
i (a)}

≥ ∑

(i,b) ρibz
∗
i =

∑

i{
∑

b ρib}z∗i =
∑

i z
∗
i .

10.3. TOTAL REWARDS 617

Hence, we have
∑

(i,a)

∑

b ri(a, b)ρ
∗
ibxi(a) ≤

∑

j βjv
∗
j +

∑

k bkw
∗
k =

∑

i z
∗
i ≤

∑

(i,a)

∑

b ri(a, b)ρibx
∗
i (a)

for every x ∈ P0 and every ρ∞ ∈ C2(S). Consequently,

∑

(i,a,b)

ri(a, b)ρ
∗
ibxi(a) ≤

∑

j

βjv
∗
j +
∑

k

bkw
∗
k =

∑

(i,a,b)

ri(a, b)ρ
∗
ibx

∗
i (a) =

∑

i

z∗i ≤
∑

(i,a,b)

ri(a, b)ρibx
∗
i (a)

(10.58)

for every x ∈ P0 and every ρ∞ ∈ C2(S). Take any R1 ∈ C1
0 and any ρ∞ ∈ C2(S). Let x ∈ P0 be

such that x = x(R1). Then,
∑

(i,a,b) ri(a, b)ρ
∗
ibxi(a) =

∑

b ρ
∗
ib{
∑

(i,a) ri(a, b)xia(R1)}
=

∑

(i,a) ri(a, ρ
∗)xia(R1) =

∑

j βjvj

(

R1, ρ
∞)

and
∑

(i,a,b) ri(a, b)ρibx
∗
i (a) =

∑

b ρib{
∑

(i,a) ri(a, b)π
∗
iax

∗
i }

=
∑

i ri(π
∗, ρ){βT

(

I − P (π∗)
)−1}i

= βT
(

I − P (π∗)
)−1

r(π∗, ρ) =
∑

j βjvj

(

(π∗)∞, ρ∞
)

.

Therefore, these equalities and (10.58) imply
∑

j βjvj

(

R1, (ρ
∗)∞

)

=
∑

(i,a,b) ri(a, b)ρ
∗
ibxi(a)

≤ ∑

(i,a,b) ri(a, b)ρibx
∗
i (a)

=
∑

j βjvj

(

(π∗)∞, ρ∞
)

for every R1 ∈ C1
0 and every ρ∞ ∈ C2(S). Since the game becomes an MDP if player 1 uses the

stationary policy (π∗)∞, we also have
∑

j βjvj

(

R1, (ρ
∗)∞

)

≤∑j βjvj

(

(π∗)∞, (ρ∗)∞
)

≤∑j βjvj

(

(π∗)∞, R2

for every R1 ∈ C1
0 and every R2 ∈ C2, i.e. (π∗)∞ and (ρ∗)∞ are optimal stationary policies for the

constrained Markov game. Furthermore,
∑

i z
∗
i =

∑

j βjv
∗
j +
∑

k bkw
∗
k =

∑

j βjvj

(

(π∗)∞, (ρ∗)∞
)

is the value of the constrained game.

Algorithm 10.12 Single-controller constrained Markov game (transient case)

Input: Instance of a two-person single-controller constrained transient stochastic game.

Output: The value and a pair (π∗)∞ and (ρ∗)∞ of stationary optimal policies (in case the

constrained game is feasible).

1. Solve the linear programs (10.56) and (10.57), respectively.

2. if (10.56) is infeasible then the constrained game is infeasible (STOP).

3. Let (x∗, z∗) and (v∗, w∗, ρ∗) be optimal solutions of (10.56) and (10.57), respectively.

4. Define the stationary policy (π∗)∞ by π∗ia :=
x∗

i (a)
P

a x∗
i
(a) , (i, a) ∈ S ×A.

5.
∑

i z
∗
i is the value and (π∗)∞ and (ρ∗)∞ are optimal stationary policies for player 1 and 2,

respectively (STOP).

618 CHAPTER 10. STOCHASTIC GAMES

Remark 1

Since the discounted Markov game is a special case of a transient Markov game, Algorithm 10.12

can also be used for discounted Markov games with constraints.

Remark 2

Consider a two-person zero-sum discounted semi-Markov game in which player 1 controls the

transitions. This model can be described as follows:

- state space S;

- action sets A(i) and B(i), i ∈ S, for player 1 and 2, respectively;

- transition probabilities pij(a), (i, a) ∈ S × A, j ∈ S, which depend only on the actions chosen

by player 1;

- immediate rewards ri(a, b), (i, a, b) ∈ S ×A ×B;

- reward rates si(a, b), (i, a) ∈ S × A×B;

- sojourn time distributions Fij(a, t), (i, a) ∈ S × A, j ∈ S, which depend only on the actions

chosen by player 1.

From these quantities we compute the transition numbers p∗ij(a), (i, a) ∈ S × A, j ∈ S, and

the rewards r∗(a, b), (i, a) ∈ S ×A× B, j ∈ S, by:

p∗ij(a) := pij(a) ·
∫∞
0 e−λtdFij(a, t) for every (i, a) ∈ S ×A and j ∈ S;

r∗i (a, b) := ri(a, b)+si(a, b) ·
∑

j pij(a)
∫∞
0 {

∫ t
0 e

−λsds} dFij(a, t) for every (i, a, b) ∈ S×A×B.

Analogously to the analysis in Section 9.7.4 it can straightforward be shown that this discounted

semi-Markov game is contracting and equivalent to a transient Markov game (S, A, B, p∗, r∗)

with total rewards. Therefore, the results of a single-controller transient Markov game are also

applicable to a discounted single-controller semi-Markov game.

10.3.4 Single-controller stochastic game: the general case

In this subsection we drop the assumption that the model is transient; so, there may be nontran-

sient policies. We relax the assumption of transiency to the following.

Assumption 10.1

For any initial state i and any two policies R1, R2 the expected total reward vi(R1, R2) exists,

possibly +∞ or −∞.

Since the transition probabilities are controlled by player 1, the concept of a transient policy is

only significant for policies R1 ∈ C1. Let C1
T be the set of transient policies for player 1, i.e.

C1
T :=

{

R1 ∈ C1
∣

∣

∣

∞
∑

t=1

∑

i,a

P{Xt = i, Yt = a | X1 = j} <∞ for all j ∈ S
}

. (10.59)

10.3. TOTAL REWARDS 619

We shall discuss the problem of finding the best policies R1 and R2 with R1 ∈ C1
T and R2 ∈ C2.

Let β be an initial distribution with βj > 0, j ∈ S. We define the vector sets L, L(S) and P ,

with components (i, a) ∈ S ×A, by:

L = {x(R1) | R1 ∈ C1
T };

L(S) = {x(R1) | R1 ∈ C1
T ∩ C1(S)};

P =

x

∣

∣

∣

∣

∣

∣

∑

(i,a) {δij − pij(a)}xia = βj, j ∈ S
xia = 0, (i, a) ∈ S × A

.

Then, by Theorem 9.16, L = L(S) = P . For x ∈ P we define a stationary policy π∞(x) by

(4.16). Conversely, let π∞ be an arbitrary transient stationary policy. Then, define the vector

x(π) by (4.18). By Theorem 4.7, we know that the mapping (4.18) is a bijection between the set

of transient stationary policies and the set of feasible solutions of (4.15) with (4.16) as the inverse

mapping.

Theorem 10.26

Consider the dual pair of linear programs (10.49) and (10.50).

(1) If (10.50) is infeasible, then C1
T = ∅.

(2) If (10.50) is unbounded, then there does not exist a finite value of the stochastic game.

(3) If (x∗, z∗) and (v∗, ρ∗) are optimal solutions of (10.49) and 10.50, respectively, then

π∞(x∗) and (ρ∗)∞ are optimal transient policies for the two players and v∗ is the value

of this game, i.e. v∗ = supR1∈C1
T

infR2∈C2 v(R1, R2) = infR2∈C2 supR1∈C1
T
v(R1, R2).

Proof

(1) Assume that R1 ∈ C1
T . Then, x(R1) ∈ L = P . So, there exists x ∈ P such that x = x(R1).

Let zi := minb
∑

a ri(a, b)xi(a), i ∈ S. Then, (x, z) is a feasible solution of (10.50), which

causes a contradiction. Hence, C1
T = ∅.

(2) For any feasible solution (x, z) of (10.50), we have
∑

i zi ≤
∑

i

∑

a

∑

b ri(a, b)xi(a)ρib for

every ρ∞ ∈ C2(S). Hence,
∑

i zi ≤ infρ∞∈C2(S)

∑

i

∑

a ri(a, ρ)xi(a). Because (10.50) is

unbounded, we obtain supx∈P infρ∞∈C2(S)

∑

i

∑

a ri(a, ρ)xi(a) = +∞.

Since
∑

i

∑

a ri(a, ρ)xi(a) =
∑

j βjvj

(

π∞(x), ρ∞
)

, we obtain

infR2∈C2 supR1∈C1
T

∑

j vj(R1, R2) ≥ supR1∈C1
T

infR2∈C2

∑

j vj(R1, R2)

≥ supπ∞∈C1
T∩C1(S) infR2∈C2

∑

j vj(π
∞, R2)

= supπ∞∈C1
T
∩C1(S) infρ∞∈C2(S)

∑

j vj(π
∞, ρ∞)

= supπ∞∈C1
T∩C1(S) infρ∞∈C2(S)

∑

i

∑

a ri(a, ρ)xi(a) = +∞.
Hence, there does not exist a finite value vector.

(3) The proof can be given analogously to the proof of Theorem 10.25).

620 CHAPTER 10. STOCHASTIC GAMES

Algorithm 10.13 Single-controller constrained Markov game (general case)

Input: Instance of a two-person single-controller constrained stochastic game.

Output: The value vector and a pair (π∗)∞ and (ρ∗)∞ of stationary optimal policies (in case

the linear program (10.50) is feasible and bounded).

1. Solve the dual pair of linear programs (10.49) and (10.50), respectively.

2. if (10.50) is infeasible then C1
T = ∅ (STOP).

3. if (10.50) is unbounded then there does not exist a finite value of the stochastic game

(STOP).

4. Let (v∗, ρ∗) and (x∗, z∗) and be optimal solutions of (10.49) and (10.50), respectively.

5. Define the stationary policy (π∗)∞ by π∗ia :=
x∗

i (a)
P

a x∗
i (a)

, (i, a) ∈ S ×A.

6. v∗ is the value and (π∗)∞ and (ρ∗)∞ are optimal stationary policies for player 1 and 2,

respectively (STOP).

Additional constraints

Let us consider the constrained Markov game. As before, we assume that the constraints are

imposed on the expected total state-action frequencies for player 1. We also assume that, besides

the immediate rewards ri(a), there are also certain immediate costs cki (a), (i, a) ∈ S × A, for

k = 1, 2, . . . , m. The constraints are:

ck(R1) :=
∑

j βj ·
∑∞

t=1

∑

i,a P{Xt = i, Yt = a | X1 = j} · cki (a) ≤ bk for k = 1, 2, . . . , m,

for some real numbers b1, b2, . . . , bm and some initial distribution β with βj > 0, j ∈ S. The

policies for player 1 are restricted to to the set C1
∗ , where

C1
∗ := {R1 ∈ C1

T | ck(R1) ≤ bk, k = 1, 2, . . . , m}.
Then, with similar arguments as used in Theorem 10.25 and Theorem 10.26 the following result

can be shown.

Theorem 10.27

Consider the dual pair of linear programs (10.56) and (10.57).

(1) If (10.56) is infeasible, then C1
∗ = ∅.

(2) If (10.56) is unbounded, then there does not exist a finite value of the stochastic game.

(3) If (x∗, z∗) and (v∗, w∗, ρ∗) are optimal solutions of (10.56) and 10.57, respectively, then

π∞(x∗) and (ρ∗)∞ are optimal transient policies for the two players and the value of this

constrained game is
∑

i z
∗
i =

∑

j βjv
∗
j +

∑

k bkw
∗
k.

Algorithm 10.14 Single-controller constrained Markov game (general case)

Input: Instance of a two-person single-controller constrained stochastic game.

Output: The value and a pair (π∗)∞ and (ρ∗)∞ of stationary optimal policies (in case the

the linear program (10.56) is feasible and bounded).

10.4. AVERAGE REWARDS 621

1. Solve the linear programs (10.56) and (10.57), respectively.

2. if (10.56) is infeasible then the constrained game is infeasible (STOP).

3. if (10.56) is unbounded then there does not exist a finite value of the constrained game

(STOP).

4. Let (x∗, z∗) and (v∗, w∗, ρ∗) be optimal solutions of (10.56) and (10.57), respectively.

5. Define the stationary policy (π∗)∞ by π∗ia :=
x∗

i (a)
P

a x∗
i (a) , (i, a) ∈ S ×A.

6.
∑

i z
∗
i is the value and (π∗)∞ and (ρ∗)∞ are optimal stationary policies for player 1 and 2,

respectively (STOP).

10.4 Average rewards

10.4.1 Value and optimal policies

A policy R∗
1 is optimal for player 1 if φ(R∗

1, R2) ≥ infR2 supR1 φ(R1, R2) for all policies R2.

A policy R∗
2 is optimal for player 2 if φ(R1, R

∗
2) ≤ supR1 infR2 φ(R1, R2) for all policies R1.

The stochastic undiscounted game has a value if infR2 supR1 φ(R1, R2) = supR1 infR2 φ(R1, R2).

The value vector of an undiscounted stochastic game is denoted by φ.

A policy R∗
1 is ε-optimal for player 1 if φ(R∗

1, R2) ≥ infR2supR1φ(R1, R2)−ε for all policies R2.

A policy R∗
2 is ε-optimal for player 2 if φ(R1, R

∗
2) ≤ supR1infR2φ(R1, R2)+ε for all policies R1.

Theorem 10.28

If the policies R∗
1 and R∗

2 satisfy φ(R1, R
∗
2) ≤ φ(R∗

1, R
∗
2) ≤ φ(R∗

1, R2) for all policies R1 and R2,

the game has a value and R∗
1 and R∗

2 are optimal policies.

Proof

The proof is analogous to the proof of Theorem 10.4.

We have seen in Chapter 5 that, for Markov decision processes, the average reward criterion is

considerably more difficult to analyze than the discounted reward criterion. Nonetheless, after

overcoming a number of technical difficulties, results of qualitative strength and generality were

established for both the discounted and the average reward criterium. For instance, we have seen

that in both cases there are optimal deterministic and stationary optimal policies and that they

can be found by policy iteration, linear programming and value iteration methods. Consequently,

one might think that in the case of stochastic games (perhaps at the cost of extra analysis) it

might be possible to obtain qualitatively the same results in the average and the discounted case.

Unfortunately, this is not the case. In the next section we shall illustrate some of the problems

that arise.

622 CHAPTER 10. STOCHASTIC GAMES

10.4.2 The Big Match

The seemingly simple example described below can be used to illustrate many of the difficulties

arising in the analysis of stochastic games under the average reward criterion.

Example 10.8 The Big Match

S = {1, 2, 3}; A(1) = B(1) = {1, 2}, A(2) = B(2) = A(3) = B(3) = {1}.
r1(1, 1) = 1, r1(1, 2) = 0, r1(2, 1) = 0, r1(2, 2) = 1; r2(1, 1) = 0; r3(1, 1) = 1.

p11(1, 1) = 1, p12(1, 1) = 0, p13(1, 1) = 0; p11(1, 2) = 1, p12(1, 2) = 0, p13(1, 2) = 0;

p11(2, 1) = 0, p12(2, 1) = 1, p13(2, 1) = 0; p11(2, 2) = 0, p12(2, 2) = 0, p13(2, 2) = 1.

p21(1, 1) = 0, p22(1, 1) = 1, p23(1, 1) = 0; p31(1, 1) = 0, p32(1, 1) = 0, p33(1, 1) = 1.

The states 2 and 3 are absorbing: φ2(R1, R2) = 0 and φ3(R1, R2) = 1 for all policies R1 and R2.

However, it seems that the structure of the transition data makes the choice for player 1 in state

1 extremely difficult. While the choice of the first action leads to a repetition of the same game,

the choice of the second action absorbs the game either in state 2 or state 3, depending on the

choice of player 2. Thus the consequence of the second choice is so permanent and with such

different payoffs that it is a risky action.

To make the above point more precise, suppose that player 1 uses a stationary policy π∞ with

probability p for action 1 and probability 1 − p for action 2 in state 1, and that player 2 uses a

stationary policy ρ∞ with probability q for action 1 and probability 1− q for action 2 in state 1.

Let P [p, q] and r[p, q] be the corresponding transition matrix and reward vector.

There are now two cases: p = 1 and 0 ≤ p < 1.

Case 1: p = 1

P [p, q] =

1 0 0

0 1 0

0 0 1

; r[p, q] = (q, 0, 1)T → P ∗[p, q] =

1 0 0

0 1 0

0 0 1

→ φ1

(

π∞, ρ∞) = q.

Case 2: 0 ≤ p < 1

P [p, q] =

p (1− p)q (1− p)(1− q)
0 1 0

0 0 1

; r[p, q] = (pq + (1− p)(1− q), 0, 1)T.

P ∗[p, q] =

0 q 1− q
0 1 0

0 0 1

→ φ1

(

π∞, ρ∞) = 1− q.

Hence,

max0≤p≤1 φ1(π
∞, ρ∞) = max0≤q≤1 (q, 1− q) → min0≤q≤1 max0≤p≤1 φ1(π

∞, ρ∞) = 1
2

and

min0≤q≤1 φ1(π
∞, ρ∞) = min0≤q≤1 (q, 1− q) = 0 → max0≤p≤1 min0≤q≤1 φ1(π

∞, ρ∞) = 0.

Therefore,

max
π∞∈Π

min
ρ∞∈Γ

φ1(π
∞, ρ∞) = 0 <

1

2
= min

ρ∞∈Γ
max
π∞∈Π

φ1(π
∞, ρ∞). (10.60)

10.4. AVERAGE REWARDS 623

Of course, the above strict inequality implies that optimal stationary policies do not exist in the

Big Match. Since we alway have supR1 infR2 φ(R1, R2) ≤ infR2 supR1 φ(R1, R2), it is sufficient

for the existence of the value of this stochastic game to show that there exitst a policy R∗
1 for

player 1 such that φ1(R
∗
1, R2) ≥ 1

2 − ε for every ε > 0 and every policy R2 for player 2, namely:

In that case we have:

supR1 infR2 φ1(R1, R2) ≥ infR2 φ1(R
∗
1, R2)

≥ 1
2 = minρ∞∈Γmaxπ∞∈Π φ1(π

∞, ρ∞)

= minρ∞∈Γ supR1 φ1(R1, ρ
∞)

≥ infR2 supR1 φ1(R1, R2).

Thus, in order to show that the Big Match has a value vector, it is sufficient to show that for any

M ∈ N there exists a policy RM
1 for player 1 such that, for any realization Z = (Z1, Z2, . . .) of

the actions of player 2, player 1 has an average reward of at least 1
2 · M

M+1 .

At decision point t+ 1 player 1 knows the realizations of Z1, Z2, . . . , Zt, say b1, b2, . . . , bt, where

bi ∈ {1, 2}, 1 ≤ i ≤ t. Let k1
t be the number of 1’s and k2

t be the number of 2’s in {b1, b2, . . . , bt},
and let kt = k1

t − k2
t for t = 1, 2, The policy RM

1 is history-dependent, but depends only on

the numbers kt. Let πt+1(kt) be the probability that player 1 chooses action 2 in state 1 at time

point t+ 1, given kt. Then, in policy RM
1 , we take

πt+1(kt) :=
1

(kt +M + 1)2
for t = 0, 1, 2, . . . , where k0 ≡ 0.

Intuitively, when kt is positive and large, i.e. player 2 seems more willing for action 1, which

leads - when player 1 chooses action 2 - to the for player 1 bad state 2, then the probability that

player 1 chooses action 2 is very small; when kt is negative and tends to −M , i.e. player 2 seems

more willing for action 2, which leads - when player 1 chooses action 2 - to the for player 1 good

state 3, then the probability that player 1 chooses action 2 is increasing to 1.

Lemma 10.17

Define the events Em by Em := {Y1 = Y2 = · · ·= Ym = 1 or Yn = Zn = 2 for some 1 ≤ n ≤ m}
for m = 1, 2, Then, PRM

1
{Em} ≥ 1

2 · M
M+1 for all m,M ∈ N.

Proof

The proof is inductively on m.

If m = 1, then Em = {Y1 = 1 or Y1 = Z1 = 2}.
Hence, PRM

1
{Em} ≥ PRM

1
{Y1 = 1} = 1− 1

(M+1)2
≥ 1

2 · M
M+1 for all M ∈ N.

Next, assume that PRM
1
{Em} ≥ 1

2 · M
M+1 for all M ∈ N and consider Em+1.

We distinguish between the two possibilities for Z1.

Case 1: Z1 = 1, i.e. k1 = 1

Em+1 = {Y1 = Y2 = · · · = Ym+1 = 1 or Yn = Zn = 2 for some 2 ≤ n ≤ m+ 1}
=

{

Y1 = 1 or {Y2 = · · · = Ym+1 = 1 or Yn = Zn = 2 for some 2 ≤ n ≤ m+ 1}
}

.

If Y1 = 2, then the next state is state 2 and Yn = Zn = 2 for some 2 ≤ n ≤ m+ 1 is impossible.

624 CHAPTER 10. STOCHASTIC GAMES

Therefore,

PRM
1
{Em+1} = PRM

1
{Y1 = 1}·PRM

1
{Y2 = · · · = Ym+1 = 1 or Yn = Zn = 2 for some 2 ≤ n ≤ m+1}.

Because k1 = 1,

PRM
1
{Y2 = · · ·= Ym+1 = 1 or Yn = Zn = 2 for some 2 ≤ n ≤ m+ 1} = PRM+1

1
{Em}.

Hence,

PRM
1
{Em+1} =

{

1− 1
(M+1)2

}

·PRM+1
1
{Em} = M (M+2)

(M+1)2
·PRM+1

1
{Em} ≥ M (M+2)

(M+1)2
· 12 ·M+1

M+2 = 1
2 · M

M+1 .

Case 2: Z1 = 2, i.e. k1 = −1

Em+1 = {Y1 = Y2 = · · · = Ym+1 = 1 or Yn = Zn = 2 for some 1 ≤ n ≤ m+ 1}
=

{

Y1 = Z1 = 2 or {Y1 = Y2 = · · · = Ym+1 = 1 or Yn = Zn = 2 for some 2 ≤ n ≤ m+ 1}
}

.

Since Z1 = 2, we have PRM
1
{Y1 = Z1 = 2} = PRM

1
{Y1 = 2} = 1

(M+1)2
.

If Y1 = 2, then the next state is state 3 and Yn = Zn = 2 for some 2 ≤ n ≤ m+ 1 is impossible.

Therefore,

PRM
1
{Em+1}= 1

(M+1)2
+PRM

1
{Y1 =1}PRM

1
{Y2= · · ·=Ym+1 =1 or Yn =Zn =2 for some 2≤n≤m+1}.

Because k1 = −1,

PRM
1
{Y2 = · · ·= Ym+1 = 1 or Yn = Zn = 2 for some 2 ≤ n ≤ m+ 1} = PRM−1

1
{Em}.

Hence,

PRM
1
{Em+1} = 1

(M+1)2
+
{

1− 1
(M+1)2

}

· PRM−1
1
{Em} ≥ 1

(M+1)2
+

M (M+2)
(M+1)2

· 1
2 · M−1

M

= 1
(M+1)2

· {1 + 1
2 · (M − 1)(M + 2)} = 1

2 · M
M+1 .

So, we have shown that PRM
1
{Em} ≥ 1

2 · M
M+1 for all m,M ∈ N.

Lemma 10.18

φ1(R
M
1 , R2) ≥ 1

2 · M
M+1 for all M ∈ N and all policies R2.

Proof

Take any M ∈ N and any policy R2 with realization Z1, Z2,

Consider the cases kt > −M for all t and kt = −M for some t separately.

Case 1: kt = −M for some t

In this case player 1 chooses at time t+ 1 (or earlier) action 2. Let m be the smallest time point

for which Ym = 2. Then, we have φ1(R
M
1 , R2) = P{Zm = 2} = PRM

1
{Em} ≥ 1

2 · M
M+1 for any

policy R2 of player 2.

Case 2: kt > −M for all t

Let t be the smallest time point for which Yt+1 = 2 (if Yn = 1 for all n, then t = ∞). Define

for m ≥ 2: λ(m) = P{t < m and Zt+1 = 1} and µ(m) = P{t < m and Zt+1 = 2}. Then, the

sequences {λ(m)} and {µ(m)} are nondecreasing. Let λ = limm→∞ λ(m) and µ = limm→∞ µ(m):

λ is the probability that the game ends in state 2, µ the probability that the game ends in state

3, and 1 − λ − µ is the probability that the game never leaves state 1. Since k1
t + k2

t = t and

kt = k1
t − k2

t > −M for all t, we have k1
t > 1

2 (t − M):
k1

t

t > 1
2

(

1 − M
t

)

for all t, implying

lim inft→∞
k1

t

t ≥ 1
2 . Hence, φ1(R

M
1 , R2) ≥ µ+ (1− λ− µ) · 1

2 = 1
2 (1− λ+ µ).

10.4. AVERAGE REWARDS 625

Finally, we have to show that 1
2 (1− λ+ µ) ≥ M

M+1 . Therefore, consider the following policy for

player 2: first he plays according to Z1, Z2, . . . , Zm and thereafter he uses a fain coin, i.e. with

probability 1
2 he chooses action 1 and action 2. Then, the expected average reward for player 1 is:

the probability to move from state 1 to state 3 during the first m time point plus the probability

to be at time point m+ 1 in state 1 multiplied with the average reward from time point m+ 1.

This yields µ(m) + {1− λ(m)− µ(m)} · 1
2 .

On the other hand, any realization of this policy will, with probability 1, reach kt = −M for

some t. Hence, by case 1 of the lemma, µ(m) + {1− λ(m)− µ(m)} · 1
2 ≥ M

M+1 for all m. Letting

m→∞ completes the proof that 1
2 (1− λ+ µ) ≥ M

M+1 .

Theorem 10.29

The Big Match has the following properties:

(1) There exists a value vector φ and φ =
(

1
2 , 0, 1)T .

(2) Player 2 has an optimal stationary policy ρ∞ with ρ11 = ρ12 = 1
2 .

(3) For any ε > 0 player 1 has a ε-optimal policy: RM
1 with M = 1

2{1
ε − 2}.

(4) There is no optimal policy for plyer 1.

Proof

(1) We have shown above that this game has a value vector φ and that φ =
(

1
2 , 0, 1)T .

(2) Take for player 2 the stationary policy with ρ11 = ρ12 = 1
2 . Then, in state 1 in each period

player 1 earns 1
2 independent of his strategy: φ1(R1, ρ

∞) = 1
2 = φ1 for all policies R1, i.e.

ρ∞ is an optimal policy for player 2.

(3) We have shown (Lemma 10.18) that φ1(R
M
1 , R2) ≥ 1

2 · M
M+1 for all M ∈ N and all policies R2.

Hence, with M = 1
2{1

ε − 2}, we obtain φ1(R
M
1 , R2) ≥ 1

2 − ε, i.e. RM
1 with M = 1

2{1
ε − 2}

is an optimal policy for player 1.

(4) Suppose that player 1 has an optimal policy, say R∗
1 = (π1, π2, . . .), i.e. φ1(R

∗
1, R2) ≥ 1

2 for

all R2. The game is only interesting in state 1, i.e. as long as player 1 uses action 1.

We distinguish between two cases.

Case 1: R∗
1 = f∞∗ with f∗(1) = 1

Take R2 = g∞ with g(1) = 2. Then, φ1(R
∗
1, R2) = 0 < 1

2 = φ1: R
∗
1 is not optimal for player 1.

Case 2: R∗
1 6= f∞∗ with f∗(1) = 1

Suppose that πt
ht2

= ε > 0 for some t and some history ht. Let t be the smallest time point

for which this case holds and suppose that b1, b2, · · · , bt−1 is the sequence of actions for player

2 in ht. Take R2 = (ρ1, ρ2, . . .), where ρn
hnb :=

1 1 ≤ n ≤ t− 1 b = bn

0 1 ≤ n ≤ t− 1 b 6= bn

1 n = t b = 1

0 n = t b = 2
1
2 n ≥ t b = 1, 2

Then, φ1(R
∗
1, R2) = ε · 0 + (1− ε) · 1

2 <
1
2 = φ1: R

∗
1 is not optimal for player 1.

626 CHAPTER 10. STOCHASTIC GAMES

The above lack of a solution in the space of stationary policies naturally gives reason for the

following questions:

(1) Have stochastic games under the average reward criterion a value vector?

(2) Are there optimal (nonstationary) policies?

(3) For which subclasses do exist stationary optimal policies?

The answer to the first question remained open for over twenty years and was answered in the

affirmative by Mertens and Neyman ([198]). This is a deep result, based on ingenious analysis in

a series of three papers by Bewley and Kohlberg ([25],[26],[27]), who expressed the value vector

of the discounted stochastic game in a Puiseux series, the so-called limit discount equation. We

will not present the proof of the existence of the value vector in these lecture notes.

The Big Match shows that in general there are no optimal policies. The existence of ε-optimal

policies follows from the existence of the value vector. Let φ be the value vector. Then, for any

ε > 0 and any state i, we obtain from supR1 infR2 φi(R1, R2) = φi that there exists a policy Rε
1

such that infR2 φi(R
ε
1, R2) ≥ φi − ε, implying φi(R

ε
1, R2) ≥ φi − ε for all policies R2 for player 2.

Therefore, policy Rε
1 is a ε-optimal policy for player 1. Similarly it can be shown that player 2

has an ε-optimal policy for any ε > 0.

In view of the fact that in general undiscounted games need not possess optimal stationary

policies, the algorithmic development for computing such policies centered around ’natural’ classes

that possess optimal stationary policies and on supplying algorithms for their computation. These

classes of games can be roughly divided into two groups:

(1) Those that make assumptions on the ergodic properties of the underlying Markov chains.

(2) Those that make assumptions on the structure of the game data (transitions and/or rewards).

In the sequel we will encounter several special stochastic games which have stationary or even

deterministic optimal policies.

10.4.3 Mathematical programming

Inspired by the concepts of super- and subharmonicity for both MDPs (cf. Theorem 5.17) and

discounted stochastic games (cf. Theorem 10.9) we define for undiscounted stochastic games

super- and subharmonicity as follows:

A vector v ∈ R
N is superharmonic if there exists a vector t ∈ R

N and a policy ρ∞ ∈ Γ such

that the triple (v, t, ρ) satisfies the following system of inequalities

vi ≥ ∑

j pij(a, ρ)vj for every (i, a) ∈ S × A;

vi + ti ≥ ri(a, ρ) +
∑

j pij(a, ρ)tj for every (i, a) ∈ S × A.
(10.61)

A vector v ∈ RN is subharmonic if there exists a vector u ∈ RN and a policy π∞ ∈ Π such

that the triple (v, u, π) satisfies the following system of inequalities

vi ≤ ∑

j pij(π, b)vj for every (i, b) ∈ S ×B;

vi + ui ≤ ri(π, b) +
∑

j pij(π, b)uj for every (i, b) ∈ S ×B.
(10.62)

10.4. AVERAGE REWARDS 627

Lemma 10.19

If (v, t, ρ) and (v, u, π) satisfy (10.61) and (10.62), then v = P (π, ρ)v and v+t = r(π, ρ)+P (π, ρ)t.

Proof

The first part of relation (10.61) implies v ≥ r(π, ρ) + P (π, ρ)v; similarly, the first of relation

(10.62) implies v ≤ P (π, ρ)v. Hence, v = P (π, ρ)v.

The second part of relation (10.61) implies v+ t ≥ P (π, ρ)v; similarly, the second part of relation

(10.62) implies v + t ≤ P (π, ρ)v; Hence, v + t = P (π, ρ)v.

Theorem 10.30

An undiscounted stochastic game has stationary optimal policies (π∗)∞ and (ρ∗)∞ for player 1

and 2, respectively, if and only if (v, t, ρ∗) and (v, u, π∗) are feasible solutions of (10.61) and

(10.62), respectively.

Proof

Assume that (v, t, ρ∗) and (v, u, π∗) are feasible solutions of (10.61) and (10.62). Then, for any

π∞ ∈ Π, v ≥ P (π, ρ∗)v and v+t ≥ r(π, ρ∗)+P (π, ρ∗)t. The first inequality yields v ≥ P ∗(π, ρ∗)v,

so we have v ≥ P ∗(π, ρ∗)v ≥ P ∗(π, ρ∗){r(π, ρ∗) +P (π, ρ∗)t} = P ∗(π, ρ∗)r(π, ρ∗) = φ
(

π∞, (ρ∗)∞
)

.

Hence,

v ≥ φ
(

π∞, (ρ∗)∞
)

for all π∞ ∈ Π. (10.63)

Similarly, we derive

v ≤ φ
(

(π∗)∞, ρ∞
)

for all ρ∞ ∈ Γ. (10.64)

Therefore, φ
(

π∞, (ρ∗)∞
)

≤ v ≤ φ
(

(π∗)∞, ρ∞
)

for all π∞ ∈ Π and ρ∞ ∈ Γ, implying that the

stochastic game has value vector φ = v and (π∗)∞ and (ρ∗)∞ are optimal stationary policies for

player 1 and 2, respectively.

Now assume that (π∗)∞ and (ρ∗)∞ are stationary optimal policies for player 1 and 2, respectively.

Then, φ
(

(π∗)∞, R2

)

≥ infR2 supR1
φ(R1, R2) ≥ supR1

infR2 φ(R1, R2) ≥ φ
(

R1, (ρ
∗)∞

)

for all R1

and R2, implying φ
(

(π∗)∞, R2

)

≥ φ = φ
(

(π∗)∞, (ρ∗)∞
)

≥ φ
(

R1, (ρ
∗)∞

)

for all R1 and R2.

Hence, (π∗)∞ is an optimal policy in the MDP induced by the stationary policy (ρ∗)∞. Conse-

quently φ is the smallest superharmonic vector in the sense of an undiscounted MDP problem,

i.e. (v = φ, t, ρ = ρ∗) is a feasible solution of (10.61) for some t.

Similarly, it follows that (ρ∗)∞ is an optimal policy in the MDP induced by the stationary policy

(π∗)∞ with respect to minimizing the average rewards. Therefore, φ is the largest subharmonic

vector in the sense of an undiscounted MDP problem, i.e. (v = φ, u, π = π∗) is a feasible solution

of (10.62) for some u.

The systems (10.61) and (10.62) contain a mixture of linear and nonlinear terms. A method to

solve these systems is to transform the systems to a nonlinear program. In the next corollary

we have exhibit this idea. The nonlinear parts are moved to the objective function and the

constraints are linear. We add some variables: wi(a), xi(a) in (10.61) and yi(b), zi(b) in (10.62)

and obtain the following result.

628 CHAPTER 10. STOCHASTIC GAMES

Corollary 10.5

An undiscounted stochastic game has a value vector and optimal stationary policies if and only if

the following nonlinear program has a global minimum value zero.

min

{

∑

(i,a)

{

wi(a)−
∑

j

∑

b pij(a, b)ρibvj

}2
+
∑

(i,a)

{

xi(a)−
∑

j

∑

b pij(a, b)ρibtj

}2
+

∑

(i,b)

{

yi(b)−
∑

i

∑

a pij(a, b)πiavj

}2
+
∑

(i,b)

{

zi(b)−
∑

j

∑

b pij(a, b)πiauj

}2
}

subject to

(1) vi −wi(a) ≥ 0, (i, a) ∈ S ×A;

(2) vi + ti − xi(a)−
∑

b ri(a, b)ρib ≥ 0, (i, a) ∈ S × A;

(3)− vi + yi(b) ≥ 0, (i, b) ∈ S ×B;

(4)− vi − ti + zi(b) +
∑

a ri(a, b)πia ≥ 0, (i, b) ∈ S ×B;

(5) πia ≥ 0, (i, a) ∈ S × A;
∑

a πia = 1, i ∈ S;

(6) ρib ≥ 0, (i, b) ∈ S ×B;
∑

b ρib = 1, i ∈ S.
(7) wi(a), xi(a) ≥ 0, (i, a) ∈ S ×A;

(8) yi(b), zi(b) ≥ 0, (i, b) ∈ S ×B.

We can also formulate another, strongly related, nonlinear program in which the objective function

is linear and the constraints are (partly) nonlinear. In this formulation we use different vectors for

the superharmonicity (v1, t1) and the subharmonicity (v2, t2). It turns out that there are optimal

stationary policies if and only if the program is feasible with optimum objective value 0.

Theorem 10.31

An undiscounted stochastic game has stationary optimal policies (π∗)∞ and (ρ∗)∞ for player 1

and 2, respectively, if and only if (v1, v2, t1, t2, π = π∗, ρ = ρ∗) is an optimal solution of the

nonlinear program

min {∑i(v
1
i − v2

i)}
subject to

(1) v1
i ≥

∑

j

∑

b pij(a, b)ρibv
1
j , (i, a) ∈ S ×A;

(2) v1
i + t1i ≥

∑

b ri(a, b)ρib +
∑

j

∑

b pij(a, b)ρibt
1
j , (i, a) ∈ S ×A;

(3)− v2
j ≥ −

∑

i

∑

a pij(a, b)πiav
2
j , (i, b) ∈ S × B;

(4)− v2
j − t2j ≥ −

∑

a ri(a, b)πia−
∑

i

∑

a pij(a, b)πiat
2
j , (i, b) ∈ S ×B;

(5) πia ≥ 0, (i, a) ∈ S × A;
∑

a πia = 1, i ∈ S;

(6) ρib ≥ 0, (i, b) ∈ S ×B;
∑

b ρib = 1, i ∈ S.
with optimum value 0.

Proof

Assume that (v1, v2, t1, t2, π = π∗, ρ = ρ∗) is an optimal solution of the nonlinear program with

optimum value 0. Then, (v1, t1, ρ∗) and (v2, t2, π∗) are feasible solutions of (10.61) and (10.62),

10.4. AVERAGE REWARDS 629

respectively. Then, for any π∞ ∈ Π, v1 ≥ P (π, ρ∗)v1 and v1 + t1 ≥ r(π, ρ∗) + P (π, ρ∗)t1, which

implies v1 ≥ φ
(

π∞, (ρ∗)∞
)

for all π∞ ∈ Π. Similarly, we derive v2 ≤ φ
(

(π∗)∞, ρ∞
)

for all ρ∞ ∈ Γ.

So, v1 ≥ φ
(

(π∗)∞, (ρ∗)∞
)

≥ v2, i.e. v1 − v2 ≥ 0. Since
∑

i(v
1
i − v2

i) = 0, we obtain v1 = v2.

Furthermore, φ
(

π∞, (ρ∗)∞
)

≤ v1 = v2 ≤ φ
(

(π∗)∞, ρ∞
)

for all π∞ ∈ Π and ρ∞ ∈ Γ, implying that

the stochastic game has value vector φ = v1 = v2 and (π∗)∞ and (ρ∗)∞ are optimal stationary

policies for player 1 and 2, respectively.

Now assume that (π∗)∞ and (ρ∗)∞ are optimal stationary policies for player 1 and 2. Then,

φ
(

(π∗)∞, R2

)

≥ infR2 supR1
φ(R1, R2) ≥ supR1

infR2 φ(R1, R2) ≥ φ
(

R1, (ρ
∗)∞

)

for all R1 and

R2, implying φ
(

(π∗)∞, R2

)

≥ φ = φ
(

(π∗)∞, (ρ∗)∞
)

≥ φ
(

R1, (ρ
∗)∞

)

for all R1 and R2. Hence,

(π∗)∞ is an optimal policy in the MDP induced by the stationary policy (ρ∗)∞. Consequently, φ

is the smallest superharmonic vector in the sense of an undiscounted MDP problem. Therefore,

(v1 = φ, t1, ρ = ρ∗) is a feasible solution of (10.61) for some t1.

Similarly, it follows that (ρ∗)∞ is an optimal policy in the MDP induced by the stationary policy

(π∗)∞ with respect to minimizing the average rewards. Therefore, φ is the largest subharmonic

vector in the sense of an undiscounted MDP problem, i.e. (v2 = φ, t2, π = π∗) is a feasible solution

of (10.62) for some t2. Hence, (v1 = φ, v2 = φ, t1, t2, π = π∗, ρ = ρ∗) is an optimal solution of the

nonlinear program with optimum value 0.

In the sequel of this section we shall show that the conditions of the characterization of stochastic

games with optimal stationary optimal strategies as given in Theorem 10.3110.31 can be relaxed

for games with a certain property which is called uniform discount optimality. From this relaxed

set of conditions, one-step algorithms are developed for ARAT games and for switching-controller

stochastic games. Each algorithm requires the solution of a single bilinear program.

A stochastic game is said to possess uniformly discount optimal stationary policies if a pair of

stationary policies, optimal in the undiscounted game, is also optimal in corresponding discounted

game for all discount factors a close enough to 1.

A pair of optimal stationary policies (π∗)∞ and (ρ∗)∞ for player 1 and 2, respectively, is

asymptotically stable if there exists an α0 ∈ (0, 1) and stationary policies (πα)∞ and (ρα)∞ for

player 1 and 2, respectively, such that for each α ∈ (α0, 1):

(1) (πα)∞ and (ρα)∞ is an optimal pair for the α-discounted game;

(2) limα↑1 πα = π∗ and limα↑1 ρα = ρ∗;

(3) r(πα, ρα) = r(π∗, ρ∗); P (πα, ρ) = P (π∗, ρ) for all stationary policies ρ∞ for player 2;

P (π, ρα) = P (π, ρ∗) for all stationary policies π∞ for player 1.

Notice that a pair
(

(π∗)∞, (ρ∗)∞
)

uniformly discount optimal stationary policies is asymptotically

stable: set πα := π∗ and ρα := ρ∗ for all α ∈ (α0, 1). The problem of determining whether an

undiscounted stochastic game has optimal stationary policies is equivalent to the problem of

solving a bilinear feasibility problem (see Theorem 10.30). The next theorem shows that this

bilinear system can be simplified if the stochastic game possesses asymptotically stable optimal

stationary policies.

630 CHAPTER 10. STOCHASTIC GAMES

Theorem 10.32

If a stochastic game possesses asymptotically stable optimal policies for player 1 and 2, respec-

tively, then the bilinear system(π∗)∞ and (ρ∗)∞

vi ≥ ∑

j pij(a, ρ)vj for every (i, a) ∈ S × A
vi + ti ≥ ri(a, ρ) +

∑

j pij(a, ρ)tj for every (i, a) ∈ S × A
vi ≤ ∑

j pij(π, b)vj for every (i, b) ∈ S ×B
vi + ti ≤ ri(π, b)+

∑

j pij(π, b)tj for every (i, b) ∈ S ×B

(10.65)

has a feasible solution (v, t, ρ= ρ∗, π = π∗). .

Proof

Let
(

(π∗)∞, (ρ∗)∞
)

be a pair of asymptotically stable optimal policies with corresponding (πα, ρα).

Set tα :=
∑∞

t=0 α
t · {P t(πα, ρα)− P ∗(πα, ρα)}r(πα, ρα) for all α ∈ (α0, 1), v := φ

(

(π∗)∞, (ρ∗)∞
)

and t1 := D(π∗, ρ∗)r(π∗, ρ∗). Notice that

tα = vα
(

(πα, ρα)
)

− 1

1− α · φ
(

(πα, ρα)
)

. (10.66)

Furthermore, by Theorem 5.7 part (2), t1 = limα↑1 tα. Define the following numbers:

C(i, a) := vi −
∑

j pij(a, ρ
∗)vj, (i, a) ∈ S × A;

D(i, a) := vi + t1 − ri(a, ρ∗)−
∑

j pij(a, ρ
∗)t1j , (i, a) ∈ S ×A;

G(i, b) := vi −
∑

j pij(π
∗, b)vj, (i, b) ∈ S ×B;

H(i, b) := vi + t1 − ri(π∗, b)−
∑

j pij(π
∗, b)t1j, (i, b) ∈ S × B.

We have to show: C(i, a) ≥ 0, (i, a) ∈ S×A, D(i, a) ≥ 0, (i, a) ∈ S×A, G(i, b)≤ 0, (i, b) ∈ S×B
and H(i, b)≤ 0, (i, b) ∈ S ×B.

Since (π∗)∞ and (ρ∗)∞ are stationary optimal policies for player 1 and 2, respectively, it follows

from the proof of Theorem 10.31 that (π∗)∞ is an optimal policy in the MDP induced by (ρ∗)∞,

and (ρ∗)∞ is an optimal policy in the MDP induced by (π∗)∞. Therefore, v := φ
(

(π∗)∞, (ρ∗)∞
)

is simultaneously the value vector of the MDPs induced by ρ∗ and π∗, respectively. From Chapter

5 it follows that C(i, a) ≥ 0 for all (i, a) ∈ S ×A and, similarly, G(i, b)≤ 0 for all (i, b) ∈ S × B,

and furthermore,

mina∈A(i)C(i, a) = 0 , i ∈ S and maxb∈B(i)G(i, b) = 0 , i ∈ S. (10.67)

Let A(i) := {a ∈ A(i) | C(i, a) = 0} and B(i) := {b ∈ B(i) | G(i, b) = 0}. We shall show that

D(i, a) ≥= 0, (i, a) ∈ S × A. Then, similarly, it can be shown that H(i, b) = 0, (i, b) ∈ S × B.

Since
(

(πα)∞, (ρα)∞
)

is an optimal pair for the α-discounted game, vα
(

(πα)∞, (ρα)∞
)

is the value

vector of the MDP induced by ρα. Hence, we can write

vα
i

(

(πα)∞, (ρα)∞
)

≥ ri(a, ρα) + α
∑

j

pij(a, ρ
α)vα

j

(

(πα)∞, (ρα)∞
)

, (i, a) ∈ S ×A, α ∈ (α0, 1).

(10.68)

10.4. AVERAGE REWARDS 631

Since for all α > α0, r(π
α, ρα) = r(π∗, ρ∗) and also P (πα, ρα) = P (π∗, ρ∗), we have for all

α > α0, P
∗(πα, ρα) = P ∗(π∗, ρ∗) and φ

(

(πα)∞, (ρα)∞
)

= φ
(

(π∗)∞, (ρ∗)∞
)

for all α > α0. Hence,

by (10.66) and (10.68), we obtain for all (i, a) ∈ S × A and all α ∈ (α0, 1),

1
1−α · φi

(

(π∗)∞, (ρ∗)∞
)

+ tαi ≥ ri(a, ρα) + α
∑

j pij(a, ρ
α) · { 1

1−α · φj

(

(π∗)∞, (ρ∗)∞
)

+ tαj }.
Since v = φ

(

(π∗)∞, (ρ∗)∞
)

and 1
1−α = 1 + α

1−α , we obtain

vi + tαi ≥ ri(a, ρα) + α
∑

j pij(a, ρ
α)tαj + sαi (a), (i, a) ∈ S × A, α ∈ (α0, 1),

where sαi (a) := α
1−α{

∑

j pij(a, ρ
α)vj − vi} = 0 for all (i, a) ∈ S ×A and all α ∈ (α0, 1).

Therefore, letting α increase to 1 and since t1 = limα↑1 tα, we have

vi + t1i ≥ ri(a, ρ∗) +
∑

j pij(a, ρ
∗)t1j , (i, a) ∈ S ×A, i.e. D(i, a) ≥ 0, (i, a) ∈ S × A.

A vector t can be defined such that (v, t, ρ = ρ∗, π = π∗) is a feasible solution of the second and

fourth sets of inequalities of (10.65). We present the validation of the second set. The validation

of the fourth set can be done similarly.

To this end, let A∗(i) := {a ∈ A(i) | D(i, a) < 0} and B∗(i) := {b ∈ B(i) | H(i, b)> 0}. We have

seen that A∗(i) ∩A(i) = ∅ and B∗(i) ∩B(i) = ∅. Define M by

M := min
{

min{D(i,a)
C(i,a) | (i, a) ∈ S × A∗}, min{H(i,b)

G(i,b) | (i, b) ∈ S ×B∗}
}

,

where a minimum over the empty set will be taken to be zero. Note that M ≤ 0.

Define t by t := t1−M ·v. The proof that (v, t, ρ= ρ∗, π = π∗) is a feasible solution of the second

set of inequalities of (10.65) is strongly related to the proof of Theorem 5.17. We distinguish

between the cases (i) a ∈ A(i), (ii) a ∈ A∗(i) and (iii) a /∈ A(i) ∪ A∗(i).

Case (i): a ∈ A(i), i.e. vi =
∑

j pij(a, ρ
∗)vj.

vi + ti = vi + t1i −M · vi ≥ ri(a, ρ∗) +
∑

j pij(a, ρ
∗)(t1j −M · vj) = ri(a, ρ

∗) +
∑

j pij(a, ρ
∗)tj .

Case (ii): a ∈ A∗(i), i.e. vi + t1i < ri(a, ρ
∗) +

∑

j pij(a, ρ
∗)t1j and vi >

∑

j pij(a, ρ
∗)vj.

vi + ti = vi + t1i −M · vi = vi + t1i −M · {C(i, a) +
∑

j pij(a, ρ
∗)vj}

= D(i, a) + ri(a, ρ
∗) +

∑

j pij(a, ρ
∗)t1j −M · C(i, a)−M ·∑j pij(a, ρ

∗)vj

= ri(a, ρ
∗) +

∑

j pij(a, ρ
∗)(t1j −M · vj) +D(i, a)−M · C(i, a)

≥ ri(a, ρ
∗) +

∑

j pij(a, ρ
∗)tj.

Case (iii): a /∈ A(i) ∪ A∗(i), i.e. vi + t1i ≥ ri(a, ρ∗) +
∑

j pij(a, ρ
∗)t1j and vi >

∑

j pij(a, ρ
∗)vj.

vi + ti = vi + t1i −M · vi = vi + t1i −M · {C(i, a) +
∑

j pij(a, ρ
∗)vj}

= D(i, a) + ri(a, ρ
∗) +

∑

j pij(a, ρ
∗)t1j −M · C(i, a)−M ·∑j pij(a, ρ

∗)vj

≥ ri(a, ρ
∗) +

∑

j pij(a, ρ
∗)(t1j −M · vj) = ri(a, ρ

∗) +
∑

j pij(a, ρ
∗)tj.

ARAT stochastic games

An additive reward and additive transition (ARAT) stochastic game is defined by the property

that the rewards as well as the transitions can be written as the sum of a term determined by

player 1 and a term determined by player 2: ri(a, b) = r1i (a) + r2i (b), i ∈ S, a ∈ A(i), b ∈ B(i)

and pij(a, b) = p1
ij(a) + p2

ij(b), i, j ∈ S, a ∈ A(i), b ∈ B(i).

632 CHAPTER 10. STOCHASTIC GAMES

Theorem 10.33
(1) Both players possess uniform discount optimal deterministic policies.

(2) Uniform discount optimal deterministic policies are optimal for the average reward

criterion as well.

(3) The ordered field property holds for the the average reward criterion.

Proof

(1) From Theorem 10.17, part (1), we know that players have discounted optimal deterministic

policies for any discount factor α ∈ (0, 1). Because there is only a finite number of determi-

nistic policies it can be shown, similar as in the proof of Theorem 5.9, that this give rise to

the existence of uniform discount optimal deterministic policies for both players.

(2) Let f∞∗ and g∞∗ be uniform discount optimal deterministic policies, i.e. for all stationary

policies π∞ and ρ∞ we have, vα(π∞, g∞∗) ≤ vα(f∞∗ , g∞∗) ≤ vα(f∞∗ , g∞∗) for all α ∈ (α0, 1)

for some α0 ∈ (0, 1). By taking limα↑1, we obtain for all stationary policies π∞ and ρ∞,

φ(π∞, g∞∗) ≤ φ(f∞∗ , g∞∗) ≤ φ(f∞∗ , g∞∗). This implies that f∞∗ and g∞∗ are optimal deterministic

policies for the average reward criterion.

(3) The value vector φ satisfies φ = φ(f∞∗ , g∞∗) = P ∗(f∗, g∗)r(f∗, g∗), where f∞∗ and g∞∗ are

optimal deterministic policies for the average reward criterion. Since P ∗(f∗, g∗)r(f∗, g∗) can

be computed by solving some systems of linear equations (see Algorithm 5.5), the ordered

field property holds for the the average reward criterion.

Remark

Since ARAT games possess uniform discount optimal stationary policies such games also possess

asymptotically stable stationary optimal policies.

Define the bilinear function ψ(g, h, u,w, π, ρ) by

ψ(g, h, u,w, π, ρ) :=
∑

i (ui − gi)−
∑

i {
∑

a r
1
i (a)πia +

∑

j

∑

a (hj + wj)p
1
ij(a)πia −wi}

+
∑

i {
∑

b r
2
i (b)ρib +

∑

j

∑

b (hj + wj)p
2
ij(b)ρib − hi}.

Furthermore, we define the following bilinear program, which is called BLP :

minψ(g, h, u,w, π, ρ) subject to the following constraints

(1) ui −
∑

j p
1
ij(a)(gj + uj) ≥ 0, (i, a) ∈ S × A.

(2) wi −
∑

j p
1
ij(a)(hj +wj − gj − uj) ≥ r1i (a), (i, a) ∈ S × A.

(3) gi −
∑

j p
2
ij(b)(gj + uj) ≤ 0, (i, b) ∈ S ×B.

(4) hi −
∑

j p
2
ij(b)(hj + wj − gj − uj) ≤ r2i (b), (i, b) ∈ S ×B.

(5)
∑

a πia = 1, i ∈ S.

(6)
∑

b ρib = 1, i ∈ S.

(7) πia ≥ 0, (i, a) ∈ S × A.

(8) ρib ≥ 0, (i, b) ∈ S ×B.

10.4. AVERAGE REWARDS 633

Theorem 10.34
(1) From any pair of asymptotically stable optimal stationary policies an optimal solution

of the BLP can be derived, which has optimum value zero.

(2) The value and optimal stationary policies of the ARAT game can be derived from any

optimal solution of BLP .

Proof

(1) We have already observed that ARAT stochastic games possess asymptotically stable optimal

stationary policies, say (π∗)∞ and (ρ∗)∞. Therefore, by Theorem 10.32, the bilinear system

(10.65), which we denote by BLS, has a feasible solution (v∗, t∗, ρ∗, π∗). Hence, we obtain

v∗i −
∑

j p
1
ij(a)v

∗
j −

∑

j p
2
ij(ρ

∗)v∗j ≥ 0 for every (i, a) ∈ S ×A
v∗i + t∗i −

∑

j p
1
ij(a)t

∗
j −

∑

j p
2
ij(ρ

∗)t∗j ≥ r1i (a) + r2i (ρ
∗) for every (i, a) ∈ S ×A

v∗i −
∑

j p
1
ij(π

∗)v∗j −
∑

j p
2
ij(b)v

∗
j ≤ 0 for every (i, b) ∈ S × B

v∗i + t∗i −
∑

j p
1
ij(π

∗)t∗j −
∑

j p
2
ij(b)t

∗
j ≤ r1i (π

∗) + r2i (b) for every (i, b) ∈ S × B
Then, we obtain from Lemma 10.19

v∗ = P 1(π∗)v∗ + P 2(ρ∗)v∗ and v∗ + t∗ = r1(π∗) + r2(ρ∗) + P 1(π∗)t∗ + P 2(ρ∗)t∗.

Define g∗, h∗, u∗ and w∗ by:

g∗ := P 2(ρ∗)v∗, h∗ := r2(ρ∗) + P 2(ρ∗)t∗, u∗ := P 1(π∗)v∗ and w∗ := r1(π∗) + P 1(π∗)t∗.

Then, we have v∗ = u∗ + g∗ and v∗ + t∗ = w∗ + h∗. Furthermore, by the above inequalities,

u∗i −
∑

j p
1
ij(a)(g

∗
j + u∗j) = u∗i + g∗i −

∑

j p
1
ij(a)v

∗
j − g∗i

= v∗i −
∑

j p
1
ij(a)v

∗
j −

∑

j p
2
ij(ρ

∗)v∗j

≥ 0, (i, a) ∈ S ×A.
w∗

i −
∑

j p
1
ij(a)(h

∗
j +w∗

j − g∗j − u∗j) = w∗
i + h∗i −

∑

j p
1
ij(a)t

∗
j − h∗i

= v∗i + t∗i −
∑

j p
1
ij(a)t

∗
j − r2i (ρ∗)−

∑

j p
2
ij(ρ

∗)t∗j

≥ r1i (a), (i, a) ∈ S × A.
g∗i −

∑

j p
2
ij(b)(g

∗
j + u∗j) = u∗i + g∗i −

∑

j p
2
ij(b)v

∗
j − u∗i

= v∗i −
∑

j p
2
ij(b)v

∗
j −

∑

j p
1
ij(π

∗)v∗j

≤ 0, (i, b) ∈ S × B.
h∗i −

∑

j p
2
ij(b)(h

∗
j +w∗

j − g∗j − u∗j) = w∗
i + h∗i −

∑

j p
2
ij(b)t

∗
j −w∗

i

= v∗i + t∗i −
∑

j p
2
ij(b)t

∗
j − r1i (π∗)−

∑

j p
1
ij(π

∗)t∗j

≤ r2i (b), (i, b) ∈ S × B.
Hence, z∗ := (g∗, h∗, u∗, w∗, π∗, ρ∗) is a feasible solution of BLP . For the value ψ(z∗) we

obtain

ψ(z∗) =
∑

i (u∗i − g∗i)−
∑

i {
∑

a r
1
i (a)π

∗
ia +

∑

j

∑

a (h∗j + w∗
j)p

1
ij(a)π

∗
ia − w∗

i }
+
∑

i {
∑

b r
2
i (b)ρ

∗
ib +

∑

j

∑

b (h∗j + w∗
j)p

2
ij(b)ρ

∗
ib − h∗i }

=
∑

i (u∗i − g∗i)−
∑

i {r1i (π∗) +
∑

j (h∗j + w∗
j)p

1
ij(π

∗)−w∗
i }

+
∑

i {r2i (ρ∗) +
∑

j(h
∗
j + w∗

j)p
2
ij(ρ

∗)− h∗i }

634 CHAPTER 10. STOCHASTIC GAMES

=
∑

i {u∗i − r1i (π∗)−
∑

j (h∗j + w∗
j)p

1
ij(π

∗) +w∗
i }

−∑i {g∗i − r2i (ρ∗)−
∑

j (h∗j +w∗
j)p

2
ij(ρ

∗) + h∗i }
=

∑

i {u∗i − r1i (π∗)−
∑

j (v∗j + t∗j)p
1
ij(π

∗) +w∗
i }

−∑i {g∗i − r2i (ρ∗)−
∑

j (v∗j + t∗j)p
2
ij(ρ

∗) + h∗i }
=

∑

i {u∗i −
∑

j p
1
ij(π

∗)v∗j − r1i (π∗)−
∑

j p
1
ij(π

∗)t∗j + w∗
i }

−∑i {g∗i − r2i (ρ∗)−
∑

j p
2
ij(ρ

∗)v∗j − r2i (ρ∗)−
∑

j p
2
ij(ρ

∗)t∗j + h∗i }
=

∑

i {u∗i −
∑

j p
1
ij(π

∗)v∗j} −
∑

i {g∗i − r2i (ρ∗)−
∑

j p
2
ij(ρ

∗)v∗j}
= 0.

Now, we shall show that the objective function is at least zero. Let z = (g, h, u, w, π, ρ) be

a feasible solution of BLP . Adding (1) and (2) gives ui +wi−
∑

j p
1
ij(a)(hj +wj) ≥ r1i (a) for

every (i, a) ∈ S ×A. This implies
∑

i ui +
∑

i wi −
∑

i r
1
i (π)−∑i p

1
ij(π)(hj + wj) ≥ 0.

Similarly, using (3) and (4), we obtain
∑

i gi +
∑

i hi −
∑

i r
2
i (ρ)−

∑

i p
2
ij(ρ)(hj + wj) ≤ 0.

Therefore, ψ(g, h, u,w, π, ρ)≥ 0.

(2) Let (g, h, u, w, π, ρ) be a feasible solution of BLP . Define vi := gi + ui, ti := hi +wi− gi− ui

for every i ∈ S. Similarly as for (g∗, h∗, u∗, w∗, π∗, ρ∗) in part (1), we can derive

vi −
∑

j pij(a, ρ)vj = vi −
∑

j p
1
ij(a)vj −

∑

j p
2
ij(ρ)vj

= ui −
∑

j p
1
ij(a)(gj + uj) ≥ 0, (i, a) ∈ S ×A.

vi + ti −
∑

j pij(a, ρ)tj = vi + ti −
∑

j p
1
ij(a)tj −

∑

j p
2
ij(ρ)tj

= wi + −∑j p
1
ij(a)(hj +wj − gj − uj) + r2i (ρ)

≥ r1i (a) + r2i (ρ) = ri(a, ρ), (i, a) ∈ S × A.
vi −

∑

j pij(π, b)vj = vi −
∑

j p
1
ij(π)vj −

∑

j p
2
ij(b)vj

= gi −
∑

j p
2
ij(b)(gj + uj) ≤ 0, (i, b) ∈ S ×B.

vi + ti −
∑

j pij(π, b)tj = vi + ti −
∑

j p
1
ij(π)tj −

∑

j p
2
ij(b)tj

= hi −
∑

j p
2
ij(b)(hj +wj − gj − uj) + r1i (π)

≤ r1i (π) + r2i (b) = ri(π, b), (i, b) ∈ S × B.
Hence, (u, t, π, ρ) are feasible solutions of (10.61) and (10.62), respectively. By Theorem 10.30,

π∞ and ρ∞ are stationary optimal policies player 1 and 2, respectively.

In Theorem 10.33 the existence of deterministic optimal policies is shown. The bilinear program

BLP provides, by Theorem 10.34, optimal stationary policies. The next theorem shows that

optimal deterministic policies can be derived from any optimal solution of BLP by playing with

probability 1 any action which has a positive probability in the optimal solution of the BLP .

Theorem 10.35
(1) Let π∗ be part of the optimal solution of the bilinear program BLP . Then, any deterministic

policy f∞∗ with f∗(i) such that π∗if∗(i) > 0 for all i ∈ S is optimal for player 1.

(2) Let ρ∗ be part of the optimal solution of the bilinear program BLP . Then, any deterministic

policy g∞∗ with g∗(i) such that ρ∗ig∗(i) > 0 for all i ∈ S is optimal for player 2.

10.4. AVERAGE REWARDS 635

Proof

(1) Let z∗ = (g∗, h∗, u∗, w∗, π∗, ρ∗) be an optimal solution of BLP . Then, we can write, using

v∗ := g∗ + u∗ and t∗ := h∗ + w∗ − g∗ − u∗ = h∗ +w∗ − v∗,
ψ(z∗) =

∑

i (u∗i − g∗i)−
∑

i {
∑

a r
1
i (a)π

∗
ia +

∑

j

∑

a (h∗j + w∗
j)p

1
ij(a)π

∗
ia − w∗

i }
+
∑

i {
∑

b r
2
i (b)ρ

∗
ib +

∑

j

∑

b (h∗j + w∗
j)p

2
ij(b)ρ

∗
ib − h∗i }

=
∑

i (u∗i − g∗i)−
∑

i {r1i (π∗) +
∑

j (h∗j + w∗
j)p

1
ij(π

∗)−w∗
i }

+
∑

i {r2i (ρ∗) +
∑

j(h
∗
j + w∗

j)p
2
ij(ρ

∗)− h∗i }
=

∑

i {u∗i − r1i (π∗)−
∑

j p
1
ij(π

∗)(v∗j + t∗j) +w∗
i }

+
∑

i {−g∗i + r2i (ρ
∗) +

∑

j p
2
ij(ρ

∗)(v∗j + t∗j)− h∗i }
=

∑

i {u∗i −
∑

j p
1
ij(π

∗)v∗j}+
∑

i {w∗
i −

∑

j p
1
ij(π

∗)t∗j − r1i (π∗)}
−∑i {g∗i −

∑

j p
2
ij(ρ

∗)v∗j } −
∑

i {h∗i −
∑

j p
2
ij(ρ

∗)t∗j)− r2i (ρ∗)}.
Since all terms of (1) and (2) in BLP are nonnegative, and all terms of (3) and (4) are non-

positive, ψ(z∗) = 0 implies that the inequalities of (1), (2), (3) and (4) of BLP corresponding

with π∗ia > 0 and ρ∗ib > 0 are equalities. Note that the constraints (1), (2), (3) and (4) do not

depend on the variables πia and ρib. Let z∗1 := (g∗, h∗, u∗, w∗, f∗, ρ∗), where f∗ is such that

π∗if∗(i) > 0 for all i ∈ S. Then, z∗1 is also feasible and is also an optimal solution of BLP .

Hence, f∞∗ is optimal for player 1.

(2) The proof is similar to part (1) of this theorem.

Remark 1

The bilinear program BLP is of the general form min{aTx + xTBy + cTy | Dx ≥ f ; Gy ≥ h},
where x ∈ Rn and y ∈ Rm are the variables and a, c, f, h are appropriate sized vectors, andB,D,G

are appropriate sized matrices. If a solution exists, which always does for our BLP , then there

must be a solution (x∗, y∗) such that x∗ is an extreme point of the polyhedron X := {x | Dx ≥ f}
and y∗ is an extreme point of the polyhedron Y := {y | Gx ≥ h}. Sherali and Shetty ([270]) and

Gallo and Ulkucu ([101]) developed finite algorithms for solving such bilinear programs.

Remark 2

An analogous treatment of the ARAT model with the discounted reward criterion is also possible.

10.4.4 Perfect information and irreducible games

Perfect information

We have seen in Corollary 10.2 that a discounted stochastic game with perfect information has

optimal deterministic policies. For undiscounted stochastic games we have the same result, but

the proof is more complicated.

Theorem 10.36

In an undiscounted stochastic game with perfect information, both players possess optimal deter-

ministic policies.

636 CHAPTER 10. STOCHASTIC GAMES

Proof

For any α ∈ (0, 1) there exists deterministic stationary policies f∞α and g∞α such that

vα(f∞, g∞α) ≤ vα(f∞α , g∞α) ≤ vα(f∞α , g∞) for all f∞ ∈ F and g∞ ∈ G,

where F and G are the sets of deterministic stationary policies for player 1 and 2, respectively.

Since F × G is a finite set, we can therefore find a pair f∞∗ ∈ F and g∞∗ ∈ G and a sequence

{αn}∞n=1 such that

vα
n(f∞, g∞∗) ≤ vα

n(f∞∗ , g∞∗) ≤ vα
n (f∞∗ , g∞) for all f∞ ∈ F, g∞ ∈ G and n = 1, 2, . . . ,

For any f∞ ∈ F, g∞ ∈ G, the vector vα(f∞, g∞) is the unique solution of the linear system

x = r(f, g) + αP (f, g)x. Since this linear system can be solved by Cramer’s rule, the numbers

vα
i (f∞, g∞), i ∈ S, are rational functions in α. Therefore, also - for all i ∈ S - the functions

h1
i (α) = vα

i (f∞, g∞∗) − vα
i (f∞∗ , g∞∗) and h2

i (α) = vα
i (f∞∗ , g∞) − vα

i (f∞∗ , g∞∗) are rational in α for

all f∞ ∈ F, g∞ ∈ G and i ∈ S. Hence, for k = 1, 2 and all i ∈ S, either hk
i (α) ≡ 0 or hk

i (α) has

a finite number of zero’s in (0, 1). In the last case let α∗ ∈ (0, 1) be the largest zero of the finite

number of functions hk
i (α), k = 1, 2, i ∈ S. With this α∗, we have for all α ≥ α∗:

vα(f∞, g∞∗) ≤ vα(f∞∗ , g∞∗) ≤ vα(f∞∗ , g∞) for all f∞ ∈ F, g∞ ∈ G and all α ≥ α∗,

and consequently

(1− α)vα(f∞, g∞∗) ≤ (1− α)vα(f∞∗ , g∞∗) ≤ (1− α)vα(f∞∗ , g∞) for all f∞ ∈ F, g∞ ∈ G, α ≥ α∗.

Then, using the Laurent series expansion, which implies limα→∞ (1−α)vα(f∞, g∞) = φ(f∞, g∞)

for all f∞ ∈ F, g∞ ∈ G, we obtain

φ(f∞, g∞∗) ≤ φ(f∞∗ , g∞∗) ≤ φ(f∞∗ , g∞) for all f∞ ∈ F and g∞ ∈ G,

also implying (by MDP) φ(R1, g
∞
∗) ≤ φ(f∞∗ , g∞∗) ≤ φ(f∞∗ , R2) for all policies R1 and R2, i.e. f∞∗

and g∞ ∈ G are optimal deterministic policies.

Remark

Like discounted stochastic games, it is for undiscounted stochastic games with perfect information

also an open problem to find an efficient finite algorithm.

Irreducible games

The class of irreducible stochastic games are characterized by the property that for each pair of

stationary policies, say (π∞, ρ∞), the Markov chain P (π, ρ) is an irreducible Markov chain. We

first show a lemma on the relation between the linear program (6.3) and the optimality equation

(6.1).

Lemma 10.20

Any optimal solution (x∗, y∗) of the linear program (6.3) is a solution of the optimality equation

(6.1), i.e. x∗ + y∗i = maxa∈A(i)

{

ri(a) +
∑

j pij(a)y
∗
j

}

, i ∈ S.

10.4. AVERAGE REWARDS 637

Proof

From the constraints of the linear program (6.3) it follows that

x∗ + y∗i ≥ maxa∈A(i)

{

ri(a) +
∑

j pij(a)y
∗
j

}

, i ∈ S.

From the theory of irreducible MDPs we know that any feasible solution of the set

∑

i,a {δij − pij(a, ρ)}xi(a) = 0, j ∈ S
∑

i,a xi(a) = 1; xi(a) ≥ 0, i ∈ S, a ∈ A(i)

satisfies
∑

a xj(a) > 0 for all j ∈ S. The complementary slackness property of linear programming

implies that any (i, a) ∈ S ×A with x∗i (a) > 0, satisfies x∗ +
∑

j {δij − pij(a)}y∗j = ri(a). Hence,

x∗ + y∗i = maxa∈A(i)

{

ri(a) +
∑

j pij(a)y
∗
j

}

, i ∈ S.

Suppose that player 2 plays a fixed stationary policy ρ∞. Then, the game becomes an MDP

for player 1 and let φ(ρ) = maxR1 φ(R1, ρ
∞). Because of the property of irreducibility, φ(ρ) has

identical components. So, we may view φ(ρ) as a real function of ρ. We will first show that φ(ρ)

is a continuous function of ρ. Therefore, we consider the following set of linear (in)equalities,

which are a combination of the linear programs (6.3) and (6.4).

z +
∑

j {δij − pij(a, ρ)}yj ≥ ri(a, ρ), i ∈ S, a ∈ A(i)
∑

i,a {δij − pij(a, ρ)}xi(a) = 0, j ∈ S
∑

i,a xi(a) = 1
∑

i,a ri(a, ρ)xi(a)− z ≥ 0

xi(a) ≥ 0, i ∈ S, a ∈ A(i)

y1 = 0

(10.69)

Since, without y1 = 0, for any solution (z, y, x) also (z, y+c · e, x) is a solution, this additional

constraint may be imposed. From the theory of linear programming we know that for any

pair of feasible solutions (z, y) and x of (6.3) and (6.4), respectively, the value of the objective

function z is at least the value of the objective function
∑

i,a ri(a)xi(a). Hence, the inequality
∑

i,a ri(a, ρ)xi(a) − z ≥ 0 implies that only optimal solutions are feasible for (10.69) and that

z = φ(ρ).

Consider a sequence of ρn, n = 1, 2, . . . , and the corresponding feasible solutions (zn, yn, xn)

of (10.69). Then, these elements are bounded, namely:

(1) ρn
ib ≥ 0 for all (i, b) ∈ S ×B and

∑

b ρ
n
ib = 1 for all i ∈ S: the set {ρn}∞n=1 is bounded.

(2) zn = φ(ρn), which is bounded because φ(ρn) ≤ max(i,a,b) |ri(a, b)|: the set {zn}∞n=1 is bounded.

(3) From Lemma 10.20 we obtain zn + yn
i = maxa∈A(i)

{

ri(aρ
n) +

∑

j pij(a, ρ
n)yn

j

}

, i ∈ S.

Then, with yn
1 = 0, Theorem 6.1 yields that yn = u0

(

f0(ρ
n)
)

− u0
1

(

f0(ρ
n)
)

· e, where
(

f0(ρ
n)
)

is a Blackwell optimal deterministic stationary policy in the MDP induced by ρn. Since there

are only a finite number of deterministic stationary policies there are only a finite number of

different yn: the set {yn}∞n=1 is bounded.

(4) xi(a) ≥ 0 for all (i, a) ∈ S × A and
∑

i,a xi(a) = 1: the set {xn}∞n=1 is bounded.

638 CHAPTER 10. STOCHASTIC GAMES

Consider a limit point (ρ∗, z∗, y∗, x∗) of the sequence {(ρn, zn, yn, xn)}∞n=1. For convenience, let

(ρ∗, z∗, y∗, x∗) = limn→∞ (ρn, zn, yn, xn). For z∗ = limn→∞ zn = limn→∞ φ(ρn) we have to

show z∗ = φ(ρ∗), i.e. z∗ ≥ φ
(

π∞, (ρ∗)∞
)

for all π∞ ∈ Π and z∗ = φ
(

(π∗)∞, (ρ∗)∞
)

for some

(π∗)∞ ∈ Π. From the first set of the constraints of (10.69), we obtain z∗ · e+ {I − P (π, ρ∗}y∗ ≥
r(π, ρ∗), implying, by multiplication with P ∗(π, ρ∗), that z∗ ≥ φ

(

π∞, (ρ∗)∞
)

for all π∞ ∈ Π. Let

(πn)∞ be the stationary policy that corresponds to xn (see Theorem 6.5). The linear function
∑

i,a ri(a, ρ
n)xn

i (a) = φ
(

(πn)∞, (ρn)∞
)

→ ∑

i,a ri(a, ρ
∗)x∗i (a) = φ

(

(π∗)∞, (ρ∗)∞
)

, where (π∗)∞

is the stationary policy that corresponds to x∗. From the fourth constraint of (10.69) it follows

that φ
(

(π∗)∞, (ρ∗)∞
)

≥ z∗. Hence, we have shown that φ
(

(π∗)∞, (ρ∗)∞
)

≥ z∗ ≥ φ
(

π∞, (ρ∗)∞
)

for all π∞ ∈ Π, i.e. z∗ = φ(ρ∗), completing the proof that φ(ρ) is a continuous function of ρ.

The function φ(ρ) is continuous on the compact set Γ of all stationary policies. Therefore,

there exists a stationary policy, say (ρ∗)∞ ∈ Γ such that φ(ρ∗) = minρ∞∈ΓmaxR1 φ(R1, ρ
∞). We

will show that (ρ∗)∞ is an optimal policy for player 2. Therefore, we consider the associate MDP

with rewards ri(a, ρ
∗), (i, a) ∈ S×A and transition probabilities pij(a, ρ

∗), j ∈ S, (i, a) ∈ S×A.

For this model, let (x∗, y∗) be an optimal solution of the linear program (6.3).

Let Mx[i] be a payoff matrix with m = #A(i) rows and n = #B(i) columns and with payoff

ri(a, b) +
∑

j pij(a, b)xj, if player 1 chooses row a and player 2 column b.

Theorem 10.37

Let (x∗, y∗) be an optimal solution of the linear program (6.3) associated with policy (ρ∗)∞ for

player 2. Then, x∗ + y∗i = val
(

My∗ [i]
)

for all i ∈ S.

Proof

We have to show that maxaminb {ri(a, b)+
∑

j pij(a, b)y
∗
j} = x+ y∗i , i ∈ S. From Lemma 10.20

it follows that

x∗ + y∗i = maxa∈A(i) {ri(a, ρ∗) +
∑

j

pij(a, ρ
∗)y∗j}, i ∈ S, (10.70)

implying maxa minb {ri(a, b)+
∑

j pij(a, b)y
∗
j} ≤ maxa {ri(a, ρ∗) +

∑

j pij(a, ρ
∗)y∗j} = x+ y∗i for

all i ∈ S.

Finally, we have to show that maxa minb {ri(a, b)+
∑

j pij(a, b)y
∗
j} ≥ x+y∗i , i ∈ S. Suppose the

contrary, i.e. there is a state k ∈ S and a mixed strategy {ρkb, b ∈ B(k)} such that

x∗ + y∗k > maxa∈A(k) {rk(a, ρ) +
∑

j

pkj(a, ρ)y
∗
j}. (10.71)

Consider the policy ρ∞ defined by ρib =

{

ρ∗ib if i 6= k, b ∈ B(i);

ρkb if i = k, b ∈ B(k).

Then, φ(ρ) is the optimum value of the linear program associated with policy ρ∞. Since (x∗, y∗)

is also feasible for this linear program (because of (10.70) and (10.71)) and Lemma 10.20 is not

satisfied (because of (10.38)), we obtain φ(ρ) < φ(ρ∗). However, this contradicts the property of

ρ∗, namely that φ(ρ∗) = minρ∞∈Γ φ(ρ).

10.4. AVERAGE REWARDS 639

Theorem 10.38

If x+ yi = val(My[i]), i ∈ S and x∗ + y∗i = val(My∗ [i]), i ∈ S, then x = x∗ and y = y∗ + c · e for

some scalar c, i.e. x is unique and y is unique up to an additional constant.

Proof

Let {π∗ia, a ∈ A(i)} be an optimal mixed strategy for player 1 in the matrix game M∗
y [i], and let

{ρib, b ∈ B(i)} be an optimal mixed strategy for player 2 in the matrix game My[i]. Therefore,

val(My[i]) = x+ yi ≥ ri(π∗, ρ) +
∑

j pij(π
∗, ρ)yj.

and

val(My∗[i]) = x∗ + y∗i ≤ ri(π∗, ρ) +
∑

j pij(π
∗, ρ)y∗j .

Subtracting the second inequality from the first one obtains

(x− x∗) · e+ (y − y∗) ≥ P (π∗, ρ)(y− y∗).
Multiplying this equation by P ∗(π∗, ρ) yields x ≥ x∗. Interchanging the roles of the solutions (x, y)

and (x∗, y∗), we may establish similarly that x∗ ≥ x. Therefore, x = x∗, and, setting x− x∗ = 0

and z = y − y∗, we have z − P (π∗, ρ)z ≥ 0. Since P ∗(π∗, ρ){z − P (π∗, ρ)z} = 0 and P ∗(π∗, ρ)

is a matrix with strictly positive elements, we obtain z = P (π∗, ρ), implying z = P ∗(π∗, ρ)z.

Because the matrix P ∗(π∗, ρ) has identical rows, all components of z = y − y∗ are equal. Hence,

y = y∗ + c · e for some scalar c.

Corollary 10.6 The equation x+yi = val(My[i]), i ∈ S, has a solution (x∗, y∗) in which x∗ is

unique. Furthermore, x∗ is the value of the stochastic game and optimal strategies in the matrix

games My∗ [i], i ∈ S, are optimal stationary policies for the stochastic game.

Proof

From the Theorems 10.37 and 10.38 it follows that the equation x+ yi = val(My[i]), i ∈ S, has

a solution (x∗, y∗) in which x∗ is unique. Let {π∗ia, a ∈ A(i)} and {ρ∗ia, b ∈ B(i)} be optimal

mixed strategies for player 1 and 2, respectively, in the matrix game M∗
y [i], i ∈ S. Then,

r(π, ρ∗) + P (π, ρ∗)y∗ ≤ x∗ · e+ y∗ ≤ r(π∗, ρ) + P (π∗, ρ)y∗ for all π∞ ∈ F and ρ∞ ∈ Γ.

Hence, by multiplying the first inequality by P ∗(π, ρ∗) we obtain φ
(

π∞, (ρ∗)∞
)

≤ x∗. Similarly,

by multiplying the second inequality by P ∗(π∗, ρ) we obtain x∗ ≤ φ
(

(π∗)∞, ρ∞
)

. Therefore,

(π∗)∞ and (ρ∗)∞ are optimal stationary policies and x∗ is the value.

Algorithm 10.15 Value iteration for undiscounted games (irreducible case)

Input: Instance of a two-person irreducible stochastic game with perfect information.

Output: The value and a pair (π∗)∞ and (ρ∗)∞ of stationary optimal policies.

1. t := 0; select any stationary policy (ρt)∞ for player 2.

2. Solve the MDP induced by policy (ρt)∞, i.e. compute (xt, yt) such that yt
1 = 0 and

xt + yt
i = maxa {ri(a, ρt) +

∑

j pij(a, ρ
t)yt

j}, i ∈ S.

640 CHAPTER 10. STOCHASTIC GAMES

3. for all I ∈ S do

determine optimal stationary strategies πt+1
ia , a ∈ A(i), for player 1, and ρt+1

ib ,

b ∈ B(i), for player 2, in the matrix game Myt [i], where Myt [i] is the matrix with

entries ri(a, b) +
∑

j pij(a, b)y
t
j, a ∈ A(i), b ∈ B(i).

4. if val
(

Myt [i]
)

= xt + yt
i , i ∈ S then

begin x∗ := xt is the value; (π∗)∞ := (πt+1)∞ and (ρ∗)∞ := (ρt+1)∞ are optimal

stationary policies for player 1 and 2, respectively (STOP)

end

else begin t := t+ 1; return to step 2 end

Remark

Step 2 of this algorithm can be solved by the linear program (6.3). We will show that the sequence

{xt, t = 0, 1, . . .} converges to the value of the stochastic game.

Theorem 10.39

(1) The sequences {xt, t = 0, 1, . . .} and {yt, t = 0, 1, . . .} are convergent.

(2) Let x∗ = limt→∞ xt and y∗ = limt→∞ yt. Then x∗ + y∗i = val(My∗[i]), i ∈ S.

(3) If xt + yt
i = val(Myt [i]), i ∈ S, then xt is the value and (πt+1)∞ and (ρt+1)∞ are optimal

stationary policies for player 1 and 2, respectively.

Proof

Since πt+1 and ρt+1 are optimal strategies in the matrix games Myt [i], i ∈ S, we have

val(Myt) ≥ r(π, ρt+1) + P (π, ρt+1)yt for all π∞ ∈ Π,

and

val(Myt) ≤ r(πt+1, ρ) + P (πt+1, ρ)yt for all ρ∞ ∈ Γ,

implying val(Myt) ≤ r(πt+1, ρt) + P (πt+1, ρt)yt. By step 2 of the algorithm we have

yt = r(πt+1, ρt) + P (πt+1, ρt)yt − xt · e ≥ val(Myt)− xt · e.
Therefore, val(Myt) ≥ r(π, ρt+1) + P (π, ρt+1){val(Myt) − xt · e} for all π∞ ∈ Π. Multiplication

with P ∗(π, ρt+1) gives

xt ≥ φ
(

π∞, (ρt+1)∞
)

for all π∞ ∈ Π, i.e. xt ≥ maxπ∞∈Π φ
(

π∞, (ρt+1)∞
)

= xt+1.

Hence, the sequence {xt, t = 0, 1, . . .} is nonincreasing and bounded below by −max|ri(a, b)|:
{xt, t = 0, 1, . . .} is convergent. In the proof that φ(ρ), defined as φ(ρ) = maxR1 φ(R1, ρ

∞), is a

continuous function of ρ, we have seen that {yt}∞t=1 is a bounded sequence. Therefore, we may

choose a convergent subsequence of vectors {(xt, yt)}∞t=1, and let us denote the vector to which

they converge by (x+, y+). Let the corresponding stationary policies ρt for player 2 converge to

ρ+. Since ρt+1 is an optimal solution for player 2 in the matrix games Myt [i], i ∈ S, it follows

by continuity that ρ+ is an optimal policy in the matrix games My+ [i], i ∈ S.

10.4. AVERAGE REWARDS 641

Since xt + yt
i ≥ val

(

Myt

)

[i], it follows - also by continuity - that x+ + y+
i ≥ val

(

My+

)

[i]. If, for

some k, x++y+
k > val

(

My+

)

[k], then this implies x++y+
k > maxa {ri(a, ρ+)+

∑

j pkj(a, ρ
+)y+

j }.
Similarly as in the proof of Theorem 10.37 we obtain φ(ρ+) < x+. But x+ ≤ xt = φ(ρt) and

the continuity of φ(ρ) imply that x+ ≤ φ(ρ+), which yields a contradiction. This contradiction

establishes that x+ + y+
i = val

(

My+

)

[i], i ∈ S. Because the solution of this functional equation

is unique, every convergent subsequence has the same limit, and it follows that the sequence

produced in the algorithm converges to this functional equation. Part (3) follows directly from

Corollary 10.6.

10.4.5 Finite methods

When the value and the optimal policies lie in the same ordered field as the data one can hope

to arrive at a solution by a finite number of operations. If the ordered field property is not valid

then one can only try iterative procedures for solving these stochastic games. As is the case for

discounted stochastic games, also in undiscounted stochastic games the ordered field property

does not hold, in general. This is illustrated by the following example.

Example 10.7 (continued)

In Example 10.7 we have derived that vα
1 =

−(1+α)+
√

(1+α)

1−α . It can be shown 2 that φ, the value

vector of the undiscounted game, satisfies φ = limα↑1 (1 − α)vα, where vα is the value vector of

the α-discounted stochastic game. Hence, φ1 = limα↑1 {−(1 + α) +
√

1 + α} = −2 +
√

2, which

lies not in the ordered field of the rational numbers.

We consider the following special games, which have the ordered field property, as we will show:

(1) The single-controller stochastic game.

(2) The switching-controller stochastic game.

(3) The separabel reward - state independent transitions (SER-SIT) stochastic game.

(4) The additive reward - additive transitions (ARAT) stochastic game.

Single-controller stochastic game: the multichain case

In the single-controller stochastic game, where player 1 is the ’single-controller’, the transition

probabilities pij(a, b) are independent of b denoted by pij(a). Under this assumption the concept

of superharmonicity for a vector v ∈ RN means that there exists a vector t ∈ RN and a policy

ρ∞ ∈ Γ such that the triple (v, t, ρ) satisfies

vi ≥ ∑

j pij(a)vj for every (i, a) ∈ S ×A;

vi + ti ≥ ri(a, ρ) +
∑

j pij(a)tj for every (i, a) ∈ S ×A.
(10.72)

2see Corollary 5.2.7 in [99]

642 CHAPTER 10. STOCHASTIC GAMES

Therefore, the problem to find the smallest superharmonic vector is the following linear program

min

∑

i

vi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

j{δij − pij(a)}vj ≥ 0, a ∈ A(i), i ∈ S
vi +

∑

j{δij − pij(a)}tj −
∑

b ri(a, b)ρib ≥ 0, a ∈ A(i), i ∈ S
∑

b ρib = 1, i ∈ S
ρib ≥ 0, b ∈ B(i), i ∈ S

.

(10.73)

The dual program is

max

∑

i

zi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a){δij − pij(a)}xi(a) = 0, j ∈ S
∑

a xj(a) +
∑

(i,a){δij − pij(a)}yi(a) = 1, j ∈ S
−∑a ri(a, b)xi(a) + zi ≤ 0, (i, b) ∈ S ×B

xi(a), yi(a) ≥ 0, (i, a) ∈ S ×A

.

(10.74)

Lemma 10.21

The linear programs (10.73) and (10.74) have finite optimal solutions.

Proof

Take an arbitrary stationary policy ρ∞ for player 2, and let t = 0 and vi = maxi,a,b ri(a, b), i ∈ S.

Then, (v, t, ρ) is a feasible solution of (10.73). For the existence of finite optimal solutions it is

sufficient to show, by the duality theorem of linear programming, that the optimum of (10.73)

is bounded below. Let (v, t, ρ) be any feasible solution of (10.73). Then, for any π∞ ∈ F , we

have from the first equations of (10.73) v ≥ P (π)v, implying v ≥ P ∗(π)v. From the second set of

equation, we obtain v + {I − P (π)}t ≥ r(π, ρ). Therefore, we can write,

v ≥ P ∗(π)v ≥ P ∗(π)
{

{r(π, ρ)− {I − P (π)}t
}

= P ∗(π){r(π, ρ) = φ(π∞, ρ∞).

Now we have vi ≥ φi(π
∞, ρ∞) ≥ mini,a,b ri(a, b), i ∈ S, which shows that the optimum of (10.73)

is bounded below.

The following theorem shows that the value vector and optimal stationary policies for both players

can be obtained from the optimal solutions of the dual pair of linear programs.

Theorem 10.40

Let (v∗, t∗, ρ∗) and (x∗, y∗, z∗) be optimal solutions of the linear programs (10.73) and (10.74).

Define the policy (π∗)∞ by π∗ia :=

{ x∗
i (a)

P

a x∗
i (a)

, i ∈ Sx∗ , a ∈ A(i), where Sx∗ := {i | ∑a x
∗
i (a) > 0};

y∗i (a)
P

a y∗
i
(a) , i /∈ Sx∗, a ∈ A(i).

Then, v∗ is the value vector and (π∗)∞ and (ρ∗)∞ are optimal stationary policies for player 1

and 2, respectively.

10.4. AVERAGE REWARDS 643

Proof

The constraints of program (10.74) imply
∑

a x
∗
j (a)+

∑

a y
∗
j (a) = 1+

∑

(i,a) pij(a)y
∗
i (a) > 0, j ∈ S.

Hence, the policy (π∗)∞ is well-defined. From the constraints of program (10.73) we obtain

v∗ ≥ P (π)v∗ and v∗ ≥ r(π, ρ∗)− {I − P (π)}t∗ for all π∞ ∈ Π.

Therefore, we have

v∗ ≥ P ∗(π)v∗ ≥ P ∗(π){r(π, ρ∗)− {I − P (π)}t∗} = φ
(

π∞, (ρ∗)∞
)

for all π∞ ∈ Π. (10.75)

Since π∗ia > 0 if and only if
{ x∗i (a) > 0 for i ∈ Sx∗

y∗i (a) > 0 for i /∈ Sx∗

it follows from the complementary slackness

property of linear programming that

{
∑

a π
∗
i (a) ·

{

v∗i +
∑

j {δij − pij(a)}t∗j −
∑

b ri(a, b)ρ
∗
ib

}

= 0, i ∈ Sx∗

∑

a π
∗
i (a) ·

∑

j {δij − pij(a)}v∗j = 0, i /∈ Sx∗

Suppose that π∗k(ak) ·
∑

j {δkj −pkj(ak)}v∗j 6= 0 for some k ∈ Sx∗ , ak ∈ A(k). Then, the definition

of π∗ and the constraints of (10.73) imply that x∗k(ak) ·
∑

j {δkj − pkj(ak)}v∗j > 0. Hence, we get
∑

(i,a) x
∗
i (a) ·

∑

j {δij − pij(a)}v∗j > 0, which is contradictory to

∑

(i,a) x
∗
i (a) ·

∑

j {δij − pij(a)}v∗j =
∑

j

{
∑

(i,a) {δij − pij(a)}x∗i (a)
}

v∗j = 0.

Therefore, we obtain

{
∑

a π
∗
i (a) ·

{

v∗i +
∑

j {δij − pij(a)}t∗j −
∑

b ri(a, b)ρ
∗
ib

}

= 0, i ∈ Sx∗ ;
∑

a π
∗
i (a) ·

∑

j {δij − pij(a)}v∗j = 0, i ∈ S.
Hence,

{

v∗i +
{

{I − P (π∗)}t∗
}

i
= ri(π

∗, ρ∗), i ∈ Sx∗ ;
{

{I − P (π∗)}v∗
}

i
= 0, i ∈ S.

The second equation implies v∗ = P ∗(π∗)v∗. Since Sx∗ is the set of recurrent states in the Markov

chain induced by P (π∗) (see the proof of Theorem 5.20), we obtain

v∗ = P ∗(π∗)v∗ = P ∗(π∗)
{

r(π∗, ρ∗)− {I − P (π∗)}t∗
}

= P ∗(π∗)r(π∗, ρ∗) = φ
(

(π∗)∞, (ρ∗)∞
)

,

implying, using (10.75),

φ
(

π∞, (ρ∗)∞
)

≤ v∗ = φ
(

(π∗)∞, (ρ∗)∞
)

for all π∞ ∈ Π. (10.76)

Let x∗i :=
∑

a x
∗
i (a), i ∈ S. Suppose that S1, S2, . . . , Sm are the ergodic sets and let T be the set

of transient states in the Markov chain induced by P (π∗). Let nk = |Sk|, k = 1, 2, . . . , m. Then,

we shall show that x∗ = {P ∗(π∗)}Tγ, where γ is a strictly positive vector with elements

γl :=

{

1
n l ∈ T ;

1
nk
·∑j∈Sk

{x∗j − 1
n

∑

i∈T p∗ij(π
∗)} l ∈ Sk, k = 1, 2, . . . , m.

, where n is sufficienlty large

such that γl > 0, i.e. n > maxj∈Sx∗

{

1
x∗

j
·∑i∈T p∗ij(π

∗)
}

. Now, we have

644 CHAPTER 10. STOCHASTIC GAMES

∑

l γl ·
∑

j∈Sk
p∗lj(π

∗) =
∑

l∈T γl ·
∑

j∈Sk
p∗lj(π

∗) +
∑

l∈Sk
γl ·
∑

j∈Sk
p∗lj(π

∗)

= 1
n

∑

l∈T

∑

j∈Sk
p∗lj(π

∗) +
∑

l∈Sk
γl

= 1
n

∑

l∈T

∑

j∈Sk
p∗lj(π

∗) +
∑

l∈Sk

{

1
nk
·∑j∈Sk

{x∗j − 1
n

∑

i∈T p∗ij(π
∗)}
}

= 1
n

∑

l∈T

∑

j∈Sk
p∗lj(π

∗) +
∑

j∈Sk
{x∗j − 1

n

∑

i∈T p∗ij(π
∗)}
}

=
∑

j∈Sk
x∗j , k = 1, 2, . . . , m.

From program (10.74) and the definition of π∗ it follows that x∗ = {P (π∗)}Tx∗ and, consequently,

x∗ = {P ∗(π∗)}Tx∗. Since S\Sx∗ is the set of transient states T in the Markov chain induced by

P (π∗) (see the proof of Theorem 5.20), we have p∗li = 0, l ∈ S. Therefore, we obtain

0 = x∗i =
∑

l

p∗li(π
∗)γl =

{

{P ∗(π∗)}Tγ
}

i
, i /∈ Sx∗. (10.77)

For i ∈ Sk, it follows that

x∗i =
∑

j p
∗
ji(π

∗)x∗j =
∑

j∈Sk
p∗ji(π

∗)x∗j +
∑

j∈T p∗ji(π
∗)x∗j

= p∗ii(π
∗) ·∑j∈Sk

x∗j +
∑

j∈S\Sx∗
p∗ji(π

∗)x∗j = p∗ii(π
∗) ·
{
∑

l γl ·
∑

j∈Sk
p∗lj(π

∗)
}

+ 0

=
∑

l γl ·
∑

j∈Sk
p∗lj(π

∗)p∗ji(π
∗) =

∑

l γl · p∗li(π∗),
implying

x∗i =
{

{P ∗(π∗)}Tγ
}

i
, i ∈ Sk, k = 1, 2, . . . , m. (10.78)

Combining (10.77) and (10.78) yields x∗ = {P ∗(π∗)}Tγ. Using again the complementary slackness

property of linear programming yields
∑

i

∑

b ρib · {z∗i −
∑

a ri(a, b)x
∗
i(a)} = 0.

Therefore,
∑

i z
∗
i =

∑

i

∑

b

∑

a ri(a, b)ρ
∗
ibx

∗
i (a) =

∑

i

{
∑

b

∑

a ri(a, b)ρ
∗
ibπ

∗
ia · x∗i

}

=
∑

i

{

ri(π
∗, ρ∗) · x∗i

}

=
∑

i

{

ri(π
∗, ρ∗) ·∑l γl · p∗li(π∗)

}

=
∑

l γl ·
{
∑

i p
∗
li(π

∗)ri(π∗, ρ∗)
}

,

implying
∑

i

z∗i = γTφ
(

(π∗)∞, (ρ∗)∞
)

. (10.79)

For any stationary policy ρ∞ ∈ Γ, we have in view of the constraints of linear program (10.74)

∑

i

z∗i =
∑

i

∑

b

ρibz
∗
i ≤

∑

i

∑

b

∑

a

ri(a, b)ρibπ
∗
ia · x∗i = γTφ

(

(π∗)∞, ρ∞
)

. (10.80)

Since γ is strictly positive, (10.79) and (10.80) yields

φ
(

(π∗)∞, (ρ∗)∞
)

≤ φ
(

(π∗)∞, ρ∞
)

for every ρ∞ ∈ Γ. (10.81)

From (10.76) and (10.81) we obtain

φ
(

π∞, (ρ∗)∞
)

≤ v∗ = φ
(

(π∗)∞, (ρ∗)∞
)

≤ φ
(

(π∗)∞, ρ∞
)

for all π∞ ∈ Π and ρ∞ ∈ Γ, (10.82)

showing that v∗ is the value vector and (π∗)∞ and (ρ∗)∞ are optimal stationary policies for player

1 and 2, respectively.

10.4. AVERAGE REWARDS 645

Algorithm 10.16 Single-controller game with no discounting

Input: Instance of a two-person single-controller stochastic game.

Output: The value v∗ and a pair (π∗)∞ and (ρ∗)∞ of stationary optimal policies.

1. Compute optimal solutions (v∗, t∗, ρ∗) and (x∗, y∗, z∗) of the linear programs (10.73) and

(10.74), respectively.

2. Define the stationary policy (π∗)∞ by π∗ia :=

x∗
i (a)

P

a x∗
i (a) , i ∈ Sx∗ , a ∈ A(i)

y∗i (a)
P

a y∗i (a)
, i /∈ Sx∗ , a ∈ A(i)

,

where Sx∗ := {i | ∑a x
∗
i (a) > 0}.

3. v∗ is the value vector and (π∗)∞ and (ρ∗)∞ optimal stationary policies for player 1 and 2.

Example 10.5 (continued)

For this example the linear programs (10.73) and (10.74) become

minimize v1 + v2

subject to

v1 − v2 ≥ 0

− v1 + v2 ≥ 0

− v1 + v2 ≥ 0

v1 − 5ρ11 − ρ12 − 6ρ13 ≥ 0

v1 + t1 − t2 − 4ρ11 − 6ρ12 − 2ρ13 ≥ 0

v2 − t1 + t2 − 6ρ21 ≥ 0

v2 − 3ρ21 − 4ρ22 ≥ 0

v2 − t1 + t2 − 6ρ22 ≥ 0

ρ11 + ρ12 + ρ13 = 1; ρ21 + ρ22 = 1; ρ11, ρ12, ρ13, ρ21, ρ22 ≥ 0

and

maximize z1 + z2

subject to

x12 − x21 − x23 = 1

− x12 + x21 + x23 = 1

x11 + x12 + y12 − y21 − y23 = 1

x21 + x22 − y12 + y21 + y23 = 1

− 5x11 − 4x12 + z1 ≤ 0

− x11 − 6x12 + z1 ≤ 0

− 6x11 − 2x12 + z1 ≤ 0

− 6x21 − 3x22 + z2 ≤ 0

− 4x22 − 6x23 + z2 ≤ 0

x11, x12, x21, x22, x23, y11, y12, y21, y22, y23 ≥ 0

646 CHAPTER 10. STOCHASTIC GAMES

The optimal solutions are:

v∗1 = 3.5, v∗2 = 3.5; t∗1 = 0.5; t2 = 0; ρ∗11 = 0, ρ∗12 = 0.5, ρ∗13 = 0.5, ρ∗21 = 0.5, ρ∗22 = 0.5 and

z∗1 = 1.546, z∗2 = 5.454; x∗11 = 0.182, x∗12 = 0.227, x∗21 = 0.227, x∗22 = 1.364, x∗23 = 0;

y∗12 = 0.591, y∗21 = 0, y∗23 = 0;

The optimal policy for player 1 is: π∗11 = 0.444, π∗12 = 0.556, π∗21 = 0.143, π∗22 = 0.857, π∗23 = 0.

Remark

Consider a two-person zero-sum undiscounted semi-Markov game in which player 1 controls the

transitions. This model can be described as follows: state space S; action sets A(i) and B(i),

i ∈ S, for player 1 and 2; transition probabilities pij(a), (i, a) ∈ S×A, j ∈ S, which depend only

on the actions chosen by player 1; immediate rewards ri(a, b), (i, a, b) ∈ S ×A×B; reward rates

si(a, b), (i, a, b) ∈ S × A × B; sojourn time distributions Fij(a, t), (i, a) ∈ S × A, j ∈ S, which

depend only on the actions chosen by player 1.

Let τi(a) :=
∑

j pij(a) ·
∫∞
0 t dFij(a, t) and r∗i (a) := ri(a) + τi(a) · si(a), (i, a) ∈ S ×A. From

these quantities we compute the transition numbers pij(a) := δij − {δij − pij(a)} · τ
τi(a)

for all

i, j ∈ S, a ∈ A(i), where τ is defined by (9.134), and the rewards ri(a, b) := r∗i (a, b) · 1
τi(a) for all

(i, a, b) ∈ S ×A ×B, j ∈ S.

Analogously to the analysis in Section 9.7.5 it can straightforward be shown that this undis-

counted semi-Markov game is equivalent to the undiscounted Markov game (S, A, B, p, r). There-

fore, the results of a single-controller undiscounted Markov game are also applicable to an undis-

counted single-controller semi-Markov game.

Additional constraints

For the additional constraints we assume that, besides the immediate rewards, there are for

k = 1, 2, . . . , m also certain immediate costs which only depend on the state and the action

chosen by player 1. These costs are denoted by cki (a), (i, a) ∈ S × A, k = 1, 2, . . . , m. For any

pair of policies R1 and R2 for player 1 and 2, respectively, let the average reward and the average

kth cost function with respect to an initial distribution β with βj ≥ 0, j ∈ S, be defined by

φ(β, R1, R2) := lim infT→∞
1
T

∑T
t=1

∑

j βj ·
∑

(i,a) PR1,R2{Xt = i, Yt = a, Zt = b | X1 = j}·ri(a, b)
and

ck(β, R1) := lim infT→∞ 1
T

∑T
t=1

∑

j βj ·
∑

(i,a) PR1,R2{Xt = i, Yt = a, Zt = b | X1 = j} · cki (a).
The constraints are: ck(β, R1) ≤ bk, k = 1, 2, . . . , m for some real numbers b1, b2, . . . , bm. Let

C1
0 := {R1 ∈ C1 | ck(β, R1) ≤ bk, k = 1, 2, . . . , m}, the set of feasible solutions for player 1.

As we have seen in Section 9.2.6, a constrained MDP has always an optimal Markov policy

R1 = (π1, π2, . . .), but it does not have in general an optimal stationary policy. Player 2 does

not influence the process, but only the payoffs. If player 1 chooses at time t the decision rule πt,

then an optimal action for player 2 in state i will be action b∗, where the action b∗ is such that

ri(π
t, b∗) = minb∈B(i) ri(π

t, b). Since this rule for player 2 is time dependent, an optimal policy

for player 2 is also not stationary, in general. However, linear programming formulations deal

10.4. AVERAGE REWARDS 647

with stationary policies for player 2. Therefore, we restrict the set of policies for player 2 to the

set of stationary policies. When it turns out that player 1 has a stationary optimal policy, then

an optimal policy for player 2 in the set C2(S) is also optimal in the set C2 of all policies for

player 2. We shall present some conditions under which player 1 has a stationary optimal policy.

A policy R∗
1 is optimal for player 1 in the constrained Markov game if R∗

1 ∈ C1
0 and

inf
ρ∞∈C2(S)

φ(β, R∗
1, ρ

∞) = sup
R1∈C1

0

inf
ρ∞∈C2(S)

φ(β, R1, ρ
∞). (10.83)

A policyR∗
2 is optimal for player 2 in the constrained Markov game if R∗

2 ∈ C2(S), sayR∗
2 = (ρ∗)∞

and

sup
R1∈C1

0

φ(β, R1, (ρ
∗)∞) = inf

ρ∞∈C2(S)
sup

R1∈C1
0

φ(β, R1, ρ
∞). (10.84)

The constrained Markov game has a value if

sup
R1∈C1

0

inf
ρ∞∈C2(S)

φ(β, R1, ρ
∞) = inf

ρ∞∈C2(S)
sup

R1∈C1
0

φ(β, R1, ρ
∞). (10.85)

In order to find the value of the constrained Markov game and optimal policies for both players

we consider the following dual pair of linear programs

max

∑

i

zi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a){δij − pij(a)}xi(a) = 0, j ∈ S
∑

a xj(a) +
∑

(i,a){δij − pij(a)}yi(a) = βj, j ∈ S
−∑a ri(a, b)xi(a) + zi ≤ 0, (i, b) ∈ S × B
∑

(i,a) c
k
i (a)xi(a) ≤ bk, k = 1, 2, . . . , m

xi(a), yi(a) ≥ 0, (i, a) ∈ S ×A

(10.86)

and

min

∑

i βjvi+
∑

k bkwk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

j{δij − pij(a)}vj ≥ 0, a ∈ A(i), i ∈ S
vi +

∑

j{δij − pij(a)}tj −
∑

b ri(a, b)ρib +
∑

k c
k
i (a)wk ≥ 0, a ∈ A(i), i ∈ S
∑

b ρib = 1, i ∈ S
ρib ≥ 0, b ∈ B(i), i ∈ S
wk ≥ 0, k = 1, 2, . . . , m

.

(10.87)

For anyR1 ∈ C1, the average state-action frequencies and the vector setsL, L(M), L(C), L(S), L(D)

are defined as in Section 9.2.6. From Theorem 9.21, we have L = L(M) = L(C) = LS) = L(D),

where LS) and L(D) are the closed convex hull of the sets L(S) and L(D), respectively. Also the

polyhedron Q is defined in Section 9.2.6, namely

Q :=

x

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a){δij − pij(a)}xia = 0, j ∈ S
∑

a xja +
∑

(i,a){δij − pij(a)}yia = βj, j ∈ S
xia, yia ≥ 0, (i, a) ∈ S × A

.

(10.88)

648 CHAPTER 10. STOCHASTIC GAMES

Let (x, y, z) be a feasible solution of the linear programs (10.87). Then, one can construct, by the

steps 3, 4, 5 and 6 of Algorithm 9.5, a policy R1 ∈ L(M) ∩ L(C). The next lemma shows that

|X(R1)| = 1 and x(R1) = x.

Lemma 10.22

Let (x, y, z) be a feasible solution of the linear programs (10.87) and let the policy R1 be constructed

by the steps 3, 4, 5 and 6 of Algorithm 9.5. Then, |X(R1)| = 1 and x(R1) = x.

Proof

Since xl := x(f∞l) = βTP ∗(fl) for all deterministic policies f∞l , we have

xia =
∑

l pl ·xl
ia = limT→∞

∑T
t=1

∑

j βj ·
∑

l pl ·Pf∞
l
{Xt = i, YT = a | X1 = j}, (i, a) ∈ S×A,

where the numbers pl are determined in step 5 of Algorithm 9.5. From Theorem 1.1 it follows

that the policy R1, constructed in Algorithm 9.5, satisfies R1 ∈ C(M) and for all (i, a) ∈ S × A,
∑

j βj · PRl
{Xt = i, YT = a | X1 = j} =

∑

j βj ·
∑

l pl · Pf∞
l
{Xt = i, YT = a | X1 = j}.

Hence, we obtain

xia = limT→∞
∑T

t=1

∑

j βj ·
∑

j PRl
{Xt = i, YT = a | X1 = j}

= limT→∞ xT
ia(R1) = xia(R1), (i, a) ∈ S × A.

Therefore, we have shown that x(R1) ∈ L(M) ∩ L(C) and x(R1) = x.

Theorem 10.41
(1) If (10.86) is infeasible, then C1

0 = ∅.
(2) If (x∗, y∗, z∗) and (v∗, t∗, ρ∗, w∗) are optimal solutions of the linear programs (10.86) and

(10.87), respectively, then
∑

i z
∗
i is the value of the constrained game and R∗

1 and (ρ∗)∞,

where R∗
1 is such that x(R∗

1) = x∗, are optimal policies for player 1 and 2, respectively.

Proof

(1) Suppose that C1
0 6= ∅. Let R1 ∈ C1

0 and let x(R1) be such that x(R1) ∈ X(R1). Then,

x(R1) = x for some x ∈ Q. We also have bk ≥ ck(R1) ≥
∑

(i,a) xia(R1)c
k
i (a) =

∑

(i,a) xiac
k
i (a)

for k = 1, 2, . . . , m. Hence, (10.86) is feasible, which yields the desired contradiction.

(2) From the complementary slackness property of linear programming, we obtain

∑

i,b

{z∗i −
∑

a

ri(a, b)x
∗
i (a)}ρ∗ib = 0, i.e

∑

i

z∗i =
∑

i,a

ri(a, ρ
∗)x∗i (a). (10.89)

Take any policy R1 ∈ C1
0 . Since L = Q and bk ≥ ck(R1) ≥

∑

(i,a) xia(R1)c
k
i (a) for 1 ≤ k ≤ m

and for any x(R1) ∈ X(R1), there exists vectors y and z such that
(

x(R1), y, z
)

is a feasible

solution of (10.86). Therefore, we may write

φ
(

β, R1, (ρ
∗)∞

)

= lim infT→∞
∑

i,a x
T
ia(R1)ri(a, ρ

∗)

≤ ∑

i,a xia(R1)ri(a, ρ
∗)

=
∑

i,a {
∑

b ri(a, b)ρ
∗
ib} xia(R1)

≤ ∑

i,a

{

v∗i +
∑

j {δij − pij(a)}t∗j +
∑

k c
k
i (a)w

∗
k

}

xia(R1)

10.4. AVERAGE REWARDS 649

=
∑

i v
∗
i ·
∑

a xia(R1) +
∑

j

{
∑

i,a {δij − pij(a)}xia(R1)
}

t∗j +
∑

k {
∑

i,a c
k
i (a)xia(R1)}w∗

k

=
∑

j v
∗
j ·
∑

a xja(R1) +
∑

k {
∑

i,a c
k
i (a)xia(R1)}w∗

k

=
∑

j v
∗
j ·
{

βj −
∑

i,a {δij − pij(a)}y∗i (a)
}

+
∑

k {
∑

i,a c
k
i (a)xia(R1)}w∗

k

=
∑

j βjv
∗
j −

∑

i,a

{
∑

j {δij − pij(a)}v∗j
}

y∗i (a) +
∑

k bkw
∗
k

≤ ∑

j βjv
∗
j +

∑

k bkw
∗
k = optimum (10.87) = optimum (10.86) =

∑

i z
∗
i .

We also have, using the properties that x(R∗
1) ∈ L(C) and x(R∗

1) = x∗ (see Lemma 10.22),

and equation (10.89),

φ
(

β, R∗
1, (ρ

∗)∞
)

= lim infT→∞
∑

i,a x
T
ia(R

∗
1)ri(a, ρ

∗)

=
∑

i,a xia(R
∗
1)ri(a, ρ

∗) =
∑

i,a x
∗
iari(a, ρ

∗) =
∑

i z
∗
i .

Let ρ∞ ∈ C2(S) be arbitrarily chosen. Then, we obtain

φ(β, R∗
1, ρ

∞) = lim infT→∞
∑

i,a x
T
ia(R

∗
1)ri(a, ρ)

=
∑

i,a xia(R
∗
1)ri(a, ρ) =

∑

i,a x
∗
ia

∑

b ri(a, b)ρib

≥ ∑

i z
∗
i

∑

b ρib =
∑

i z
∗
i .

Hence, we have shown

φ
(

β, R1, (ρ
∗)∞

)

≤∑i z
∗
i ≤ φ(β, R∗

1, ρ
∞ for every R1 ∈ C1

0 and every ρ∞ ∈ C2(S).

So, we have shown that
∑

i z
∗
i is the value of the constrained game and that R∗

1 and (ρ∗)∞

are optimal policies for player 1 and 2, respectively.

In general, there does not exist a stationary optimal policy for player 1. However, if x∗ satisfies

x∗ = x(π∗), where the decision rule π∗ is defined by

π∗ia :=

x∗
i (a)
x∗

i
i ∈ Sx∗

y∗i (a)
y∗i

i ∈ Sy∗

arbitrary if i /∈ Sx∗ ∪ Sy∗ ,

(10.90)

where x∗i :=
∑

a x
∗
i (a), y

∗
i :=

∑

a y
∗
i (a), Sx∗ := {i | x∗i > 0} and Sy∗ := {i | x∗i = 0, y∗i > 0}.

Notice that, since βj = 0 is allowed for one or more j ∈ S, it is possible that Sx∗ ∪ Sy∗ 6= S.

Similarly as in Lemma 9.16, it can be shown that if x∗i (a) = π∗i · {βTP ∗(π)}i, (i, a) ∈ S × A,

where π∗ is defined by (10.90), (π∗)∞ is an optimal policy for player 1. In Lemma 9.17 we have

shown that if
x∗

i (a)
x∗

i
=

y∗i (a)
y∗i

for all a ∈ A(i) and all i for which x∗i > 0 and y∗i > 0, then x∗ satisfies

the condition that x∗i (a) = π∗i · {βTP ∗(π)}i for all (i, a) ∈ S × A.

Algorithm 10.17 Single-controller constrained game with no discounting (multichain case)

Input: Instance of a two-person single-controller constrained stochastic game.

Output: The value and a pair R∗
1 and (ρ∗)∞ of optimal policies (if the constrained game is

feasible).

650 CHAPTER 10. STOCHASTIC GAMES

1. Solve the dual pair of linear programs (10.86) and (10.87).

2. if (10.86) is infeasible then

the constrained Markov game does not have a feasible solution (STOP).

3. Let (x∗, y∗, z∗) and (v∗, t∗, ρ∗, w∗) be optimal solutions of program (10.86) and (10.87),

respectively. Determine, by the steps 3, 4, 5 and 6 of Algorithm 9.5 a policy R∗
1 such that

R∗
1 ∈ L(M)∩L(C) and x(R∗

1) = x∗. Then,
∑

i z
∗
i is the value of the constrained game and

R∗
1 and (ρ∗)∞ are optimal policies for player 1 and 2, respectively (STOP).

Single-controller stochastic game: the unichain case

In the unichain case the stationary matrix P ∗(π) has identical rows. Hence, for all π∞ ∈ C1(S)

and all ρ∞ ∈ C2(S), the average reward vector φ(π∞, ρ∞) has identical components. Therefore,

we consider φ(π∞, ρ∞) as a scalar. Furthermore, we denote the identical rows of P ∗(π) as p∗(π).

Instead of the linear programs (10.73) and (10.74) we consider the following dual pair of linear

programs:

min

v

∣

∣

∣

∣

∣

∣

∣

∣

v +
∑

j{δij − pij(a)}tj − ∑

b ri(a, b)ρib ≥ 0, a ∈ A(i), i ∈ S
∑

b ρib = 1, i ∈ S
ρib ≥ 0, b ∈ B(i), i ∈ S

(10.91)

and

max

∑

i

zi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a){δij − pij(a)}xi(a) = 0, j ∈ S
∑

a xj(a) = 1, j ∈ S
−∑a ri(a, b)xi(a) + zi ≤ 0, (i, b) ∈ S ×B

xi(a) ≥ 0, (i, a) ∈ S × A

. (10.92)

Theorem 10.42

Let (v∗, t∗, ρ∗) and (x∗, z∗) be optimal solutions of the linear programs (10.91) and (10.92). Define

the policy (π∗)∞ by π∗ia :=
x∗

i (a)
P

a x∗
i (a) , i ∈ Sx∗ , a ∈ A(i) and for i /∈ Sx∗ take for π∗ia, a ∈ A(i), an

arbitrary probability vector. Then, v∗ is the value and (π∗)∞ and (ρ∗)∞ are optimal stationary

policies for player 1 and 2, respectively.

Proof

Note that it is sufficient to show that

φ
(

π∞, (ρ∗)∞
)

≤ v∗ ≤ φ
(

(π∗)∞, ρ∞
)

for all π∞ ∈ C1(S) and all ρ∞ ∈ C2(S).

From the constraints of program (10.91), we obtain v∗+{I−P (π)}t∗ ≥ r(π, ρ∗) for all π∞ ∈ C1(S).

By multiplying this inequality by P ∗(π), we get v∗ ≥ p∗(π)r(π, ρ∗) = φ
(

π∞, (ρ∗)∞
)

for all

π∞ ∈ C1(S). From the constraints of program (10.92) it follows that for all ρ∞ ∈ C2(S),

v∗ =
∑

i z
∗
i ≤

∑

i,a x
∗
i (a)ri(a, ρ) =

∑

i,a π
∗
ia · x∗i · ri(a, ρ) =

∑

i x
∗
i · ri(π∗, ρ).

10.4. AVERAGE REWARDS 651

Furthermore, we have for the N -vector x∗ with components x∗i , i ∈ S, (x∗)T = (x∗)TP (π∗) and

(x∗)T e = 1, implying (x∗)T = (x∗)TP ∗(π∗) and (x∗)T e = 1. Hence, x∗ = p∗(π∗). Consequently,
∑

i x
∗ · ri(π∗, ρ) = φ

(

(π∗)∞, ρ∞
)

for all ρ ∈ C2(S). Therefore, we have shown v∗ ≤ φ
(

(π∗)∞, ρ∞
)

for all ρ∞ ∈ C2(S), which completes the proof of the theorem.

Algorithm 10.18 Single-controller game with no discounting (unichain case)

Input: Instance of a two-person single-controller unichain stochastic game.

Output: The value v∗ and a pair (π∗)∞ and (ρ∗)∞ of optimal stationary policies.

1. Compute optimal solutions (v∗, t∗, ρ∗) and (x∗, z∗) of the linear programs (10.91) and

(10.92), respectively.

2. Define the stationary policy (π∗)∞ by π∗ia :=

x∗
i (a)

P

a x∗
i (a) , i ∈ Sx∗ , a ∈ A(i)

1
|A(i)| , i /∈ Sx∗ , a ∈ A(i)

,

where Sx∗ := {i | ∑a x
∗
i (a) > 0}.

3. v∗ is the value and (π∗)∞ and (ρ∗)∞ optimal stationary policies for player 1 and 2, respec-

tively.

Additional constraints

In this subsection we consider the constrained Markov game with the reward function φ(β, R1, R2)

and the costs functions ck(β, R1), for which we require that ck(β, R1) ≤ bk, k = 1, 2, . . . , m, for

given numbers bk, k = 1, 2, . . . , m. The feasible set of policies for player 1 is the set C1
0 , defined

by C1
0 := {R1 ∈ C1 | ck(β, R1) ≤ bk, k = 1, 2, . . . , m}. In the multichain case we restricted the

set of policies for player 2 to the set C2(S) of stationary policies. In the unichain case there is

no need to this restriction. So, player 2 can choose any policy R2 ∈ C2. We consider for the

constrained Markov game in the unichain case the following dual pair of linear programs

max

∑

i

zi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a){δij − pij(a)}xi(a) = 0, j ∈ S
∑

(i,a) xi(a)(a) = 1

−∑a ri(a, b)xi(a) + zi ≤ 0, (i, b) ∈ S × B
∑

(i,a) c
k
i (a)xi(a) ≤ bk, k = 1, 2, . . . , m

xi(a) ≥ 0, (i, a) ∈ S ×A

(10.93)

and

min

vi +
∑

k

bkwk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

v +
∑

j{δij − pij(a)}tj −
∑

b ri(a, b)ρib +
∑

k c
k
i (a)wk ≥ 0, a ∈ A(i), i ∈ S
∑

b ρib = 1, i ∈ S
ρib ≥ 0, b ∈ B(i), i ∈ S
wk ≥ 0, k = 1, 2, . . . , m

.

(10.94)

652 CHAPTER 10. STOCHASTIC GAMES

Theorem 10.43
(1) If (10.93) is infeasible, then C1

0 = ∅.
(2) If (x∗, z∗) and (v∗, t∗, ρ∗, w∗) are optimal solutions of the linear programs (10.93) and

(10.94), respectively, then
∑

i z
∗
i is the value of the constrained game and (π∗)∞ and (ρ∗)∞,

where π∗ia :=
x∗

i (a)
P

a x∗
i (a) , i ∈ Sx∗ , a ∈ A(i) and for i /∈ Sx∗ take for π∗ia, a ∈ A(i), an arbitrary

probability vector, are optimal policies for player 1 and 2, respectively.

Proof

(1) Suppose that C1
0 6= ∅ and let R1 ∈ C1

0 . In the unichain case we have, by Theorem 9.24,

L = Q0. Hence, x(R1) = x for some x ∈ Q0. Furthermore, we can write

bk ≥ ck(R1) ≥
∑

i,a xia(R1)c
k
i (a) =

∑

i,a xiac
k
i (a) for k = 1, 2, . . . , m

Therefore, (10.93) is feasible, which yields the desired contradiction.

(2) From the complementary slackness property of linear programming, we obtain

bk ≥ ck(R1) ≥
∑

i,a xia(R1)c
k
i (a) =

∑

i,a xiac
k
i (a) for k = 1, 2, . . . , m

∑

i,b {z∗i −
∑

a ri(a, b)x
∗
i (a)}ρ∗ib = 0, i.e.

∑

i z
∗
i =

∑

i,a ri(a, ρ
∗)x∗i (a).

Take any policy R1 ∈ C1
0 . Since L = Q0 and bk ≥ ck(R1) ≥

∑

(i,a) xia(R1)c
k
i (a) for 1 ≤ k ≤ m

and for any x(R1) ∈ X(R1), there exists a vector z such that
(

x(R1), z
)

is a feasible solution

of (10.93). Therefore, we may write

φ
(

β, R1, (ρ
∗)∞

)

= lim infT→∞
∑

i,a x
T
ia(R1)ri(a, ρ

∗)

≤ ∑

i,a xia(R1)ri(a, ρ
∗)

=
∑

i,a {
∑

b ri(a, b)ρ
∗
ib} xia(R1)

≤ ∑

i,a

{

v∗i +
∑

j {δij − pij(a)}t∗j +
∑

k c
k
i (a)w

∗
k

}

xia(R1)

= v∗ ·∑i,a xia(R1) +
∑

j

{∑

i,a {δij − pij(a)}xia(R1)
}

t∗j +
∑

k {
∑

i,a c
k
i (a)xia(R1)}w∗

k

= v∗ ·∑a xja(R1) +
∑

k {
∑

i,a c
k
i (a)xia(R1)}w∗

k

= v∗ +
∑

k {
∑

i,a c
k
i (a)xia(R1)}w∗

k

=
∑

j βjv
∗
j −

∑

i,a

{
∑

j {δij − pij(a)}v∗j
}

y∗i (a) +
∑

k bkw
∗
k

≤ v∗ +
∑

k bkw
∗
k = optimum (10.94) = optimum (10.93) =

∑

i z
∗
i .

Let ρ∞ ∈ C2(S) be arbitrarily chosen. Then, we obtain

φ(β, (π∗)∞, ρ∞) = βTP ∗(π∗)r(π∗, ρ) = p∗(π∗)r(π∗, ρ)

=
∑

i,a x
∗
ia

∑

b ri(a, b)ρib ≥
∑

i z
∗
i

∑

b ρib =
∑

i z
∗
i .

Hence, we have shown

φ
(

β, R1, (ρ
∗)∞

)

≤∑i z
∗
i ≤ φ

(

β, (π∗)∞, ρ∞
)

for every R1 ∈ C1
0 and every ρ∞ ∈ C2(S).

If player 1 uses the stationary policy (π∗)∞ the Markov game becomes an MDP. Therefore,

infρ∞∈C2(S) φ
(

β, (π∗)∞, ρ∞
)

= infR2∈C2(S) φ
(

β, (π∗)∞, R2

)

. Consequently,

φ
(

β, R1, (ρ
∗)∞

)

≤∑i z
∗
i ≤ φ

(

β, (π∗)∞, R2

)

for every R1 ∈ C1
0 and every R2 ∈ C2,

implying that
∑

i z
∗
i is the value of the constrained game and (π∗)∞ and (ρ∗)∞ are

optimal policies for player 1 and 2, respectively.

10.4. AVERAGE REWARDS 653

Algorithm 10.19 Single-controller constrained game with no discounting (unichain case)

Input: Instance of a two-person single-controller constrained unichained stochastic game.

Output: The value and a pair (π∗)∞ and (ρ∗)∞ of optimal policies (if the constrained game is

feasible).

1. Solve the dual pair of linear programs (10.93) and (10.94).

2. if (10.93) is infeasible then

the constrained Markov game does not have a feasible solution (STOP).

3. Let (x∗, z∗) and (v∗, t∗, ρ∗, w∗) be optimal solutions of program (10.93) and (10.94), respec-

tively.

4. Define the stationary policy (π∗)∞ by π∗ia :=

x∗
i (a)

P

a x∗
i (a) , i ∈ Sx∗ , a ∈ A(i)

1
|A(i)| , i /∈ Sx∗ , a ∈ A(i)

, where

Sx∗ := {i | ∑a x
∗
i (a) > 0}.

5. v∗ is the value and (π∗)∞ and (ρ∗)∞ optimal stationary policies for player 1 and 2, respec-

tively (STOP).

Switching-controller stochastic game

The model and the notation is the same as in the discounted case. If player 1 uses a stationary

policy π∞, the stochastic game reduces to an MDP; similarly, if player 2 uses a stationary policy

ρ∞, the the stochastic game becomes an MDP. Therefore, the next Lemma holds.

Lemma 10.23

(1) infR2 φ(π∞, R2) = minρ∞∈C2(S) φ(π∞, ρ∞) = ming∞∈C2(D) φ(π∞, g∞).

(2) supR1
φ(R1, ρ

∞) = maxπ∞∈C1(S) φ(π∞, ρ∞) = maxf∞∈C1(D) φ(f∞, ρ∞).

The following lemma presents a result for the single-controller stochastic game, i.e. S = S1.

Lemma 10.24

Assume that S = S1. Let (v∗, t∗, ρ∗) be an optimal solution of the linear program (10.73). Let R

denote the set of states i for which player 1 has an optimal stationary policy π∞ such that state

i is recurrent in the Markov chain P (π). Let A∗(i) := {a ∈ A(i) | v∗i =
∑

j pij(a)v
∗
j}, i ∈ S.

Then,

(1) v∗i = maxa∈A(i)

∑

j pij(a)v
∗
j for all i ∈ S.

(2) If t∗ satisfies v∗i + t∗i ≥ valA∗(i)×B(i) {ri(a, b) +
∑

j pij(a)t
∗
j} for all i ∈ S, then

v∗i + t∗i = valA∗(i)×B(i) {ri(a, b) +
∑

j pij(a)t
∗
j} for all i ∈ R.

654 CHAPTER 10. STOCHASTIC GAMES

Proof

(1) From the constraints of (10.73) we obtain v∗i ≥ maxa∈A(i)

∑

j pij(a)v
∗
j , i ∈ S. In Theorem

10.40 it is shown that v∗i =
∑

j pij(π
∗)v∗j , i ∈ S for an optimal policy (π∗)∞ for player 1.

Hence, we have shown the equalities v∗i = maxa∈A(i)

∑

j pij(a)v
∗
j , i ∈ S.

(2) By part (1), A∗(i) 6= ∅, i ∈ S. Suppose that v∗k + t∗k > valA∗(k)×B(k) {rk(a, b) +
∑

j pkj(a)t
∗
j}

for some ki ∈ R. Let π∞ be an optimal stationary policy for player 1 such that k is recurrent

with respect to P (π), and let R(π) be the ergodic set to which k belongs. We denote the

parts of the matrix P (π) that belong to R(π) by P̂ (π); similarly, for other matrices and

vectors. Since P ∗(π) ≥ 0, v∗ ≥ P (π)v∗, P ∗(π)v∗ = P ∗(π)P (π)v∗ and pii(π) > 0 for all

i ∈ R(π), we have v̂∗ = P̂ (π)v̂∗. Hence, by the constraints of (10.73), we have: if i ∈ R(π)

and πia > 0, then a ∈ A∗(i). Consequently, in the states of R(π) is π a feasible strategy for

the matrix game with elements ri(a, b) +
∑

j pij(a)t
∗
j with (a, b) ∈ A∗(i)× B(i). Let ρ be an

optimal strategy for player 2 in this matrix games. Then,

v∗i + t∗i ≥ valA∗(i)×B(i) {ri(a, b) +
∑

j pij(a)t
∗
j} ≥ {r(π, ρ)+ P (π)t∗}i

and

v∗k + t∗k > valA∗(k)×B(k) {rk(a, b) +
∑

j pkj(a)t
∗
j} ≥ {r(π, ρ)+ P (π)t∗}k.

Hence, in vector notation, v̂∗ > r̂(π, ρ)+ P̂ (π)t̂∗− t̂∗. Since the elements of P̂ (π)∗ are strictly

positive, we obtain

v̂∗ = P̂ (π)∗v̂∗ > P̂ (π)∗r̂(π, ρ)+ P̂ (π)∗P̂ (π)t̂∗ − P̂ (π)∗t̂∗ = P̂ (π)∗r̂(π, ρ) = φ̂(π∞, ρ∞).

Therefore, π∞ cannot be an optimal policy for player 1, which gives a contradiction.

Next, we consider the stochastic game with rewards r∗i (a, b), where r∗i (a, b) := ri(a, b)− v∗i for all

i, a, b, and with the total rewards as optimality criterion. The dual pair of linear programs, i.e.

(10.31) and (10.32) with α = 1, becomes

min

∑

i

ui

∣

∣

∣

∣

∣

∣

∣

∣

∑

j{δij − pij(a)}uj −
∑

b r
∗
i (a, b)ρib ≥ 0, a ∈ A(i), i ∈ S
∑

b ρib = 1, i ∈ S
ρib ≥ 0, b ∈ B(i), i ∈ S

(10.95)

and

max

∑

i

wi

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a){δij − pij(a)}yi(a) = 1, j ∈ S
−∑a r

∗
i (a, b)yi(a) + wi ≤ 0, (i, b) ∈ S ×B

yi(a) ≥ 0, (i, a) ∈ S × A

. (10.96)

A single-controller game is semi-transient if:

(1)
∑

j pij(a) ≤ 1 for all (i, a) ∈ S ×A;

(2) There exists a stationary policy π∞ for player 1 such that the Markov chain P (π) is transient;

(3) The value vector of the game with the average reward criterion is the zero-vector.

10.4. AVERAGE REWARDS 655

Lemma 10.25

Assume that the single-controller stochastic game with payoffs r∗i (a, b) is semi-transient. Then,

(1) The linear programs (10.95) and (10.96) have finite optimal solutions.

(2) If (u∗, ρ∞) is an optimal solution of program (eq-10.95), then

u∗i = valA(i)×B(i) {r∗i (a, b) +
∑

j pij(a)u
∗
j} for all i ∈ S.

Proof

(1) From the theory of linear programming it follows that it is sufficient to show that (10.95) and

(10.96) have feasible solutions. Since the game is semi-transient, there are stationary optimal

policies (π∗)∞ and (ρ∗)∞ with φ
(

(π∗)∞, (ρ∗)∞
)

= 0. Hence, we have

φ
(

π∞, (ρ∗)∞
)

≤ φ
(

(π∗)∞, (ρ∗)∞
)

= 0 ≤ φ
(

(π∗)∞, ρ∞
)

for all π∞ and ρ∞.

Given the stationary policy (ρ∗)∞ for player 2, the game becomes an MDP for player 1 with

value vector 0. The linear program to compute the value vector of this MDP is

min

∑

i

gi

∣

∣

∣

∣

∣

∣

∑

j{δij − pij(a)}gj ≥ 0, (i, a) ∈ S ×A
gi

∑

j{δij − pij(a)}hj ≥ r∗i , ρ
∗), (i, a) ∈ S ×A

(10.97)

and has optimal solution (g∗ = 0, h∗). Hence, (u∗, ρ∗) with u∗ := h∗ is feasible for (10.95).

Let π∞ be a stationary policy such that the Markov chain P (π) is transient (by the assumption

of the lemma π∞ exists). Since π∞ is transient, yi(a) := {eT
(

I−P (π)
)−1}i ·πia, (i, a) ∈ S×A

is well-defined and yi(a) ≥ 0, (i, a) ∈ S ×A. Let qT := eT{I − P (π)}−1. Then, we can write
∑

(i,a){δij − pij(a)}yi(a) = qj −
∑

i pij(π)qi

= {qT − qTP (π)}j = {qT
(

I − P (π)
)

}j
= {eT

(

I − P (π)
)−1(

I − P (π)
)

}j = 1, j ∈ S.
Take wi := min(i,b)∈S×B

∑

a r
∗
i (a, b)yi(a). Then, (y, w) is feasible for (10.96).

(2) Let (u∗, ρ∗) and (y∗, w∗) be optimal solutions for (10.95) and (10.96), respectively. From the

constraints of (10.95) we obtain u∗ ≥ r∗(π, ρ∗) + P (π)u∗ for all policies π∞ of player 1.

By the complementary slackness property of linear programming we obtain

y∗i (a) ·
{

∑

j

{δij − pij(a)}u∗j −
∑

b

r∗i (a, ρ
∗)
}

= 0 for all (i, a) ∈ S × A. (10.98)

Take π∗ia :=
y∗i (a)

P

a y∗i (a) , (i, a) ∈ S×A. Since
∑

a y
∗
i (a) = 1+

∑

(i,a) y
∗
i (a) ≥ 1, j ∈ S, the policy

(π∗)∞ is well-defined. Since π∗ia > 0 if and only if y∗i (a) > 0, (10.98) implies

π∗ia ·
{
∑

j {δij − pij(a)}u∗j −
∑

b r
∗
i (a, ρ

∗)
}

= 0 for all (i, a) ∈ S × A.

Hence,
∑

a π
∗
ia ·
{
∑

j {δij − pij(a)}u∗j −
∑

b r
∗
i (a, ρ

∗)
}

= 0 for all i ∈ S and consequently,

u∗ = r∗(π∗, ρ∗) + P (π∗)u∗. (10.99)

From the constraints of (10.96) it also follows that (y∗)T = eT + (y∗)TP (π∗), where y∗ is a

vector with components y∗i :=
∑

a y
∗
i (a), i ∈ S. Therefore, we have

(y∗)T =
∑n

t=1 e
TP t−1(π∗) + (y∗)TPn(π∗) ≥∑n

t=1 e
TP t−1(π∗) for all n ∈ N.

656 CHAPTER 10. STOCHASTIC GAMES

Hence,
∑∞

t=1 e
TP t−1(π∗) ≤ (y∗)T , implying P (π∗) is a transient Markov chain and I −P (π∗)

is nonsingular. Therefore, (10.99) implies u∗ = {I − P (π∗)}−1r∗(π∗, ρ∗) = v
(

(π∗)∞, (ρ∗)∞
)

,

the total rewards, and (y∗)T = eT{I − P (π∗)}−1. Since the optimum values of (10.95) and

(10.96) are equal, we also can write

eT v
(

(π∗)∞, (ρ∗)∞
)

= eTu∗ = eTw∗ ≤∑(i,a) r
∗
i (a, ρ)y

∗
i (a) for all policies ρ∞ of player 2.

Hence, for all policies ρ∞ of player 2,

eTv
(

(π∗)∞, (ρ∗)∞
)

≤ ∑

(i,a) r
∗
i (a, ρ)y

∗
i (a) =

∑

i r
∗
i (π

∗, ρ)y∗i

= eT {I − P (π∗)}−1r∗(π∗, ρ) = eT v
(

(π∗)∞, ρ∞
)

.

Therefore, (ρ∗)∞ is an optimal policy in the MDP, with player 2 as decision maker, which is

induced by the transient policy (π∗)∞ for player 1 and in which the total rewards are involved,

i.e. v
(

(π∗)∞, (ρ∗)∞
)

≤ v
(

(π∗)∞, ρ∞
)

for every ρ∞. Since u∗ = v
(

(π∗)∞, (ρ∗)∞
)

, we have

u∗ ≤ v
(

(π∗)∞, ρ∞
)

= r∗(π∗, ρ∗) + P (π∗)v
(

(π∗)∞, ρ∞
)

u∗ for every ρ∞.

Hence, we have shown r∗(π, ρ∗) + P (π)u∗ ≤ u∗ ≤ r∗(π∗, ρ) + P (π∗)u∗ for every π∞ and ρ∞,

i.e. u∗i = valA(i)×B(i) {r∗i (a, b) +
∑

j pij(a)u
∗
j} for all i ∈ S.

Note

The proof of the above lemma is related to the problem to determine an optimal transient policy

in an MDP with the total reward criterion, which is considered in Section 3.3 of [148].

We shall state a finite algorithm for the switching-controller stochastic game. If we fix for player 2

a stationary policy (ρ2)∞ on the states S2, the game becomes a single-controller stochastic game

in which player 1 controls the transitions on S1 and the transitions on S2 follow the Markov chain

induced by the policy (ρ2)∞. If we denote this game by (S, A, B, p, r), then:

S := S; A(i) := A(i), i ∈ S; B(i) :=
{ B(i), i ∈ S1

{1}, i ∈ S2

: pij(a) :=
{ pij(a), i ∈ S1, j ∈ S, a ∈ A(i)

pij(ρ
2), i ∈ S2, j ∈ S, a ∈ A(i)

;

ri(a, b) :=
{ ri(a, b), i ∈ S1, a ∈ A(i), b ∈ B(i)

ri(a, ρ
2), i ∈ S2, a ∈ A(i), b ∈ B(i)

.

Denote the primal linear program for this single-controller stochastic game by LP1(ρ
2).

Fix a subset S0 ⊆ S, vectors g and h, a stationary policy (ρ2)∞ for player 2 on S2 and for each

i ∈ S0 a nonempty action set Â(i) ∈ A(i). For these fixed choices, we define a single-controller

stochastic game (Ŝ, Â, B̂, p̂, r̂) by:

Ŝ = Ŝ1 ∪ Ŝ2, where Ŝ := S0, Ŝ1 := S0 ∩ S1, Ŝ2 := S0 ∩ S2; Â(i) := A(i), i ∈ Ŝ.

B̂(i) :=
{ B(i), i ∈ Ŝ1

{1}, i ∈ Ŝ2

: p̂ij(a) :=
{ pij(a), i ∈ Ŝ1, j ∈ Ŝ, a ∈ Â(i)

pij(ρ
2), i ∈ Ŝ2, j ∈ Ŝ, a ∈ Â(i)

;

r̂i(a, b) :=
{ ri(a, b)− gi +

∑

j∈S\S0
pij(a)hj, i ∈ Ŝ1, a ∈ Â(i), b ∈ B̂(i)

ri(a, ρ
2)− gi +

∑

j∈S\S0
pij(ρ

2)hj, i ∈ Ŝ2, a ∈ Â(i), b ∈ B̂(i)
.

Denote the primal linear program for this single-controller stochastic game by LP2(S0, g, h, ρ
2, Â).

10.4. AVERAGE REWARDS 657

Algorithm 10.20 Switching-controller game with no discounting

Input: Instance of a two-person switching-controller constrained stochastic game.

Output: The value vector φ∗ and a pair (π∗)∞ and (ρ∗)∞ of optimal policies.

1. (a) Set n := 0; M := maxi,a,b |ri(a, b)|; g(n) := M · e; h(n) := 0 · e; S(n) := ∅.

(b) for all i ∈ S2 do

determine an extreme optimal strategy ρ2
i (n) for player 2 in the matrix game

M2
i (n) with elements ri(a, b), (a, b) ∈ A(i)×B(i).

2. (a) for all i ∈ S1 do Ai(n+ 1) := {a ∈ A(i) | gi(n) =
∑

j pij(a)gj(n)}.

(b) for all i ∈ S2 do Bi(n+ 1) := {b ∈ B(i) | ∑j pij(b)gj(n) = minb

∑

j pij(b)gj(n).

3. for all i ∈ S2 do

begin

determine an extreme optimal strategy ρ2
i (n+1) for player 2 in the matrix game M2

i (n+1)

with elements ri(a, b) +
∑

j pij(b)hj(n), (a, b) ∈ A(i)×Bi(n+ 1);

if car
(

ρ2
i (n+ 1)

)

⊆ Bi(n+ 1) and gi(n) + hi(n) = val
(

M2
i (n+ 1)

)

then ρ2
i (n+ 1) := ρ2(n)

end

4. (a) determine an optimal solution (v, t) of the linear program LP1

(

ρ2(n+ 1)
)

.

(b) g(n+ 1) := v; v(n+ 1) := t.

(c) if g(n+ 1) 6= g(n) then

begin h(n + 1) := v(n+ 1); S(n+ 1) := ∅; n := n+ 1; return to step 2 end

else go to step 5.

5. (a) for all i ∈ S1 do determine val
(

M1
i (n + 1)

)

, where M1
i (n + 1) is the matrix game

with elements ri(a, b) +
∑

j pij(a)hj(n), (a, b) ∈ Ai(n+ 1)× B(i).

(b) G1(n+ 1) := {i ∈ S1 | gi(n) + hi(n) > val
(

M1
i (n)

)

}.

(c) G2(n+ 1) := {i ∈ S2 | gi(n) + hi(n) > val
(

M2
i (n)

)

}.

(d) G(n+ 1) := G1(n+ 1) ∪G2(n+ 1).

(e) if G(n+ 1) = ∅ then go to step 7

else S(n+ 1) := S(n) ∪G(n+ 1).

6. (a) Ai(n+ 1) := A(i), i ∈ S1 ∩ S(n+ 1).

(b) determine an optimal solution t of LP2

(

S(n+ 1), g(n+ 1), h(n), ρ2(n+ 1), A(n+ 1)
)

.

(c) u(n + 1) := t; hi(n+ 1) :=
{ hi(n) if i /∈ S(n+ 1)

hi(n+ 1) if i ∈ S(n+ 1)
; n := n+ 1.

(d) return to step 2.

658 CHAPTER 10. STOCHASTIC GAMES

7. (a) for all i ∈ S1 do

determine π∗ia, a ∈ Ai(n+ 1) and ρ∗ib, b ∈ B(i), as optimal strategies for player

1 and 2, respectively, in the matrix game M1
i (n+ 1) on Ai(n+ 1)×B(i), where

Ai(n+ 1) := {a ∈ A(i) | gi(n) =
∑

j pij(a)gj(n)}.
(b) for all i ∈ S2 do

determine π∗ia, a ∈ A(i) and ρ∗ib, b ∈ Bi(n+ 1), as optimal strategies for player

1 and 2, respectively, in the matrix game M2
i (n+ 1) on A(i)×Bi(n+ 1), where

Bi(n+ 1) := {b ∈ B(i) | ∑j pij(b)gj(n) = minb

∑

j pij(b)gj(n).

8. φ∗ := g(n) is the value vector of the game and (π∗)∞ and (ρ∗)∞ are optimal policies of

player 1 and 2, respectively (STOP).

Example 10.6 (continued)

Start

1. (a) n := 0; M := 7; g(0) := (7, 7); h(0) := (0, 0); S(0) := ∅.
(b) i = 2: M2

2 (0) =
(

4 6
7 5

)

with val
(

M2
2 (0)

)

= 5.5 and ρ2
2(0) = (0.25, 0.75).

Iteration 1

2. (a) i = 1: A1(1) := {1, 2}.
(b) i = 2: B2(1) := {1, 2}.

3. i = 2: M2
2 (1) =

(

4 6
7 5

)

with val
(

M2
2 (1)

)

= 5.5 and ρ2
2(1) = (0.25, 0.75).

car
(

ρ2
2(1)

)

⊆ B2(1) and g2(0) + h2(0) = 7 6= 5.5 = val
(

M2
2 (1)

)

.

4. (a) The linear program LP1

(

ρ2
2(1)

)

becomes:

min

v1 + v2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

v1 − v2 ≥ 0

−1
4v1 + 1

4v2 ≥ 0

v1 + t1 − t2 − 3ρ11 − ρ12 ≥ 0

v1 − ρ11 − 4ρ12 ≥ 0

v2 − 1
4 t1 + 1

4 t2 ≥ 25
4

ρ11 + ρ12 = 1

ρ11, ρ12 ≥ 0

with optimal solution v1 = v2 = 26
5 ; t1 = 0, t2 = 21

5 ; ρ11 = 0, ρ12 = 1.

(b) g(1) := (26
5 ,

26
5); v(1) := (0, 21

5).

(c) g(1) 6= g(0): h(1) := (0, 21
5); S(1) := ∅; n := 1.

Iteration 2

2. (a) i = 1: A1(2) := {1, 2}.
(b) i = 2: B2(2) := {1, 2}.

3. i = 2: M2
2 (2) =

(4 51/5
7 46/5

)

with val
(

M2
2 (2)

)

= 7 and ρ2
2(2) = (1, 0).

car
(

ρ2
2(2)

)

= {1} ⊆ B2(2) and g2(1) + h2(1) = 9.4 6= 7 = val
(

M2
2 (2)

)

.

10.4. AVERAGE REWARDS 659

4. (a) The linear program LP1

(

ρ2
2(2)

)

becomes:

min

v1 + v2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

v1 − v2 ≥ 0

−v1 + v2 ≥ 0

v1 + t1 − t2 − 3ρ11 − ρ12 ≥ 0

v1 − ρ11 − 4ρ12 ≥ 0

v2 − t1 + t2 ≥ 6

ρ11 + ρ12 = 1

ρ11, ρ12 ≥ 0

with optimal solution v1 = v2 = 29
8 ; t1 = 0, t2 = 19

8 ; ρ11 = 1
8 , ρ12 = 7

8 .

(b) g(2) := (29
8 ,

29
8); v(2) := (0, 19

8).

(c) g(2) 6= g(1): h(2) := (0, 19
8); S(2) := ∅; n := 2.

Iteration 3

2. (a) i = 1: A1(3) := {1, 2}.
(b) i = 2: B2(3) := {1, 2}.

3. i = 2: M2
2 (3) =

(4 67/8
7 59/8

)

with val
(

M2
2 (3)

)

= 7 and ρ2
2(3) = (1, 0).

car
(

ρ2
2(3)

)

= {1} ⊆ B2(3) and g2(2) + h2(2) = 6 6= 7 = val
(

M2
2 (3)

)

.

4. (a) The linear program LP1

(

ρ2
2(3)

)

becomes:

min

v1 + v2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

v1 − v2 ≥ 0

−v1 + v2 ≥ 0

v1 + t1 − t2 − 3ρ11 − ρ12 ≥ 0

v1 − ρ11 − 4ρ12 ≥ 0

v2 − t1 + t2 ≥ 6

ρ11 + ρ12 = 1

ρ11, ρ12 ≥ 0

with optimal solution v1 = v2 = 29
8 ; t1 = 0, t2 = 19

8 ; ρ11 = 1
8 , ρ12 = 7

8 .

(b) g(3) := (29
8 ,

29
8); v(3) := (0, 19

8).

(c) g(3) = g(2).

5. (a) i = 1: M1
1 (3) =

(43/8 27/8
1 4

)

with val
(

M1
1 (3)

)

= 29/8.

(b) g1(2) + h1(2) = 29/8 = val
(

M1
1 (3)

)

→ G1(3) = ∅.
(c) g2(2) + h2(2) = 6 < 7 = val

(

M2
2 (3)

)

→ G(3) = ∅.
(d) G3 = ∅.

7. (a) i = 1: M1
1 (3) =

(43/8 27/8
1 4

)

with val
(

M1
1 (3)

)

= 29/8 and optimal strategies π∗11 = 0.6,

π∗12 = 0.4; ρ∗11 = 0.125, ρ∗12 = 0.875.

(b) i = 2: M2
2 (3) =

(4 67/8
7 59/8

)

with val
(

M2
2 (3)

)

= 7 and optimal strategies π∗21 = 0, π∗22 = 1;

ρ∗21 = 1, ρ∗22 = 0.

8. φ∗ = (29/8, 29/8) is the value vector and (π∗)∞ and (ρ∗)∞ are optimal policies of player 1

and 2, respectively.

660 CHAPTER 10. STOCHASTIC GAMES

In proving that Algorithm 10.20 terminates with optimal policies, we shall show that in each

iteration the following 8 properties are valid, where we take g(−1) := (M + 1) · e.
(1) gi(n) ≥∑j pij(a)gj(n) for all (i, a) ∈ S1 ×A.

(2) gi(n) ≥∑j pij

(

ρ2(n)
)

gj(n) for all i ∈ S2.

(3) gi(n) + hi(n) ≥ val
(

M1
i (n+ 1)

)

for all i ∈ S1.

(4) gi(n) + hi(n) ≥ ri
(

a, ρ2(n)
)

+
∑

j pij

(

ρ2(n)
)

hj(n) for all (i, a) ∈ S2 ×A.

(5) g(n) ≤ g(n− 1).

(6) If g(n) = g(n−1), then R
(

ρ2(n)
)

⊆ R
(

ρ2(n−1)
)

and ρ2
i (n) = ρ2

i (n−1) for all i ∈ R
(

ρ2(n)
)

∩S2,

where R(ρ) is the set of states k, in the single-controller game induced by ρ, for which player

1 has an optimal policy π∞ such that state k is recurrent in the Markov chain P (π).

(7) S(n) ∩ R
(

ρ2(n)
)

= ∅.
(8) If g(n) = g(n− 1) and G(n) 6= ∅, then h(n) < h(n − 1).

It is easy to verify that the 8 properties hold for n = 0. For the proof of the induction step we

need several lemmas.

Lemma 10.26

Suppose that gi(n) = minb

∑

j pij(b)gj(n) for all i ∈ S2. Then,

(a) car
(

ρ2(n)
)

⊆ Bi(n+ 1).

(b) If property (4) holds, then gi(n) + hi(n) ≥ ri
(

a, ρ2(n+ 1)
)

+
∑

j pij

(

ρ2(n + 1)
)

hj(n) for all

(i, a) ∈ S2 × A.

Proof

(a) By step 4 of Algorithm 10.20,
(

g(n), v(n)
)

is an optimal solution of program LP1

(

ρ2(n)
)

.

Hence, gi(n) ≥∑j pij

(

ρ2(n)
)

gj(n) for all i ∈ S2. By the assumption of the lemma, we have

gi(n) ≤∑j pij(b)gj(n) for all (i, b) ∈ S2 × B. Therefore, for all b ∈ car
(

ρ2(n)
)

, we obtain

minb

∑

j pij(b)gj(n) = gi(n) =
∑

j pij(b)gj(n), i.e. b ∈ Bi(n+ 1).

(b) Take any i ∈ S2. Then, by property (4), gi(n)+hi(n) ≥ maxa {ri
(

a, ρ2(n)
)

+
∑

j pij

(

ρ2(n)
)

hj(n)}.
Since car

(

ρ2(n)
)

⊆ Bi(n+ 1), the strategy ρ2
i (n) is feasible for player 2 in the matrix game

M2
i (n+ 1) on A(i)×Bi(n+ 1). Therefore,

gi(n) + hi(n) ≥ maxa {ri
(

a, ρ2(n)
)

+
∑

j pij

(

ρ2(n)
)

hj(n)} ≥ val
(

M2
i (n+ 1)

)

.

Because the strategy ρ2
i (n+1) is optimal for player 2 in the matrix game M2

i (n+1), we have

val
(

M2
i (n+ 1)

)

= maxa {ri
(

a, ρ2(n+ 1)
)

+
∑

j pij

(

ρ2(n+ 1)
)

hj(n)}.
Hence, we have gi(n) + hi(n) ≥ ri

(

a, ρ2(n+ 1)
)

+
∑

j pij

(

ρ2(n+ 1)
)

hj(n) for all a ∈ A(i).

Lemma 10.27

(a) gi(n+ 1) ≥∑j pij(a)gj(n+ 1) for all (i, a) ∈ S1 × A.

(b) gi(n+ 1) ≥∑j pij

(

ρ2(n+ 1)
)

gj(n+ 1) for all i ∈ S2.

10.4. AVERAGE REWARDS 661

Proof

The proof of this Lemma an immediate consequence of the fact that
(

g(n + 1), v(n+ 1)
)

is an

optimal solution of program LP1

(

ρ2(n+ 1)
)

.

Lemma 10.28

Assume that the properties (1), (2), (3) and (4) hold. Then, g(n+ 1) ≤ g(n).

Proof

Take an arbitrary deterministic policy f∞ for player 1 and choose the stationary policy ρ∞ for

player 2 as follows:

If i ∈ S1: take an optimal strategy of player 2 in the matrix game M1
i (n+1) on Ai(n+1)×B(i).

If i ∈ S2: take ρi(n+ 1), the extreme optimal strategy of player 2 in the matrix game M2
i (n+ 1)

on A(i)×Bi(n+ 1).

From the properties (1) and (2) we obtain:

If i ∈ S1: gi(n) ≥∑j pij(f)gj(n).

If i ∈ S2: Since ρ2
i (n+1) is defined on Bi(n+1), we have

∑

j pij(b)gj(n) = minb

∑

j pij(b)gj(n),

if ρ2
ib(n+1) > 0. Hence,

∑

j pij

(

ρ2(n+1)
)

gj(n) = minb

∑

j pij(b)gj(n). Consequently,

gi(n) ≥∑j pij

(

ρ2(n)
)

gj(n) ≥ minb

∑

j pij(b)gj(n) =
∑

j pij

(

ρ2(n+ 1)
)

gj(n).

By the definition of ρ∞, we have g(n) ≥ P (f, ρ)g(n), implying gi(n) = {P (f, ρ)g(n)}i, i ∈ R(f, ρ)

and g(n) ≥ P ∗(f, ρ)g(n).

If i ∈ R(f, ρ) ∩ S1: gi(n) =
∑

j pij(f)gj(n), i.e. f(i) ∈ Ai(n+ 1). By property (3), we have

gi(n) + hi(n) ≥ val
(

M1
i (n+ 1)

)

. Since ρ is optimal for player in the matrix

game M1
i (n+ 1), we have val

(

M1
i (n+ 1)

)

≥ ri(f, ρ) + {P (f, ρ)}i.
If i ∈ R(f, ρ)∩ S2: gi(n) =

∑

j pij

(

ρ2(n+ 1)
)

gj(n) = minb

∑

j pij(b)gj(n). By Lemma 10.26, we

obtain gi(n) + hi(n) ≥ ri(f, ρ) + {P (f, ρ)h(n)}i.
Hence, if i ∈ R(f, ρ) we have gi(n) + hi(n) ≥ ri(f, ρ) + {P (f, ρ)h(n)}i, implying the inequality

g(n) ≥ P ∗(f, ρ)r(f, ρ) = φ(f∞, ρ∞). Since f∞ is arbitrarily chosen, we obtain

g(n) ≥ maxf phi(f
∞, ρ∞) ≥ maxπ φ(π∞, ρ∞)

≥ maxπ minρ {φ(π∞, ρ∞) | ρi = ρ2
i (n+ 1) for all i ∈ S2} = g(n+ 1).

Lemma 10.29

Assume that the properties (2), (3) and (4) hold. Furthermore, assume that g(n + 1) = g(n).

Then, R
(

ρ2(n+ 1)
)

⊆ R
(

ρ2(n)
)

and ρ2
i (n+ 1) = ρ2

i (n) for all i ∈ R
(

ρ2(n)
)

∩ S2.

Proof

Fix for player 2 the strategy ρ2
i (n + 1) in the states i ∈ S2. Because g(n + 1) is the v∗-part

of the optimal solution of the linear program LP1

(

ρ2(n + 1)
)

, we obtain by Lemma 10.24 (1),

gi(n+1) = maxa∈A(i)

∑

j pij(a)gj(n+1), i ∈ S. In the states i ∈ S2 player 1 has no influence on

the transactions, namely: pij(a) = pij

(

ρ2(n + 1)
)

for all i ∈ S2, j ∈ S and a ∈ A(i). Therefore,

we obtain for all i ∈ S2: gi(n+ 1) =
∑

j pij

(

ρ2(n+ 1)
)

gj(n+ 1).

662 CHAPTER 10. STOCHASTIC GAMES

Since car
(

ρ2(n + 1)
)

⊆ Bi(n + 1), we have gi(n + 1) = minb

∑

j pij(b)gj(n + 1) for all i ∈ S2.

Because g(n + 1) = g(n), we have gi(n) = minb

∑

j pij(b)gj(n + 1) for all i ∈ S2. Hence, by

Lemma 10.26, gi(n) + hi(n) ≥ maxa {ri
(

a, ρ2(n+ 1)
)

+
∑

j pij

(

ρ2(n+ 1)
)

hj(n)} for all i ∈ S2.

Because ρ2
i (n+ 1) is an optimal strategy in the matrix game M2

i (n+ 1), i ∈ S2, we have

gi(n) + hi(n) ≥ maxa {ri
(

a, ρ2(n+ 1)
)

+
∑

j pij

(

ρ2(n+ 1)
)

hj(n)} = val
(

M2
i (n+ 1)

)

, i ∈ S2.

Since g(n+ 1) = g(n) equals the v∗-part of the optimal solution of LP1

(

ρ2(n+ 1)
)

, Lemma 10.24

(2) can be applied with v∗ := g(n), t∗ := h(n) and A∗(i) := Ai(n+ 1).

Hence, gi(n) + hi(n) = val
(

M2
i (n + 1)

)

for all i ∈ R
(

ρ2(n)
)

∩ S2. So, by step 3 of Algorithm

10.20, ρ2
i (n+ 1) = ρ2(n) for all i ∈ R

(

ρ2(n)
)

∩ S2.

Fix k ∈ R
(

ρ2(n+ 1)
)

, i.e. there exists an optimal policy π∞ for player 1 in the single-controller

stochastic game induced by the policy ρ2
i (n + 1) on the states i ∈ S2 such that k is recurrent

under P (π). Because ρ2
i (n+ 1) = ρ2

i (n) for all i ∈ R
(

ρ2(n)
)

∩ S2 and g(n+ 1) = g(n), the policy

π∞ is also optimal in the single-controller stochastic game induced by the policy ρ2
i (n) on the

states of S2. Clearly, state k is recurrent, which shows that R
(

ρ2(n+ 1)
)

⊆ R
(

ρ2(n)
)

.

Lemma 10.30

Assume that the properties (2), (3), (4) and (7) hold. Then, S(n+ 1) ∩R
(

ρ2(n+ 1)
)

= ∅.

Proof

If g(n + 1) 6= g(n), then by step 4(b) of Algorithm 10.20 we obtain S(n + 1) = ∅, implying

S(n+1)∩R
(

ρ2(n+1)
)

= ∅. Hence, suppose for the remaining part of the proof g(n+1) = g(n).

By Lemma 10.29, R
(

ρ2(n+ 1)
)

⊆ R
(

ρ2(n)
)

and, by property (7), S(n) ∩R
(

ρ2(n+ 1)
)

= ∅.
Because S(n+1) = S(n)∪G(n+1), it is sufficient to show that G(n+1)∩R

(

ρ2(n+1)
)

= ∅. From

the proof of Lemma 10.29, we obtain gi(n)+hi(n) = val
(

M2
i (n+1)

)

for all i ∈ R
(

ρ2(n+1)
)

∩S2.

Lemma 10.24 and property (3) imply gi(n) + hi(n) = val
(

M1
i (n + 1)

)

for all i ∈ R
(

ρ2(n + 1)
)

∩
S1. Therefore, it follows from the definition of G(n + 1) in step 5 (d) of Algorithm 10.20 that

G(n+ 1) ∩R
(

ρ2(n+ 1)
)

= ∅.

Lemma 10.31

Assume that the properties (2), (3), (4) and (7) hold. Furthermore, suppose that g(n+ 1) = g(n)

and G(n+ 1) 6= ∅. Then, h(n + 1) < h(n).

Outline of the proof (for details see [316])

Since G(n+ 1) 6= ∅ and S(n+ 1) = S(n) ∪G(n+ 1) (see step 5 (e) of Algorithm 10.20), we also

have S(n+ 1) 6= ∅. From the proof of Lemma 10.29 we obtain

gi(n) + hi(n) ≥ val(M2
i (n+ 1)

)

, i ∈ S2. (10.100)

By property (3), we also have

gi(n) + hi(n) ≥ val(M1
i (n+ 1)

)

, i ∈ S1. (10.101)

10.4. AVERAGE REWARDS 663

Because G(n + 1) 6= ∅, the strict inequality holds in (10.100) or (10.101) in at least one state.

Consider the stochastic game for program LP2

(

S(n+1), g(n+1), h(n), ρ2(n+1), A(t+1)
)

in step

6 (b) of Algorithm 10.20. It can be shown that this is a semi-transient single-controller stochastic

game. By step 6 (c) of Algorithm 10.20, we have hi(n+ 1) :=
{ hi(n) if i /∈ S(n+ 1);

hi(n+ 1) if i ∈ S(n+ 1).

Therefore, we have to show that ui(n + 1) < hi(n) for at least one component i ∈ S(n + 1).

This can be done using that the inequality (10.100) and (10.101)(10.102) is strict in at least one

component.

Lemma 10.32

Assume that the properties (2), (3), (4) and (7) hold. Then,

(a) gi(n+ 1) + hi(n+ 1) ≥ val
(

M1
i (n+ 2)

)

for all i ∈ S1.

(b) gi(n+ 1) + hi(n+ 1) ≥ ri
(

a, ρ2(n+ 1)
)

+
∑

j pij

(

ρ2(n+ 1)
)

hj(n+ 1) for all (i, a) ∈ S2 × A.

Proof

If g(n+ 1) 6= g(n), then h(n + 1) = v(n+ 1) and the result follows from LP1

(

ρ2(n+ 1)
)

.

Suppose that g(n + 1) = g(n). In the proof of Lemma 10.31 is shown that h(n + 1) ≤ h(n).

Furthermore, from the proof of Lemma 10.29, we obtain

gi(n) + hi(n) ≥ ri
(

a, ρ2(n+ 1)
)

+
∑

j pij

(

ρ2(n+ 1)
)

hj(n) for all (i, a) ∈ S2 × A.
≥ ri

(

a, ρ2(n+ 1)
)

+
∑

j pij

(

ρ2(n+ 1)
)

hj(n+ 1) for all (i, a) ∈ S2 ×A.
If i /∈ S(n+ 1): hi(n+ 1) = hi(n) by step 6 (c) of Algorithm 10.20. So, we obtain

gi(n+ 1) + hi(n+ 1) = gi(n) + hi(n)

≥ ri
(

a, ρ2(n + 1)
)

+
∑

j pij

(

ρ2(n+ 1)
)

hj(n+ 1)

for all (i, a) ∈ S2 ×A, which proves part (b). Since h(n + 1) ≤ h(n) and by (3),

val
(

M1
i (n+ 2)

)

≤ val
(

M1
i (n)

)

≤ gi(n) + hi(n) = gi(n+ 1) + hi(n+ 1), i ∈ S1,

which proves part (a).

If i ∈ S(n+1): hi(n+1) = ui(n+1) by step 6 (c) of Algorithm 10.20. Since hi(n+1) = ui(n+1),

i ∈ S(n+ 1), is a solution of LP2

(

S(n+ 1), g(n+ 1), h(n), ρ2(n+ 1), A(n+ 1)
)

and since hi(n) = hi(n+ 1), i /∈ S(n+ 1), we obtain for all (i, a) ∈ S2 × A:

gi(n+ 1) + hi(n+ 1) ≥ ri
(

a, ρ2(n+ 1)
)

+
∑

j pij

(

ρ2(n + 1)
)

hj(n+ 1), which

proves part (b).

For i ∈ S1, LP2

(

S(n+ 1), g(n+ 1), h(n), ρ2(n+ 1), A(n+ 1)
)

implies

gi(n+ 1) + hi(n+ 1) ≥ ri
(

a, ρ2(n+ 1)
)

+
∑

j pij(a)hj(n+ 1), a ∈ Ai(n+ 1).

Therefore, we obtain for all i ∈ S1:

val
(

M1
i (n+ 2)

)

= maxπ minρ {ri(π, ρ)+
∑

j pij(π)hj(n+ 1)}
≤ maxπ{ri

(

π, ρ2(n+ 1)
)

+
∑

j pij(π)hj(n+ 1)}
≤ maxa{ri

(

a, ρ2(n+ 1)
)

+
∑

j pij(a)hj(n+ 1)}
≤ gi(n+ 1) + hi(n+ 1),

which proves part (a).

664 CHAPTER 10. STOCHASTIC GAMES

Theorem 10.44

The properties (1), (2), until (8) hold for all n.

Proof

We apply induction on n. It is easy to verify the 8 properties for n = 0. Assume that the

properties hold for some n. Then, we have to prove the properties for n + 1.

Properties (1) and (2): see Lemma 10.27.

Properties (3) and (4): see Lemma 10.32.

Property (5): see Lemma 10.28.

Property (6): see Lemma 10.29 (use also R
(

ρ2(n+ 1)
)

⊆ R
(

ρ2(n)
)

).

Property (7): see Lemma 10.30.

Property (8): see Lemma 10.31.

Theorem 10.45

Algorithm 10.20 terminates after a finite number of iterations.

Proof

Parthasarathy and Raghavan have shown (see Lemma 4.1 in [212]) that an extreme optimal action

for player 2 in the matrix game with elements ri(a, b)+
∑

j pij(b)hj(n) on A(i)×Bi(n+1) is also

an extreme optimal action for player 2 in some subgame with elements ri(a, b) on A(i)×Bi(n+1)

with Bi(n + 1) ⊆ Bi(n + 1). From a theorem by Shapley and Snow ([268]), and also from the

linear programming approach of matrix games, we know that optimal strategies can be found

in a submatrix game, where this submatrix is square and nonsingular. Since a matrix game has

only a finite number of submatrices and since the set S2 is finite, there is a finite set from which

ρ2(n+ 1) can be chosen in step 3 of Algorithm 10.20 and this set is independent of n.

By the properties (5) and (8) we can see that for each n exactly one of the following events occurs:

(a) g(n) = g(n− 1) and G(n) = ∅.
(b) g(n) < g(n− 1).

(c) g(n) = g(n− 1), G(n) 6= ∅ and ρ2(n) = ρ2(n− 1).

(d) g(n) = g(n− 1), G(n) 6= ∅ and ρ2(n) 6= ρ2(n− 1).

We consider these four cases separately.

Case (a):

In this case the algorithm terminates, via step 5 (e) and step 7, in step 8.

Case (b):

ρ2(k) 6= ρ2(l) for all k ≥ n and l ≤ n− 1, namely:

Assume ρ2(k) = ρ2(l) for some k ≥ n and l ≤ n − 1. Since in step 4 (a) of the algorithm

LP1(ρ) only depends on ρ and the optimal solution g is unique, we have g(k) = g(l) for some

k ≥ n and l ≤ n− 1. This contradicts (5) and (a).

Since there is a finite set from which ρ2(n+ 1) can be chosen in step 3 of the algorithm, this case

cannot occur infinitely often.

10.4. AVERAGE REWARDS 665

Case (c):

S(n− 1) ⊂ S(n) and S(n− 1) 6= S(n), namely:

Since S(n) = S(n− 1) ∪G(n) and G(n) 6= ∅, it is sufficient to show S(n− 1) ∩G(n) = ∅.
Take any i ∈ S(n− 1). Because u(n− 1) is an optimal solution of the linear program

LP2

(

S(n− 1), g(n− 1), h(n− 2), ρ2(n− 1), A(n− 1)
)

, we obtain by Lemma 10.25:

If i ∈ S(n− 1) ∩ S1:

ui(n− 1) = val{ri(a, b)− gi(n− 1) +
∑

j /∈S(n−1) pij(a)hj(n− 2) +
∑

j∈S(n−1) pij(a)uj(n− 1)}.
Because, see step 6 (c) of the algorithm, hj(n−2) = hj(n−1), i /∈ S(n−1) and furthermore,

uj(n− 1) = hj(n− 1), i ∈ S(n− 1), we obtain

gi(n−1)+hi(n−1) = val{ri(a, b)+
∑

j pij(a)hj(n−1)} = val
(

M1
i (n−1)

)

, i ∈ S(n−1)∩S1,

i.e. i /∈ G1(n).

If i ∈ S(n− 1) ∩ S2:

Similarly as above and because player 2 uses strategy ρ2
i (n− 1) = ρ2

i (n) in the states i ∈ S2,

we obtain gi(n − 1) + hi(n− 1) = val{ri
(

a, ρ2(n)
)

+
∑

j pij

(

ρ2(n)
)

hj(n− 1)}. Since ρ2(n) is

an extreme optimal strategy for player 2 in the matrix game M2
i (n − 1), we have

gi(n− 1) + hi(n− 1) = val
(

M2
i (n− 1)

)

, i.e. i /∈ G2(n).

Hence, we have shown that S(n− 1) ∩G(n) = ∅.
Case (d):

This case cannot be repeat itself infinitely often, namely:

Assume that from stage n this case repeats itself infinitely often. Then, g(m) = g(n) for all

m ≥ n and G(m) 6= ∅ for m ≥ n. Since S(m+ 1) = S(m) ∪G(m+ 1) and |S(m+ 1| ≤ N for

all m, we may assume without loss of generality that S(n) = S(n+ 1) = S(n+ 2) = · · · .
Consider the programs LP2

(

S(n+k), g(n+k), h(n+k−1), ρ2(n+k), A(n+k)
)

for k = 0, 1,

These programs only depend on ρ2(n+k) as the other parameters do not change (h(n+k−1)

is used for the states S\S(n+k) and the values hi(n+k−1) do not change in these states by

step 6 (c) of the algorithm). Lemma 10.31 implies h(n) > h(n + 1) > h(n+ 2) > · · · .
Suppose that ρ2(n+ l) = ρ2(n+ k) for some l > k. Then, the solution the the program for

n+l and n+k are equal, and consequently (see step 7 (c) of the algorithm) h(n+l) = h(n+k).

But this yields a contradiction.

Now we can finish the proof as follows. Assume that the algorithm does not terminate. Since

in case (a) the algorithm terminates and case (b) cannot occur infinitely often, we only have to

consider the situation in which only the cases (c) and (d) occur from a certain stage n. In this

situation g(m) = g(n) for all m ≥ n and S(n) ⊆ S(n + 1) ⊆ S(n + 2) ⊆ · · · . From the result of

case (c), i.e. S(n−1) ⊂ S(n) and S(n−1) 6= S(n), it follows that case (c) cannot occur infinitely

often. Hence, we are always in case (d) from a certain stage. But this contradicts the result that

case (d) cannot be repeat itself infinitely.

666 CHAPTER 10. STOCHASTIC GAMES

Theorem 10.46

Algorithm 10.20 terminates with optimal policies for both players and with the value vector.

Proof

By Theorem 10.45 the algorithm terminates, say in stage n+1, so we have g(n+1) = g(n). From

the proof of Lemma 10.29 we obtain

gi(n) = minb

∑

j

pij(b)gj(n), i ∈ S2. (10.102)

Since g(n) is the optimal solution of LP1

(

ρ2(n)
)

, we observe from Lemma 10.24, part (1), that

gi(n) = maxa

∑

j

pij(a)gj(n), i ∈ S1. (10.103)

From the definitions of π∗ and ρ∗ in step 7 of the algorithm we know

car(π∗) ⊆ Ai(n+ 1), i ∈ S1 and car(ρ∗) ⊆ Bi(n+ 1), i ∈ S2. (10.104)

Because G1(n+ 1) = ∅, property (3) implies

gi(n) + hi(n) = val
(

M1
i (n+ 1)

)

, i ∈ S1. (10.105)

From the proof of Lemma 10.26 we obtain

gi(n) + hi(n) ≥ maxa {ri
(

a, ρ2(n+ 1)
)

+
∑

j pij

(

ρ2(n+ 1)
)

hj(n)} = val
(

M2
i (n+ 1)

)

, i ∈ S2.

As G2(n + 1) = ∅, we have

gi(n) + hi(n) = val
(

M2
i (n+ 1)

)

, i ∈ S2. (10.106)

Let f∞ be an arbitrary deterministic policy for player 1. For i ∈ S1, relation (10.103) implies

gi(n) ≥∑j pij(f)gj(n). For i ∈ S2, since car(ρ∗) ⊆ Bi(n+ 1) and by relation (10.102), we have
∑

j pij(ρ
∗)gj(n) = minb

∑

j pij(b)gj(n) = gi(n). Hence, g(n) ≥ P (f, ρ∗)g(n), which yields

g(n) ≥ P ∗(f, ρ∗)g(n) (10.107)

For i ∈ S1, by relation (10.105) and because ρ∗ is optimal for M1
i (n+ 1), we can write

gi(n) + hi(n) = val
(

M1
i (n+ 1)

)

= maxπ minρ {ri(π, ρ) +
∑

j pij(π)hj(n)}
= maxπ {ri(π, ρ∗) +

∑

j pij(π)hj(n)}
≥ ri(f, ρ

∗) +
∑

j pij(f)hj(n).

For i ∈ S2, by relation (10.106) and because ρ∗ is optimal for M2
i (n+ 1), we can write

gi(n) + hi(n) = val
(

M2
i (n+ 1)

)

= maxπ minρ {ri(π, ρ) +
∑

j pij(ρ)hj(n)}
= maxπ {ri(π, ρ∗) +

∑

j pij(ρ
∗)hj(n)}

≥ ri(f, ρ
∗) +

∑

j pij(ρ
∗)hj(n).

Hence,

g(n) + h(n) ≥ r(f, ρ∗) + P ∗(f, ρ∗)g(n). (10.108)

10.4. AVERAGE REWARDS 667

Combining (10.107) and (10.108) yields

g(n) ≥ P ∗(f, ρ∗)g(n) ≥ P ∗(f, ρ∗){r(f, ρ∗) + P (f, ρ∗)h(n)− h(n)} = φ
(

f∞, (ρ∗)∞
)

. (10.109)

Let g∞ be an arbitrary deterministic policy for player 2. For ∈ S2, relation (10.102) implies

gi(n) ≤∑j pij(g)gj(n). For i ∈ S1, since car(π∗) ⊆ Ai(n+ 1), we have
∑

j pij(π
∗)gj(n) = gi(n).

Hence, g(n) ≤ P (π∗, g)g(n), which yields

g(n) ≤ P ∗(π∗, g)g(n) (10.110)

For i ∈ S1, by relation (10.105) and because π∗ is optimal for M1
i (n+ 1), we can write

gi(n) + hi(n) = val
(

M1
i (n+ 1)

)

= maxπ minρ {ri(π, ρ) +
∑

j pij(π)hj(n)}
= minρ {ri(π∗, ρ) +

∑

j pij(π
∗)hj(n)}

≤ ri(π
∗, g) +

∑

j pij(π
∗)hj(n).

For i ∈ S2, by relation (10.106) and because π∗ is optimal for M2
i (n+ 1), we can write

gi(n) + hi(n) = val
(

M2
i (n+ 1)

)

= maxπ minρ {ri(π, ρ) +
∑

j pij(ρ)hj(n)}
= minρ {ri(π∗, ρ) +

∑

j pij(ρ)hj(n)}
≤ ri(π

∗, g) +
∑

j pij(g)hj(n).

Hence,

g(n) + h(n) ≤ r(π∗, g) + P ∗(π∗, g)g(n). (10.111)

Combining (10.110) and (10.111) yields

g(n) ≤ P ∗(π∗, g)g(n)≤ P ∗(π∗, g){r(π∗, g) + P (π∗, g)h(n)− h(n)} = φ
(

(π∗)∞, g∞
)

. (10.112)

The relations (10.108) and (10.111) imply φ
(

f∞, (ρ∗)∞
)

≤ g(n) ≤ φ
(

(π∗)∞, g∞
)

for all determin-

istic policies f∞ and g∞ for player 1 and 2, respectively. Hence, (π∗)∞ and (ρ∗)∞ are optimal

stationary policies and g(n) is the value vector.

Remark

Algorithm 10.20 provides a constructive proof of the existence of the value and of optimal sta-

tionary policies for both players. Furthermore, the algorithm proves the ordered field property

for the switching-controller stochastic game.

Switching-controller stochastic game and bilinear programming

Filar ([89]) has established that switching-controller stochastic games possess asymptotic stable

optimal stationary policies. In Theorem 10.32 we have shown that in a stochastic game which

possesses asymptotic stable optimal stationary policies, say π∞ and ρ∞, the bilinear system

(10.65) has a feasible solution (v, t, ρ, π). Define the vectors g and h by

gi :=

{

∑

j

∑

a pij(a)πiavj , i ∈ S1
∑

j

∑

b pij(b)ρibvj, i ∈ S2

and hi :=

{

∑

j

∑

a pij(a)πiatj , i ∈ S1
∑

j

∑

b pij(b)ρibtj , i ∈ S2

Then, the constraints of (10.65) become the following 8 sets of bilinear inequalities:

668 CHAPTER 10. STOCHASTIC GAMES

(1) vi −
∑

j pij(a)vj ≥ 0, (i, a) ∈ S1 ×A
(2) vi − gi ≥ 0, i ∈ S2

(3) vi + ti −
∑

j pij(a)tj −
∑

b ri(a, b)ρib ≥ 0, (i, a) ∈ S1 ×A
(4) vi + ti − hi −

∑

b ri(a, b)ρib ≥ 0, (i, a) ∈ S1 ×A
(5) vi − gi ≤ 0, i ∈ S1

(6) vi −
∑

j pij(b)vj ≤ 0, (i, b) ∈ S2 × A
(7) vi + ti − hi −

∑

a ri(a, b)πia ≤ 0, (i, b) ∈ S1 × B
(8) vi + ti −

∑

j pij(b)tj −
∑

a ri(a, b)πia ≤ 0, (i, b) ∈ S2 × B
Consider the bilinear program BLP2 with objective function

φ(g, h, v, t, π, ρ) :=
∑

i∈S1
{gi −

∑

j

∑

a pij(a)πiavj}+
∑

i∈S1
{hi −

∑

j

∑

a pij(a)πiatj}
∑

i∈S2
{gi −

∑

j

∑

b pij(b)ρibvj} −
∑

i∈S2
{hi −

∑

j

∑

b pij(b)ρibtj}
and as constraints the above eight sets of inequalities and with the addition constraints
∑

a πia = 1, i ∈ S, πia ≥ 0, (i, a) ∈ S ×A;
∑

b ρib = 1, i ∈ S, ρib ≥ 0, (i, b) ∈ S ×B.

Theorem 10.47
(1) An optimal solution of BLP2 has value 0 and can be derived from any pair of asymptotic

stable optimal stationary policies (π∗)∞ and (ρ∗)∞.

(2) The value vector and optimal stationary policies (π∗)∞ and (ρ∗)∞ can be obtained from

any optimal solution (g∗, h∗, v∗, t∗, π∗, ρ∗) of BLP2.

Proof

(1) Let (v∗, t∗, π∗, ρ∗) be a feasible solution of the bilinear system (10.65). Such solution exists

by Theorem 10.32. Define g∗ and h∗ by

g∗i :=

{
∑

j

∑

a pij(a)π
∗
iav

∗
j , i ∈ S1

∑

j

∑

b pij(b)ρ
∗
ibv

∗
j , i ∈ S2

and h∗i :=

{
∑

j

∑

a pij(a)π
∗
iat

∗
j , i ∈ S1

∑

j

∑

b pij(b)ρ
∗
ibt

∗
j , i ∈ S2

Then, it is obvious that (g∗, h∗, v∗, t∗, π∗, ρ∗) is a feasible solution of BLP2 with value zero of

the objective function. Hence, it is sufficient to show that the objective function is at least

0 for any feasible solution (g, h, v, t, π, ρ). Let (g, h, v, t, π, ρ) be a feasible solution. From (1)

and (5), we obtain gi ≥ vi ≥
∑

j pij(π)vj, i ∈ S1. Hence,
∑

i∈S1
{gi−

∑

j

∑

a pij(a)πiavj} ≥ 0.

From (3) and (7), we obtain vi+ti−
∑

j pij(π)tj−ri(π, ρ)≥ 0, i ∈ S1 and vi+ti−ri(π, ρ)≤ hi,

i ∈ S1. Therefore, we have
∑

i∈S1
{hi −

∑

j

∑

a pij(a)πiatj} ≥ 0. Similarly, it can be

shown that the third and fourth term of the objective function are nonpositive. Therefore

φ(g, h, v, t, π, ρ)≥ 0 for any feasible solution (g, h, v, t, π, ρ) of the bilinear program.

(2) Let (g∗, h∗, v∗, t∗, π∗, ρ∗) be an optimal solution of BLP2. Then, it follows from part (1)

that g∗i =
∑

j

∑

a pij(a)π
∗
iav

∗
j , i ∈ S1, and h∗i =

∑

j

∑

a pij(a)π
∗
iat

∗
j , i ∈ S1. Similarly, we

obtain g∗i =
∑

j

∑

b pij(b)ρ
∗
ibv

∗
j , i ∈ S2, and h∗i =

∑

j

∑

b pij(b)ρ
∗
ibt

∗
j , i ∈ S2. Hence,

(v∗, t∗, π∗, ρ∗) is a feasible solution of the bilinear system (10.65). Then, by Theorem 10.30,

(π∗)∞ and (ρ∗)∞ are optimal stationary policies and v∗ is the value vector.

10.4. AVERAGE REWARDS 669

Remark 1

In BLP2 the variables g, h, v and t appear in constraints together with the variables π and ρ.

Bilinear programs of this form may have solutions not at a vertex. The method proposed by Faiz

and Falk ([79]) gives a finite method for an ε-optimal solution.

Remark 2

An analogous result holds for the switching-controller stochastic game with the discounted reward

criterion.

SER-SIT games

In this subsection we consider a stochastic game with separable rewards SER) and state in-

dependent transitions (SIT), i.e. ri(a, b) = si + t(a, b) and pij(a, b) = pj(a, b), j ∈ S, for all

i, a, b, under the average reward criterion. Let |A(i)| = m and |B(i)| = n for all i ∈ S (no-

tice that the SIT -property makes only sense when in all states the number of actions for player

1 (player 2) is the same). Consider the matrix games with m × n matrix M = (mab), where

mab := t(a, b) +
∑

j pj(a, b)sj, 1 ≤ a ≤ m, 1 ≤ b ≤ n.

Theorem 10.48

Let π∗ = (π1, π2, . . . , πm) and ρ∗ = (ρ1, ρ2, . . . , ρn) be optimal mixed strategies of the matrix game

with matrix M . Then, φ = val(M)·e is the value vector and (π∗)∞ and (ρ∗)∞ are optimal policies

for player 1 and player 2, respectively.

Proof

Since val(M) ≤ t(π∗, ρ) +
∑

j pj(π
∗, ρ)sj for all ρ, we also have, in vector notation, where the

matrix P (π∗, ρ) has identical rows, s+val(M) ·e ≤ s+t(π∗, ρ) ·e+P (π∗, ρ)s for all ρ. By applying

P ∗(π∗, ρ) on both sides, we obtain val(M) · e ≤ P ∗(π∗, ρ){s+ t(π∗, ρ) · e} = φ
(

(π∗)∞, ρ∞
)

for all

ρ∞ ∈ Γ. Similarly, one can prove val(M) · e ≥ P ∗(π, ρ∗){s+ t(π, ρ∗) · e} = φ
(

π∞, (ρ∗)∞
)

for all

π∞ ∈ Π. Hence, φ = val(M) · e is the value vector and (π∗)∞ and (ρ∗)∞ are optimal policies for

player 1 and player 2, respectively.

Algorithm 10.21 SER-SIT game with no discounting

Input: Instance of a two-person SER-SIT stochastic game

Output: The value vector φ and a pair
(

(π∗)∞, (ρ∗)∞
)

of optimal stationary policies.

1. Compute the matrix M with entries mab := t(a, b) +
∑

j pj(a, b)sj, a ∈ A(i), b ∈ B(i).

2. Determine the value φ and optimal mixed strategies π∗ and ρ∗ of the matrix game with

matrix M .

3. φ · e is the value vector; (π∗)∞ and (ρ∗)∞ are optimal stationary policies for player 1 and

player 2, respectively (STOP).

670 CHAPTER 10. STOCHASTIC GAMES

Remark

Since φ and the optimal mixed strategies π∗ and ρ∗ can be computed by linear programming,

SER-SIT games possess the ordered field property.

ARAT games

An additive reward and additive transition (ARAT) stochastic game is defined by the property

that the rewards as well as the transitions can be written as the sum of a term determined by

player 1 and a term determined by player 2: ri(a, b) = r1i (a) + r2i (b), i ∈ S, a ∈ A(i), b ∈ B(i)

and pij(a, b) = p1
ij(a) + p2

ij(b), i, j ∈ S, a ∈ A(i), b ∈ B(i). We will argue the result that both

players have optimal deterministic and stationary policies and that the ordered field property

holds. For the details we refer to [233] and [99].

We have seen in Theorem 10.17 that, in the case of discounted rewards, both players have

optimal deterministic and stationary policies and that the ordered field property holds. As usual,

since there are only a finite number of deterministic and stationary policies, taking a sequence of

discount factors tending to 1, some optimal deterministic and stationary pair of policies appears

infinitely often, giving rise to a uniform discount optimal policy. But then, such pair is also

average reward optimal.

A finite algorithm to compute the value vector and optimal deterministic and stationary

policies resembles the algorithm of Vrieze, Raghavan, Tijs and Filar ([316]). There are some

simplifications: no partition of the state space is needed, so S1 = S and S2 = ∅. Furthermore,

the policies can be taken deterministic and stationary.

10.5 Two-person general-sum stochastic game

10.5.1 Introduction

In a two-person general-sum stochastic game, if the players 1 and 2 choose in state i independently

the actions a and b, they receive r1i (a, b) and r2i (a, b), respectively. In this game the two players try

to maximize their own payoff. The zero-sum game is the special case in which r2i (a, b) = −r1i (a, b)
for all i, a and b. In a general-sum stochastic game the usual concepts for the value and optimal

policies make no sense. It looks reasonable to assume that the solution of the nonzero-sum game

is such that, given the policy of one player, the policy of the other player is such that it maximizes

his payoff. This viewpoint leads to the concept of equilibrium policies.

A pair (R∗
1, R

∗
2) is a pair of equilibrium policies if R∗

1 is the best answer against R∗
2, and R∗

2 is

the best answer against R∗
1. Hence, in an equilibrium neither of the players has an incentive for

a unilateral deviation from such an equilibrium policy. The formal definitions are as follows.

For the policies R1 and R2 for player 1 and 2, respectively, the total discounted rewards

v1,α(R1, R2) and v2,α(R1, R2), and theaverage rewards φ1(R1, R2) and φ2(R1, R2) are defined by

v1,α
i (R1, R2) :=

∞
∑

t=1

αt−1
∑

j,a,b

Pi,R1,R2{Xt = j, Yt = a, Zt = b} · r1j (a, b), i ∈ S; (10.113)

10.5. TWO-PERSON GENERAL-SUM STOCHASTIC GAME 671

v2,α
i (R1, R2) :=

∞
∑

t=1

αt−1
∑

j,a,b

Pi,R1,R2{Xt = j, Yt = a, Zt = b} · r2j (a, b), i ∈ S; (10.114)

φ1
i (R1, R2) := lim inf

T→∞
1

T

T
∑

t=1

∑

j,a,b

Pi,R1,R2{Xt = j, Yt = a, Zt = b} · r1j (a, b), i ∈ S; (10.115)

φ2
i (R1, R2) := lim inf

T→∞
1

T

T
∑

t=1

∑

j,a,b

Pi,R1,R2{Xt = j, Yt = a, Zt = b} · r2j (a, b), i ∈ S. (10.116)

A pair (R∗
1, R

∗
2) is a pair of equilibrium policies for discounted rewards if

v1,α
i (R∗

1, R
∗
2) ≥ v1,α

i (R1, R
∗
2) for all R1 and all i ∈ S (10.117)

v2,α
i (R∗

1, R
∗
2) ≥ v2,α

i (R∗
1, R2) for all R2 and all i ∈ S (10.118)

A pair (R∗
1, R

∗
2) is a pair of equilibrium policies for undiscounted rewards if

φ1,α
i (R∗

1, R
∗
2) ≥ φ1,α

i (R1, R
∗
2) for all R1 and all i ∈ S (10.119)

φ2,α
i (R∗

1, R
∗
2) ≥ φ2,α

i (R∗
1, R2) for all R2 and all i ∈ S (10.120)

10.5.2 Discounted rewards

Before showing the existence of an equilibrium in nonzero-sum discounted stochastic games, we

shall give two lemmata. In the sequel v1,α will denote the value of the zero-sum stochastic game

based on the payoffs of player 1. Furthermore, v2,α will denote the value of the zero-sum stochastic

game based on the payoffs of player 2, where player 2 is the maximizing player and player 1 the

minimizing player.

Lemma 10.33

Let (R∗
1, R

∗
2) be a pair of equilibrium policies of a discounted general-sum stochastic game. Then,

v1,α(R∗
1, R

∗
2) ≥ v1,α and v2,α(R∗

1, R
∗
2) ≥ v2,α.

Proof

v1,α(R∗
1, R

∗
2) ≥ v1,α(R1, R

∗
2) for all policies R1. Therefore, maxR1 v

1,α(R1, R
∗
2) = v1,α(R∗

1, R
∗
2),

implying v1,α = minR2 maxR1 v
1,α(R1, R2) ≤ maxR1 v

1,α(R1, R
∗
2) = v1,α(R∗

1, R
∗
2). Similarly, it

can be shown that v2,α(R∗
1, R

∗
2) ≥ v2,α.

Lemma 10.34

For a discounted zero-sum stochastic game, the following statements are equivalent:

(1) (R∗
1, R

∗
2) is a pair of equilibrium policies.

(2) R∗
1 is optimal for player 1, R∗

2 is optimal for player 2, and v1,α(R∗
1, R

∗
2) = v1,α.

Proof

672 CHAPTER 10. STOCHASTIC GAMES

Assume that (R∗
1, R

∗
2) is a pair of equilibrium policies. Then, for all policies R1 and R2 we

have v1,α(R∗
1, R2) = −v2,α(R∗

1, R
∗
2) ≥ −v2,α(R∗

1, R
∗
2) = v1,α(R∗

1, R
∗
2) ≥ v1,α(R1, R

∗
2). Hence, by

Theorem 10.4, R∗
1 is optimal for player 1, R∗

2 is optimal for player 2, and v1,α(R∗
1, R

∗
2) = v1,α.

Conversely, assume that R∗
1 and R∗

2 are optimal for player 1 and player 2, and v1,α(R∗
1, R

∗
2) = v1,α.

Then, for all policies R1 and R2 for player 1 and 2, respectively, we have

v1,α(R∗
1, R2) ≥ infR2 supR1

v1,α(R1, R2) ≥ supR1
infR2 v

1,α(R1, R2) ≥ v1,α(R1, R
∗
2).

Therefore, v1,α(R∗
1, R

∗
2) ≥ v1,α(R1, R

∗
2) for all policies R1, and also v1,α(R∗

1, R
∗
2) ≤ v1,α(R∗

1, R2) for

all policies R2. Because v1,α(R1, R2) = −v2,α(R1, R2), also we have v2,α(R∗
1, R

∗
2) ≥ v2,α(R∗

1, R2)

for all policies R2. Hence, (R∗
1, R

∗
2) is a pair of equilibrium policies.

Theorem 10.49

Every discounted general-sum stochastic game possesses at least one pair of equilibrium policies

in stationary policies.

Proof

The proof, based on fixed point arguments, is divided into two parts. In part 1 a multi-valued

mapping T is defined and is shown to possess at least one fixed point. In part 2 it is shown that

every fixed point of T coincides with an equilibrium point in stationary policies.

Part 1

Let Π and Σ denote the set of stationary decision rules for for player 1 and 2, respectively.

Obviously, Π and Σ are convex and compact. Define the multi-valued mapping T : Π×Σ→ Π×Σ

as follows:

T (π, σ) :=

(π̂, σ̂) ∈ Π×Σ

∣

∣

∣

∣

∣

∣

v1,α(π̂∞, σ∞) ≥ v1,α(π∞, σ∞) for all π ∈ Π

v2,α(π∞, σ̂∞) ≥ v2,α(π∞, σ∞) for all σ ∈ Σ

.

Given a fixed σ ∈ Σ for player 2, the process becomes an MDP, denoted by MDP(σ), for player

1. For MDPs it is well known that the set of optimal stationary policies is the convex hull of the

finite set of deterministic stationary policies. So, Π×Σ is compact and convex. For the existence

of a fixed point, we apply Kakutani’s Theorem (see [145]).3 Therefore, it is sufficient to show that

if (πn, σn) → (π, σ) and if (π̂n, σ̂n)→ (π̂, σ̂) are such that (π̂n, σ̂n) ∈ T (πn, σn) for all n, then it

holds that (π̂, σ̂) ∈ T (π, σ). Let (πn, σn)→ (π, σ), (π̂n, σ̂n)→ (π̂, σ̂) and (π̂n, σ̂n) ∈ T (πn, σn) for

all n. Then, v1,α(π̂∞n , σ
∞
n) ≥ v1,α(π∞, σ∞n) for all π ∈ Π and all n. Hence,

{I − αP (π̂n, σn)}−1r1(π̂n, σn) ≥ {I − αP (π̂, σn)}−1r1(π̂, σn) for all π ∈ Π and all n.

By the continuity of the matrices {I − αP (π, σ)}−1,4 we obtain

3Theorem (Kakutani, 1941):

Let X be a nonempty compact convex subset of R
n and let F : X → X be a multi-valued mapping for which: (i)

for all x ∈ X the set F (x) is nonempty and convex; (ii) the graph of F is closed i.e. for all sequences {xn} and

{yn} such that yn ∈ F (xn) for all n, xn → x, and yn → y, we have y ∈ F (x). Then, F has a fixed point.
4Each column of the inverse of a nonsingular matrix A can be computed by solving a system of linear equations

with Cramers rule; Ax = ej gives the jth column of the inverse, where ej is the jth unit vector. Cramers rule says

that the elements of the jth column of the inverse are a quotient of polynomials with non-zero denominator det(A)

and as numerator the determinant of the matrix A, but in column j the vector ej . Hence, the inverse matrix is

continuous in the original data.

10.5. TWO-PERSON GENERAL-SUM STOCHASTIC GAME 673

v1,α(π̂∞, σ∞) = {I − αP (π̂, σ)}−1r1(π̂, σ) ≥ {I − αP (π̂, σ)}−1r1(π̂, σ) = v1,α(π∞, σ∞)

for all π ∈ Π. Similarly, it can be shown that v2,α(π∞, σ̂∞) ≥ v2,α(π∞, σ∞) for all σ ∈ Σ.

Part 2

We shall show that every fixed point of T coincides with an equilibrium point in stationary

policies. Let (π∗, σ∗) be a fixed point of T . Then, v1,α(π∞∗ , σ
∞
∗) ≥ v1,α(π∞, σ∞∗) for all π ∈ Π and

v2,α(π∞∗ , σ
∞
∗) ≥ v2,α(π∞∗ , σ

∞) for all σ ∈ Σ. Trivially, the reverse statement also holds.

Theorem 10.50

The following assertions are equivalent:

(1) (π∞, ρ∞) is a pair of stationary equilibrium policies;

(2) For each i ∈ S, the pair
(

π(i), ρ(i)
)

, with components πia, a ∈ A(i) and ρib, b ∈ B(i), is

an equilibrium point in the static bimatrix game
(

M1[i],M2[i]
)

, where for k = 1, 2 and

a ∈ A(i), b ∈ B(i), mk
ab[i] := rk

i (a, b) + α
∑N

j=1 pij(a, b)v
k,α
j (π∞, ρ∞), where mk

ab[i] is the

(a, b)th entry of the matrix Mk[i].

Proof

If (1) is true, i.e. v1,α(π∞, ρ∞) ≥ v1,α(R1, ρ
∞) for all policies R1 for player 1. Therefore, π∞ is

optimal for MDP(ρ). Let Car
(

π(i)
)

:= {a ∈ A(i) | πia > 0}. We know from the theory of MDPs

that for all a ∈ Car
(

π(i)
)

, we have

v1,α
i (π∞, ρ∞) = r1i (a, ρ) + α

∑N
j=1 pij(a, ρ)v

1,α
j (π∞, ρ∞)

≥ r1i (a, ρ) + α
∑N

j=1 pij(a, ρ)v
1,α
j (π∞, ρ∞) for all a ∈ A(i)

So, π(i) is the best answer to ρ in the matrix game M1[i]. Similarly, ρ(i) is the best answer to

π in the matrix game M2[i]. Hence, the pair
(

π(i), ρ(i)
)

is an equilibrium point in the static

bimatrix game
(

M1[i],M2[i]
)

.

Conversely, assume that (2) is true. Then, by the definition of equilibrium point, we obtain

v1,α
i (π∞, ρ∞) ≥ r1i (π, ρ) + α

∑N
j=1 pij(π, ρ)v

1,α
j (π∞, ρ∞), i ∈ S.

Hence, v1,α(π∞, ρ∞) ≥ v1,α(π∞, ρ∞) for all stationary policies π∞ for player 1. From the theory

of MDPs we know that then also v1,α(π∞, ρ∞) ≥ v1,α(R1, ρ
∞) for all policies R1 for player 1.

By similar arguments it follows that v2,α(π∞, ρ∞) ≥ v2,α(π∞, R2) for all policies R2 for player 2.

Therefore, (π∞, ρ∞) is a pair of stationary equilibrium policies.

The next corollary follows straightforwardly from the proof of Theorem 10.50.

Corollary 10.7

The pair (π∞, ρ∞) is a pair of stationary equilibrium policies if and only if for every pair (f
∞
, g∞)

of deterministic equilibrium policies with f(i) ∈ Car
(

π(i)
)

and g(i) ∈ Car
(

ρ(i)
)

for each i ∈ S
it holds that:

(1) v1,α(f
∞
, ρ∞) ≥ v1,α(R1, ρ

∞) for all policies R1 for player 1;

(2) v2,α(π∞, g∞) ≥ v2,α(π∞, R2) for all policies R2 for player 2.

674 CHAPTER 10. STOCHASTIC GAMES

10.5.3 Single-controller stochastic games

As we have seen in Section 10.1.4, there is an interesting connection between quadratic program-

ming and bimatrix games. In particular, quadratic program (10.12) has a global maximum of

zero and the optimal solution gives equilibrium points of the bimatrix game in question. In this

section we generalize the above result to the class of two-person, general-sum, single-controller

stochastic games. The results apply to models with both discounted and average reward criteria.

In the single-controller stochastic game is player 1 the single-controller. This means that the

transition probabilities pij(a, b) are independent of b. Therefore, we denote these probabilities

as pij(a). Then, a stationary policy π∞ for player 1 defines a Markov chain P (π) with elements

pij(π) :=
∑

a pij(a)πia, i.j ∈ S. Furthermore, when player 2 has stationary policy σ∞, the

discounted and average rewards for player k are vk,a(π∞, σ∞) = {I − αP (π)}−1rk(π, σ) and

φk(π∞, σ∞) = P ∗(π)rk(π, σ), respectively, for k = 1, 2.

Discounted rewards

It is well known that an equilibrium point in stationary policies is also an equilibrium point in

the space of all policies. With the original game Γ with payoffs v1,a(π∞, σ∞) and v2,a(π∞, σ∞),

we can associate the game Γ with payoffs v1,a(π∞, σ∞) and v2,a(π∞, σ∞), defined as follows:

v1,a(π∞, σ∞) := v1,a(π∞, σ∞) and v2,a(π∞, σ∞) := r2(π, σ).

Lemma 10.35

The games Γ and Γ have the same set of equilibrium points.

Proof

Let (π∞, σ∞) be an equilibrium point of Γ, i.e. v1,α(π∞, σ∞) ≥ v1,α(π∞, σ∞) for all π ∈ Π and

r2(π, σ) ≥ r2(π, σ) for all σ ∈ Σ. Hence, for all σ ∈ Σ, we can write

v2,α(π∞, σ∞) = {I − αP (π)}−1r2(π, σ) ≥ {I − αP (π)}−1r2(π, σ) = v2,α(π∞, σ∞).

Therefore, (π∞, σ∞) be an equilibrium point of Γ.

Conversely, let (π∞, σ∞) be an equilibrium point of Γ, i.e. v1,α(π∞, σ∞) ≥ v1,α(π∞, σ∞) for all

π ∈ Π and v2,α(π∞, σ∞) ≥ v2,α(π∞, σ∞) for all σ ∈ Σ. Since σ∞ is an optimal policy for MDP(π)

with rewards r2i (π, b) for all (i, b) ∈ S × B, it follows from the method of policy iteration that

v2,α(π∞, σ∞) = maxσ {r2i (π, σ) + α
∑

j pij(π)v
2,α
j (π∞, σ∞)}. Hence, we obtain for all σ ∈ Σ

r2(π, σ) + αP (π)v2,α(π∞, σ∞)v2,α(π∞, σ).

Therefore, r2(π, σ) ≥ r2(π, σ) for all σ ∈ Σ, and consequently, (π∞, σ∞) be an equilibrium point

of Γ.

Lemma 10.36

Let E(π) := {σ ∈ Σ | (π∞, σ∞) is an equilibrium point of Γ}. Then, E(π) is convex.

10.5. TWO-PERSON GENERAL-SUM STOCHASTIC GAME 675

Proof

Suppose that σ1, σ2 ∈ E(π), and let 0 ≤ λ ≤ 1. Then, for σ := λσ1 + (1− λ)σ2, we have σ ∈ Σ

and for k = 1, 2, we obtain

vk,α(π∞, σ∞) = {I − αP (π}−1rk(π, σ)

= λ{I − αP (π}−1rk(π, σ1) + (1− λ){I − αP (π}−1rk(π, σ2)

= λvk,α(π∞, σ∞1) + (1− λ)vk,α(π∞, σ∞2).

Since v1,α(π∞, σ∞) and v2,α(π∞, σ∞) are linear in σ, the lemma follows.

Theorem 10.51

Let (π, σ) be an equilibrium point, and let v1 := v1,α(π∞, σ∞). Furthermore, let σ an extreme

point of E(π). Then, (v1, σ)is an extreme solution of the following linear system:

(1)
∑

j {δij − αpij(a)}vj ≥
∑

b r
1
i (a, b)σib, (i, a) ∈ S ×A.

(2)
∑

b r
2
i (π, b) ≥ r2i (π, b), (i, b) ∈ S ×B.

(3)
∑

b σib = 1, i ∈ S.
(4) σib ≥ 0, (i, b) ∈ S ×B.

Proof

We first show that (v1, σ) is a feasible solution of the linear system. Since v1 is the value of

MDP(σ) with rewards r1i (a, σ), (i, a) ∈ S × A, it follows from the linear programming method

for MDPs that (1) is satisfied. Obviously, σ satisfies (3) and (4). Therefore, we have to prove the

inequalities of (2), i.e. r2i (π, σ) ≥ r2i (π, b) for all (i, b) ∈ S ×B. Since (π∞, σ∞) is an equilibrium

point of Γ, we have r2(π, σ) ≥ r2(π, σ) for all σ ∈ Σ. Take any (i∗, b∗) ∈ S × B and let σ such

that σib = 1 for (i, b) = (i∗, b∗) and σib = 0 for (i, b) 6= (i∗, b∗). Then, r2i∗(π, σ) ≥ r2i∗(π, b∗); so,

also (2) is satisfied.

Suppose that (v1, σ) is not an extreme solution. Then, (v1, σ) = 1
2 (w1, σ1) + 1

2 (w2, σ2), where

(w1, σ1) and (w2, σ2) are also feasible solutions of the linear system. From (1) it follows that

{I − αP (π)}wk ≥ r1(π, σk) for all π ∈ Π and for k = 1, 2. Hence,

wk ≥ {I − αP (π)}−1r1(π, σk) = v1,α(π∞, σ∞k) for all π ∈ Π and for k = 1, 2.

Now, we can write

v1 = 1
2(w1 +w2)

≥ 1
2 ·maxπ v

1,α(π∞, σ∞1) + 1
2 ·maxπ v

1,α(π∞, σ∞2)

≥ 1
2 ·maxπ {v1,α(π∞, σ∞1) + v1,α(π∞, σ∞2)}

= 1
2 ·maxπ

{

{I − αP (π)}−1r1(π, σ1) + {I − αP (π)}−1r1(π, σ2)
}

= maxπ {I − αP (π)}−1r1(π, σ) = maxπ v
1,α(π∞, σ∞) = v1.

Hence, v1 = w1 = w2 = maxπ v
1,α(π∞, σ∞1) = maxπ v

1,α(π∞, σ∞2). From the linear constraints

(3) of the linear system it follows that r2(π, σ1) = maxσ r
2(π, σ). Therefore, (π, σ1) is an equi-

librium point, i.e. σ1 ∈ E(π). Similarly can be shown that σ2 ∈ E(π). Since σ1, σ2 ∈ E(π) and

σ = 1
2σ1 + 1

2σ2, σ is not an extreme point of E(π), which gives a contradiction.

676 CHAPTER 10. STOCHASTIC GAMES

Any extreme solution of a system of linear (in)equalities is the solution of a nonsingular square

system of equated constraints (for a proof of this property see Theorem 9 in [108]). Therefore,

any extreme solution lies in the same ordered field as that of the entries. Thus, by Theorem

10.51, we have the following result.

Theorem 10.52

For any general-sum, single-controller stochastic game with discounted rewards, there exists a pair

of equilibrium stationary policies with entries lying in the same ordered field as that of the entries

of the stochastic game.

This result indicates that finite algorithms for computing an equilibrium point may exist. For

zero-sum games, we have seen in previous sections of this chapter that the single-controller and

switching-controller cases possess the ordered field property and that finite algorithms exist for

the computation of optimal policies.

It is clear that with σ ∈ Σ held fixed, the problem of finding v1,α(σ∞) = maxR1 v
1,α(R1, σ

∞)

is exactly the discounted reward MDP which can be solved with the help of the following pair of

primal and dual linear programs:

min

∑

j

βjvj

∣

∣

∣

∣

∣

∣

∑

j

{δij − αpij(a)}vj ≥ r1(a, σ), (i, a) ∈ S ×A

, (10.121)

where βj > 0, j ∈ S, is arbitrarily chosen, and

max

∑

(i,a)

r1i (a, σ)xi(a)

∣

∣

∣

∣

∣

∑

(i,a) {δij − αpij(a)}xi(a) = βj, j ∈ S
xi(a) ≥ 0, (i, a) ∈ S × A

. (10.122)

In section 3.5 we have showed that if v and x are optimal solutions of the problems (10.121) and

(10.122), respectively, then v = v1,α(π∞, σ∞), where π ∈ Π being appropriately constructed by

πia :=
xi(a)

∑

a xi(a)
, (i, a) ∈ S × A. (10.123)

We now introduce the quadratic program:

max
{
∑

(i,a,b) {r1i (a, b) + r2i (a, b)} · σib · xi(a)−
∑

i βivi +
∑

i zi
}

subject to

(1)
∑

j {δij − αpij(a)} · vj ≥
∑

b r
1(a, b) · σib, (i, a) ∈ S ×A.

(2)
∑

(i,a) {δij − αpij(a)} · xi(a) = βj, j ∈ S.

(3)
∑

a r
2
i (a, b)xi(a) + zi ≤ 0, (i, b) ∈ S ×B.

(4)
∑

b σib = 1, i ∈ S.

(5) xi(a) ≥ 0, (i, a) ∈ S × A.

(6) σib ≥ 0, (i, b) ∈ S × B.

10.5. TWO-PERSON GENERAL-SUM STOCHASTIC GAME 677

This quadratic program may be considered as a generalization of the dual pair of linear programs

(10.31) and (10.32 in which the objective function and the right-hand-side of the jth equality

constraint are replaced by
∑

i βivi, (instead of
∑

i vi) and βj instead of 1; furthermore, we use σ

instead of ρ and r1 instead of r.

We know from the theory of linear programs that if these programs have feasible solutions

(v, σ) and (x, z) satisfying
∑

i βivi =
∑

i zi, then these solutions are both optimal. Note that the

feasibility of (10.31) is equivalent to the conditions (1), (4) and (6); the feasibility of (10.32)

corresponds to (2), (3) with r2i (a, b) = −r1i (a, b) for all (i, a, b), and (5); furthermore, with

r2i (a, b) = −r1i (a, b) for all (i, a, b), the condition
∑

i βivi =
∑

i zi is the same as value 0 for

the objective function of the quadratic program.

Let (π∞, σ∞) be an equilibrium point of Γ. Then, v1,α(π∞, σ∞) ≥ v1,α(π∞, σ∞) for all π ∈ Π,

i.e. π∞ an optimal policy in MDP(σ). Furthermore, we know from Section 3.5 that x, defined

by xi(a) :=
{

βT{I − αP (π}−1
}

i
· πia for all (i, a) ∈ S × A, is an optimal solution of (10.122).

Define z by zi := −∑(a,b) r
2
i (a, b) · σib · xi(a) = −∑a r

2
i (a, σ) · xi(a), i ∈ S. Let v be an optimal

solution of (10.121).

Theorem 10.53

(1) Let (σ, v, x, z) be defined as described above. Then, (σ, v, x, z) is an optimal solution of

the quadratic program with value 0.

(2) Let (σ∗, v∗, x∗, z∗) be an optimal solution of the quadratic program. Then,
(

(π∗)∞, (σ∗)∞
)

,

where π∗ is defined by π∗ia :=
x∗

i (a)
P

a x∗
i (a) , (i, a) ∈ S ×A, is an equilibrium point of Γ.

Proof

(1) We first show that (σ, v, x, z) is a feasible solution of the quadratic program. Therefore, we

have to show (the other constraints are trivially satisfied) that
∑

a r
2
i (a, b) · xi(a)+ zi ≤ 0 for

all (i, b) ∈ S × B, i.e.
∑

a r
2
i (a, σ) · xi(a) ≥

∑

a r
2
i (a, b) · xi(a) for all (i, b) ∈ S ×B.

Let xi :=
∑

a xi(a), i ∈ S. Then, xi(a) = xi · πia, (i, a) ∈ S ×A and xi > 0, i ∈ S.

Select any pair (i, b) ∈ S ×B. We have to show
∑

a r
2
i (a, σ) · xi · πia ≥

∑

a r
2
i (a, b) · xi · πia,

i.e. r2i (π, σ) ·xi ≥ r2i (π, b) ·xi. Since xi > 0, we have to show r2i (π, σ) ≥ r2i (π, b), which follows

directly from the property that (π∞, σ∞) is an equilibrium point of Γ.

We have
∑

j βjvj =
∑

(i,a) r
1
i (a, σ) · xi(a) =

∑

(i,a,b) r
1
i (a, b) · σib · xi(a), because the optima

of (10.121) and (10.122) are equal. Furthermore,
∑

i zi =
∑

(i,a,b) r
2
i (a, b) · σib · xi(a). Hence,

the value of the objective function for the feasible solution (σ, v, x, z) equals 0.

Let (σ, v, x, z) be any feasible solution of the quadratic program. Since (σ, v) and x are

feasible for (10.121) and (10.122) respectively, we have
∑

j βj vj ≥
∑

(i,a) r
1
i (a, σ) · xi(a) =

∑

(i,a,b) r
1
i (a, b) · σib · xi(a).

By the summation of (3) over all (i, b) ∈ S × B, we obtain
∑

(i,a,b) r
2
i (a, b) · σib · xi(a) +

∑

i zi =
∑

(i,a) r
2
i (a, σ) · xi(a) +

∑

i zi ≤ 0.

Hence,
∑

(i,a,b) {r1i (a, b) + r2i (a, b)} · σib · xi(a)−
∑

j βj vj +
∑

i zi ≤ 0.

Therefore, (σ, v, x, z) is an optimal solution of the quadratic program with value 0.

678 CHAPTER 10. STOCHASTIC GAMES

(2) Let (σ∗, v∗, x∗, z∗) be an optimal solution of the quadratic program. Then,

0 =
∑

(i,a,b) {r1i (a, b) + r2i (a, b)} · σ∗ib · x∗i (a)−
∑

j βj v
∗
j +

∑

i z
∗
i

= {∑(i,a) r
1
i (a, σ

∗) · x∗i (a)−
∑

j βj v
∗
j}+

∑

i {z∗i +
∑

a r
2
i (a, σ

∗) · x∗i (a)}.
Since v∗ and x∗ are feasible solutions of the modifications of (10.121) and (10.122), where σ

is replaced by σ∗, we have {∑(i,a) r
1
i (a, σ

∗) · x∗i (a)−
∑

j βj v
∗
j } ≤ 0. Furthermore, from (3)

it follows that also z∗i +
∑

a r
2
i (a, σ

∗) · x∗i (a) ≤ 0 for all i ∈ S. Hence,

∑

(i,a)

r1i (a, σ
∗) · x∗i (a) =

∑

j

βj v
∗
j and z∗i = −

∑

a

r2i (a, σ
∗) · x∗i (a) for all i ∈ S. (10.124)

Because
∑

(i,a) r
1
i (a, σ

∗) · x∗i (a) =
∑

j βj v
∗
j , the feasible solutions v∗ and x∗ are optimal for

the modifications of (10.121) and (10.122) with σ∗ instead of σ. Hence, (π∗)∞, defined by

π∗ia :=
x∗

i (a)
P

a x∗
i (a) for all (i, a) ∈ S × A is an optimal policy for MDP(σ∗) and consequently,

v1,α
(

(π∗)∞, (σ∗)∞
)

≥ v1,α
(

π∞, (σ∗)∞
)

for all π ∈ Π.

From (3), (10.124) and the definition of π∗ it follows that
∑

a r
2
i (a, b)·π∗ia·x∗i−

∑

a r
2
i (a, σ

∗)·π∗ia·x∗i ≤ 0 for all (i, b) ∈ S×B, where x∗i :=
∑

a x
∗
i (a), i ∈ S.

Because x∗i > 0 for all i ∈ S, we obtain r2i (π
∗, b)− r2i (π∗, σ∗) ≤ 0 for all (i, b) ∈ S×B. Hence,

v2,α
(

(π∗)∞, (σ∗)∞
)

= r2i (π
∗, σ∗) ≥ r2i (π∗, σ) = v2,α

(

(π∗)∞, σ∞
)

for all σ ∈ Σ.

Therefore, we have shown that
(

(π∗)∞, (σ∗)∞
)

is an equilibrium point of Γ.

Average rewards

Most of the results for discounted rewards can be transformed to average rewards. Let Γ be the

original game with payoffs φ1(π∞, σ∞) and φ2(π∞, σ∞) for player 1 and player 2, respectively.

Define the associated game Γ with payoffs φ
1
(π∞, σ∞) and φ

2
(π∞, σ∞) for player 1 and player

2, respectively, by φ
1
(π∞, σ∞) := φ1(π∞, σ∞) and φ

2
(π∞, σ∞) := r2(π, σ).

Lemma 10.37

If (π∞, σ∞) is an equilibrium point of Γ, then (π∞, σ∞) is also an equilibrium point of Γ.

Proof

Let (π∞, σ∞) is an equilibrium point of Γ, i.e. φ1(π∞, σ∞) ≥ φ1(π∞, σ∞) for all π ∈ Π and

r2(π∞, σ∞) ≥ r2(π, σ) for all σ ∈ Σ. Hence, for all σ ∈ Σ, we can write

φ2(π∞, σ∞) = P ∗(π)r1(π, σ) ≥ P ∗(π)r2(π, σ) = φ2(π∞, σ∞).

Therefore, (π∞, σ∞) is also an equilibrium point of Γ.

Theorem 10.54

Let π∞ and σ∞ be stationary policies for player 1 and 2, respectively. Then, for k = 1 and 2,

φk(π∞, σ∞) = limα↑1 (1− α)vk,α(π∞, σ∞).

10.5. TWO-PERSON GENERAL-SUM STOCHASTIC GAME 679

Proof

φk(π∞, σ∞) = P ∗(π)rk(π, σ). Since P ∗(π) is the Cesaro limit of P t(π), it is also the Abel limit,

which implies P ∗(π)rk(π, σ) = limα↑1 (1−α)
∑∞

t=0 {αP (π)}trk(π, σ) = limα↑1 (1−α)vk,α(π∞, σ∞)

for k = 1 and k = 2.

Let
(

π∞(α), σ∞(α)
)

be an equilibrium point for discount factor α and define the vector v1(α)

by v1(α) := v1,α
(

π∞(α), σ∞(α)
)

. Using Theorem 10.51, Theorem 9 in [108] and the property

that σ(α) and v1(α) are rational functions in α, the following result can be shown (for details see

[212]).

Theorem 10.55

For any general-sum, single-controller stochastic game with average rewards, there exists a pair

of equilibrium stationary policies with entries lying in the same ordered field as that of the entries

of the stochastic game.

It is well known that an equilibrium point in stationary policies is also an equilibrium point in

the space of all policies. Therefore, we may restrict the set of policies to the set of stationary

policies.

It is clear that with σ ∈ Σ held fixed, the problem of finding φ1(σ) := maxR1 φ
1(R1, σ

∞) is

exactly the average reward MDP which can be solved with the help of the following pair of primal

and dual linear programs:

min

∑

j

βjvj

∣

∣

∣

∣

∣

∣

∑

j{δij − pij(a)}vj ≥ 0, (i, a) ∈ S ×A
vi +

∑

j{δij − pij(a)}tj ≥ r1i (a, σ) (i, a) ∈ S ×A

, (10.125)

where βj > 0, j ∈ S, is arbitrarily chosen and

max

∑

(i,a)

r1i (a, σ)xi(a)

∣

∣

∣

∣

∣

∣

∣

∣

∑

(i,a) {δij − pij(a)}xi(a) = 0, j ∈ S
∑

a xj(a) +
∑

(i,a) {δij − pij(a)}yi(a) = βj, j ∈ S
xi(a), yi(a) ≥ 0, (i, a) ∈ S × A

(10.126)

In section 5.8 we have showed the following. If (v, t) and (x, y) are optimal solutions of the

problems (10.125) and (10.126) respectively, then v = φ1(σ) = φ1(π∞, σ∞), where π being

appropriately constructed from (x, y) by

πia :=

xi(a)
P

a xi(a) , a ∈ A(i), i ∈ Sx;

yi(a)
P

a yi(a) , a ∈ A(i), i /∈ Sx,
(10.127)

where Sx := {i | ∑a xi(a) > 0}. We now introduce the quadratic program

max
{
∑

(i,a,b) {r1i (a, b) + r2i (a, b)} · σib · xi(a)−
∑

i βivi +
∑

i zi
}

subject to

680 CHAPTER 10. STOCHASTIC GAMES

(1)
∑

j {δij − pij(a)} · vj ≥ 0, (i, a) ∈ S ×A.
(2) vi +

∑

j {δij − pij(a)} · tj ≥
∑

b r
1(a, b) · σib, (i, a) ∈ S ×A.

(3)
∑

(i,a) {δij − pij(a)} · xi(a) = 0, j ∈ S.

(4)
∑

a xj(a) +
∑

(i,a) {δij − pij(a)} · yi(a) = βj, j ∈ S.

(5)
∑

a r
2
i (a, b) · xi(a) + zi ≤ 0, (i, b) ∈ S ×B.

(6)
∑

b σib = 1, i ∈ S.

(7) xi(a), yi(a) ≥ 0, (i, a) ∈ S × A.

(8) σib ≥ 0, (i, b) ∈ S × B.

This quadratic program may be considered as a generalization of the dual pair of linear programs

(10.73) and (10.74 in which the objective function and the right-hand-side of the jth equality

in the second set of constraints are replaced by
∑

i βivi, (instead of
∑

i vi) and βj instead of 1;

furthermore, we use σ instead of ρ and r1 instead of r.

We know from the theory of linear programs that if these programs have feasible solutions

(v, t, σ) and (x, y, z) satisfying
∑

i βivi =
∑

i zi, then these solutions are both optimal. Note

that the feasibility of (10.73) is equivalent to the conditions (1),(2), (6) and (8); the feasibility

of (10.74) corresponds to (3), (4) with r2i (a, b) = −r1i (a, b) for all (i, a, b), and (7); furthermore,

with r2i (a, b) = −r1i (a, b) for all (i, a, b), the condition
∑

i βivi =
∑

i zi is the same as value 0 for

the objective function of the quadratic program.

Let (π∞, σ∞) be an equilibrium point of Γ. Then, φ1(π∞, σ∞) ≥ φ1(π∞, σ∞) for all π ∈ Π, i.e.

π∞ an optimal policy in MDP(σ). Furthermore, we know from Section 5.8 that (x, y) is an optimal

solution of (10.126), where (x, y) is defined by xi(a) := {βTP ∗(π)}i ·πia for all (i, a) ∈ S×A and

yi(a) := {βTD(π) + γTP ∗(π)}i · πia for all (i, a) ∈ S × A and the vector γ is defined by

γi :=

0 i ∈ T
maxl∈Sj

{

−
P

k∈S βkdkl(π)
P

k∈Sj
p∗

kl
(π)

}

i ∈ Sj, 1 ≤ j ≤ m
with T the set of transient states and

Sj, 1 ≤ j ≤ m, the sets of recurrent classes in the Markov chain P (π). Let (v, t) be an optimal

solution of (10.125) and define z by zi := −∑(a,b) r
2
i (a, b)·σib ·xi(a) = −∑a r

2
i (a, σ)·xi(a), i ∈ S.

Theorem 10.56

(1) Let (σ, v, t, x, y, z) be defined as described above. Then, (σ, v, t, x, y, z) is an optimal

solution of the quadratic program with value 0.

(2) Let (σ∗, v∗, t∗, x∗, y∗, z∗) be an optimal solution of the quadratic program. Then,

(

(π∗)∞, (σ∗)∞
)

, where π∗ is defined by π∗ia :=

x∗
i (a)

P

a x∗
i (a) , a ∈ A(i), i ∈ Sx∗

y∗i (a)
P

a y∗i (a)
, a ∈ A(i), i /∈ Sx∗

with Sx∗ := {i | ∑a x
∗
i (a) > 0}, is an equilibrium point of Γ.

Proof

(1) We first show that (σ, v, t, x, y, z) is a feasible solution of the quadratic program. Therefore,

we have to show (the other constraints are trivially satisfied) that
∑

a r
2
i (a, b) ·xi(a)+ zi ≤ 0,

10.5. TWO-PERSON GENERAL-SUM STOCHASTIC GAME 681

for all (i, b) ∈ S ×B, i.e.
∑

a r
2
i (a, σ) · xi(a) ≥

∑

a r
2
i (a, b) · xi(a) for all (i, b) ∈ S × B.

Select any pair (i, b) ∈ S ×B.

If i /∈ Sx: xi(a) = 0, a ∈ A(i) and
∑

a r
2
i (a, σ) · xi(a) =

∑

a r
2
i (a, b) · xi(a) = 0.

If i ∈ Sx, then xi(a) = xi · πia for all a ∈ A(i), where xi :=
∑

a xi(a) > 0. We have to show
∑

a r
2
i (a, σ) ·xi ·πia ≥

∑

a r
2
i (a, b) ·xi ·πia, i.e. r2i (π, σ) ≥ r2i (π, b), which follows directly from

the property that (π∞, σ∞) is an equilibrium point of Γ.

We have
∑

j βjvj =
∑

(i,a) r
1
i (a, σ) · xi(a) =

∑

(i,a,b) r
1
i (a, b) · σib · xi(a), because the optima

of (10.125) and (10.126) are equal. Furthermore,
∑

i zi =
∑

(i,a,b) r
2
i (a, b) · σib · xi(a). Hence,

the value of the objective function for the feasible solution (σ, v, t, x, y, z) equals 0.

Let (σ, v, t, x, y, z) be any feasible solution of the quadratic program. Since (σ, v, t) and (x, y)

are feasible for (10.125) and (10.126) respectively, we have
∑

j βj vj ≥
∑

(i,a) r
1
i (a, σ) · xi(a) =

∑

(i,a,b) r
1
i (a, b) · σib · xi(a).

By the summation of (5) over all (i, b) ∈ S × B, we obtain
∑

(i,a,b) r
2
i (a, b) · σib · xi(a) +

∑

i zi =
∑

(i,a) r
2
i (a, σ) · xi(a) +

∑

i zi ≤ 0.

Hence,
∑

(i,a,b) {r1i (a, b) + r2i (a, b)} · σib · xi(a)−
∑

j βj vj +
∑

i zi ≤ 0.

Therefore, (σ, v, t, x, y, z) is an optimal solution of the quadratic program with value 0.

(2) Let (σ∗, v∗, t∗, x∗, y∗, z∗) be an optimal solution of the quadratic program. Then,

0 =
∑

(i,a,b) {r1i (a, b) + r2i (a, b)} · σ∗ib · x∗i (a)−
∑

j βj v
∗
j +

∑

i z
∗
i

= {∑(i,a) r
1
i (a, σ

∗) · x∗i (a)−
∑

j βj v
∗
j}+

∑

i {z∗i +
∑

a r
2
i (a, σ

∗) · x∗i (a)}.
Since (v∗, t∗) and (x∗, y∗) are feasible solutions of the modifications of (10.125) and (10.125),

where σ is replaced by σ∗, we have {∑(i,a) r
1
i (a, σ

∗) · x∗i (a)−
∑

j βj v
∗
j } ≤ 0.

Furthermore, from (5) it follows that also z∗i +
∑

a r
2
i (a, σ

∗) · x∗i (a)} ≤ 0 for all i ∈ S. Hence,

∑

(i,a)

r1i (a, σ
∗) · x∗i (a) =

∑

j

βj v
∗
j and z∗i = −

∑

a

r2i (a, σ
∗) · x∗i (a) for all i ∈ S. (10.128)

Because
∑

(i,a) r
1
i (a, σ

∗) · x∗i (a) =
∑

j βj v
∗
j , the feasible solutions (v∗, t∗) and (x∗, y∗) are

optimal for the modifications of (10.125) and (10.126) with σ∗ instead of σ. Hence, (π∗)∞

is an optimal policy for MDP(σ∗) and consequently,

φ1
(

(π∗)∞, (σ∗)∞
)

≥ φ1
(

π∞, (σ∗)∞
)

for all π ∈ Π.

From the proof of Theorem 5.20 it follows that Sx∗ is the set of recurrent states in the Markov

chain induced by the stationary policy (π∗)∞. Recall that π∗ia :=
x∗

i (a)
P

a x∗
i (a) , a ∈ A(i), i ∈ Sx∗ ,

implying π∗ia · x∗i = x∗i (a) for all (i, a) ∈ S ×A, where x∗i :=
∑

a x
∗
i (a), i ∈ S. From (5) it

follows that
∑

a r
2
i (a, b) · π∗ia · x∗i −

∑

a r
2
i (a, σ

∗) · π∗ia · x∗i ≤ 0 for all (i, b) ∈ S ×B. Hence,

r2i (π, σ) · x∗i ≤ r2i (π∗, σ) · x∗i for all i ∈ S and σ ∈ Σ. Since x∗i > 0, i ∈ Sx∗ , we have

r2i (π, σ)≤ r2i (π∗, σ) for all i ∈ Sx∗ and σ ∈ Σ. Since p∗ij = 0, i ∈ S, j /∈ Sx∗ , we can write for

all i ∈ S
φ1

i

(

(π∗)∞, σ∞
)

= {P ∗(π∗)r2(π∗, σ)}i =
∑

j∈Sx∗
p∗ijr

2
j (π

∗, σ)

≤ ∑

j∈Sx∗
p∗ijr

2
j (π

∗, σ∗) = φ1
i

(

(π∗)∞, (σ∗)∞
)

.

682 CHAPTER 10. STOCHASTIC GAMES

We have shown that for all π ∈ Π and all σ ∈ Σ, φ1
(

(π∗)∞, (σ∗)∞
)

≥ φ1
(

π∞, (σ∗)∞
)

and

φ2
(

(π∗)∞, (σ∗)∞
)

≥ φ2
(

π∞, (σ∗)∞
)

, i.e.
(

(π∗)∞, (σ∗)∞
)

is an equilibrium point of Γ.

Therefore, by Lemma 10.37,
(

(π∗)∞, (σ∗)∞
)

is an equilibrium point of Γ.

10.6 Bibliographic notes

The name stochastic game stems from the seminal paper by Shapley ([267]). Some authors use

the name Markov game, which expresses the relation with Markov decision processes. For books

and surveys on stochastic games we refer to [213], [315], [33], [231] and [99]. The book of Von

Neumann and Morgenstern ([313]) generally is seen as the starting point of game theory. A

standard book, including much material on matrix games, is Owen ([209]). The relation between

bimatrix games and quadratic programming is due to Mangasarian and Stone ([191]).

The fixed point result for discounted games, i.e. the value vector vα is the unique solution of

x = Tx is due to Shapley ([267]). The subsection on discounted games with perfect information

and Algorithm 10.1 was based on Raghavan and Syed ([232]). The matarial on Blackwell optimal-

ity with Algorithm 10.2 is due to Avrachenkov, Cottatellucci and Maggi ([8]). The mathematical

programming formulations of section 10.2.2 were presented by Rothblum ([245]), and Hordijk and

Kallenberg ([127]). The method of value iteration (Algorithm 10.3) for discounted games is also

due to Shapley ([267]).

The iterative algorithms 10.4, 10.5 and 10.6 were proposed by Hoffman and Karp ([119]),

Pollatschek and Avi-Itzhak ([218]), and Van der Wal ([294]), respectively. Example 10.3 that

shows that Algorithm 10.5 does not converge in general is also due to Van der Wal ([294]). For

a survey on (modified) value iteration methods we refer to Van der Wal and Wessels ([299]).

The notion that the ordered field property holds for discounted stochastic games in which

one player controls the transitions, which yields a finite algorithm for such games, is due to

Parthasarathy and Raghavan ([212]), a paper that also contains Example 10.4; see also Hordijk

and Kallenberg ([127]). The switching-controller stochastic game first was studied by Filar ([89]).

Algorithm 10.8 is due to Vrieze ([315]); see also Vrieze, Tijs, Raghavan and Filar ([316]). The

SER-SIT game was introduced by Sobel ([277]) and later studied by Parthasarathy, Tijs and

Vrieze ([214]). Raghavan, Tijs and Vrieze ([233]) have solved the ARAT stochastic game.

The material in the section on Markov games with the total reward criterion, including un-

constrained and constrained single-controller games, is due to Hordijk and Kallenberg ([127]).

The average reward stochastic games were introduced in 1957 by Gillette ([103]), who studied

two special classes: games with perfect information and irreducible games. Gillette’s proof that

the above classes possess stationary optimal policies were later completed by Liggett and Lippman

([179]). Gillette’s paper contains also the example of the Big Match, showing that undiscounted

games were inherently more complex than discounted games. The complete analysis of the Big

Match was made by Blackwell and Ferguson ([31]).

For the results that an undiscounted stochastic game possesses optimal stationary policies if

and only if a global minimum with objective value zero can be found to an appropriate nonlinear

10.6. BIBLIOGRAPHIC NOTES 683

program we refer to Filar and Schultz ([96]) and to Filar, Schultz, Thuijsman and Vrieze ([94]).

The proof that in a game with perfect information both players possess optimal deterministic

policies is due to Federgruen ([80]). The value iteration method, described in Algorithm 10.15,

can be found in the paper by Hoffman and Karp ([119]). Van der Wal ([295]) developed a value

iteration algorithm for the unichain case.

Stern, in his PhD thesis ([282]) proved that in the undiscounted single-controller stochastic

game both players possess optimal stationary policies. Hordijk and Kallenberg ([128]) and in-

dependently Vrieze ([314]) discovered the linear programming solution this class of games. In

Hordijk and Kallenberg’s paper [128] also the solution of Makov games with additional con-

straints can be found. Filar ([91]), Filar and Raghavan ([95]) and Bayal-Gürsoy ([14]) made also

contributions to the undiscounted single-controller stochastic game.

The existence of optimal stationary policies for the switching-controller undiscounted stochas-

tic game is due to Filar ([89]). Vrieze, Raghavan, Tijs and Filar ([316]) have developed Algorithm

10.20. The solution of the undiscounted SER-SIT game was presented in Parthasarathy, Tijs

and Vrieze ([214]). It is not known whether stochastic games with additive transitions have sta-

tionary optimal policies. When also the rewards are additive (ARAT games), then Raghavan,

Tijs and Vrieze ([233]) have shown that the undiscounted ARAT stochastic game possesses the

ordered field property and that both players have deterministic and stationary optimal policies.

Sobel([276]) was the first who studied two-person, general-sum, stochastic games. He estab-

lished the existence of stationary equilibria in the discounted case. Parthasarathy and Raghavan

([212]) have shown that two-person, general-sum, single-controller stochastic games possess, both

for discounted and average rewards, stationary equilibria points and the ordered field property.

The algorithmic approach with quadratic programs for the computation of stationary equilibria

as described in Theorem 10.53 and Theorem 10.56 is due to Filar ([92]). In [90] Filar has shown

that the set of stationary equilibrium points is the union of a finite number of sets such that every

element of these sets can be constructed from a finite number of extreme equilibrium strategies

for player 1 and from a finite number of pseudo-extreme equilibrium strategies for player 2. These

extreme and pseudo-extreme equilibrium strategies can themselves constructed by finite (but in-

efficient) algorithms. This result holds for two-person, general-sum, single-controller stochastic

games both with the discounted as the average reward criterion.

Filar and Vrieze ([98]) have considered stochastic games in which the players aggregate their

sequences of expected rewards according to weighted criteria. These are either a convex combi-

nation of two discounted objectives or one discounted and one limiting average reward objective.

In both cases they have established the existence of the value vector of these games. For the con-

vex combination of two discounted objectives they have shown that both players possess optimal

Markov policies and ε-optimal policies that are ultimately stationary. For the discounted/average

reward objective no optimal or ε-optimal Markov policies needs to exist, but both players have

ε-optimal policies that are ultimately ε-optimal in the average reward game.

684 CHAPTER 10. STOCHASTIC GAMES

10.7 Exercises

Exercise 10.1

Consider the following discounted stochastic game:

S = {1, 2}; A(1) = {1, 2, 3}, A(2) = {1, 2}; B(1) = {1, 2}, B(2) = {1, 2, 3}; α = 1
2 .

r1(1, 1) = 1; r1(1, 2) = 2; r1(2, 1) = 5; r1(2, 2) = 0; r1(3, 1) = 0; r1(3, 2) = 4;

r2(1, 1) = 0; r2(1, 2) = 3; r2(1, 3) = 6; r2(2, 1) = 6; r2(2, 2) = 2; r2(2, 3) = 0.

p11(1, 1) = 1, p12(1, 1) = 0; p11(1, 2) = 0, p12(1, 2) = 1; p11(2, 1) = 1, p12(2, 1) = 0;

p11(2, 2) = 0, p12(2, 2) = 1; p11(3, 1) = 1, p12(3, 1) = 0; p11(3, 2) = 0, p12(3, 2) = 1;

p21(1, 1) = 1, p22(1, 1) = 0; p21(1, 2) = 0, p22(1, 2) = 1; p21(1, 3) = 1, p22(1, 3) = 0;

p21(2, 1) = 1, p22(2, 1) = 0; p21(2, 2) = 0, p22(2, 2) = 1; p21(2, 3) = 1, p22(2, 3) = 0.

Apply Algorithm 10.1 to compute x2, starting with x0 = (0, 0).

Exercise 10.2

Execute one iteration of Algorithm 10.4 on the model of Exercise 10.1.

Start with ρ∗11 = ρ∗12 = 1
2 ; ρ∗21 = ρ∗22 = ρ∗23 = 1

3 .

Exercise 10.3

Execute one iteration of Algorithm 10.5 on the model of Exercise 10.1. Start with x = (0, 0).

Exercise 10.4

Execute one iteration of Algorithm 10.4 on the model of Exercise 10.1. Start with x = (6, 6) and

take k = 2.

Exercise 10.5

Consider the single-controller stochastic game in which player 2 controls the transitions.

a. Formulate the dual pair of linear programs for this stochastic game analogous to the programs

(10.31) and (10.32).

b. Give the analogon of Theorem 10.15.

Exercise 10.6

The stochastic game of Exercise 10.1 is a single-controller stochastic game in which player 2

controls the transitions. Determine the value vector and optimal policies for the two players by

linear programming as indicated in Exercise 10.5.

10.7. EXERCISES 685

Exercise 10.7

Apply Algorithm 10.8 to the following switching control stochastic game.

S = {1, 2}; S1 = {1}, S2 = {2}; A(1) = B(1) = A(2) = B(2) = {1, 2}; α = 1
2 .

r1(1, 1) = 4, r1(1, 2) = 0, r1(2, 1) = 0, r1(2, 2) = 6;

r2(1, 1) = 3, r2(1, 2) = 5, r2(2, 1) = 6, r2(2, 2) = 4.

p11(1) = 1, p12(1) = 0; p11(2) = 0, p12(2) = 1; p21(1) = 1, p22(1) = 0; p21(2) = 0, p22(2) = 1.

Start with ρ0
21 = 1, ρ0

22 = 0.

Exercise 10.8

Apply Algorithm 10.9 to the following SER− SIT stochastic game.

S = {1, 2}; A(1) = B(1) = A(2) = B(2) = {1, 2}; α = 1
2 .

s1 = 0, s2 = 1; t(1, 1) = 0, t(1, 2) = 2, t(2, 1) = 1, t(2, 2) = 3.

p1(1, 1) = 1
2 , p2(1, 1) = 1

2 ; p1(1, 2) = 1, p2(1, 2) = 0;

p1(2, 1) = 0, p2(2, 1) = 1; p1(2, 2) = 1
2 , p2(2, 2) = 1

2 .

Exercise 10.9

Consider the following model which has the SER property but not the SIT property.

S = {1, 2, 3}; A(i) = B(i) = {1, 2} for i = 1, 2, 3. s1 = 1, s2 = 1, s3 = 2; t(a, b) = 0 for all (a, b).

p11(1, 1) = 1, p12(1, 1) = 0, p13(1, 1) = 0; p11(1, 2) = 0, p12(1, 2) = 1, p13(1, 2) = 0;

p11(2, 1) = 0, p12(2, 1) = 1, p13(2, 1) = 0; p11(2, 2) = 1, p12(2, 2) = 0, p13(2, 2) = 0;

p21(1, 1) = 0, p22(1, 1) = 1, p23(1, 1) = 0; p21(1, 2) = 0, p22(1, 2) = 0, p23(1, 2) = 1;

p21(2, 1) = 1, p22(2, 1) = 0, p23(2, 1) = 0; p21(2, 2) = 0, p22(2, 2) = 1, p23(2, 2) = 0;

p31(1, 1) = 0, p32(1, 1) = 1, p33(1, 1) = 0; p31(1, 2) = 0, p32(1, 2) = 1, p33(1, 2) = 0;

p31(2, 1) = 0, p32(2, 1) = 1, p33(2, 1) = 0; p31(2, 2) = 0, p32(2, 2) = 1, p33(2, 2) = 0.

a. Show that vα
1 = 1 + 1

2α(vα
1 + vα

2) and vα
3 = 2 + αvα

2 .

b. Show that vα
2 =

(6+α)−
√

(α2−20α+36)

8(1−α)
.

c. Show that this game does not possess the ordered field property.

Exercise 10.10

Show that, without using Theorem 10.30, the Big Match does not satisfy both (10.61) and (10.62).

Exercise 10.11

Execute Algorithm 10.16 to compute the value vector and optimal stationary policies for both

players for the following undiscounted stochastic game:

S = {1, 2, 3}; A(1) = B(1) = {1, 2}; A(2) = {1}, B(2) = {1, 2}; A(3) = B(3) = {1}.
p11(1) = 1, p12(1) = 0, p13(1) = 0; p11(2) = 0, p12(2) = 1

2 , p13(2) = 1
2 ;

p21(1) = 0, p22(1) = 1, p23(1) = 0; p31(1) = 0, p32(2) = 0, p33(1) = 1.

r1(1, 1) = 1, r1(1, 2) = 0, r1(2, 1) = 0, r1(2, 2) = 1; r2(1, 1) = 4, r2(1, 2) = 2, r3(1, 1) = −1.

686 CHAPTER 10. STOCHASTIC GAMES

Bibliography

[1] Aho, A.J., J.E. Hopcroft and J.D. Ullman: The design and analysis of computer algo-

rithms, Addison-Wesley, Massachusetts, 1974.

[2] Altman, E.: Constrained Markov decision processes, Chapman & Hall/CRC, 1999.

[3] Altman, E., A. Hordijk and L.C.M. Kallenberg: On the value function in constrained

control of Markov chains, Mathematical Methods of Operations Research 44 (1996) 389–

399.

[4] Altman, E. and A. Shwartz: Sensitivity of constrained Markov decision processes, Annals

of Operations Research 33 (1991) 1–22.

[5] Altman, E. and F. Spieksma: The linear program approach in multi-chain Markov decision

processes revisited, ZOR - Mathematical Methods of Operations Research 42 (1995) 169–

188.

[6] Applegate, S.D., W. Cook and M. Mevenkamp, SQopt reference manual, 2003.

[7] Avrachenkov, K.E. and E. Altman: Sensitive discount optimality via nested linear pro-

grams for ergodic Markov decision processes, IDC’99 Proceedings (1999) 53–58.

[8] Avrachenkov, K., L. Cottatellucci and L. Maggi: Algorithms for uniform optimal strategies

in two-player zero-sum stochastic games with perfect information. OPerations Research

Letters 40 (2012) 50–60.

[9] Baras, J.S., D.J. Ma and A.M. Makowsky: K competing queues with linear costs and

geometric service requirements: the µc-rule is always optimal, Systems Control Letters 6

(1985) 173–180.

[10] Bartmann, D.: A method of bisection for discounted Markov decision problems, Zeitschrift

für Operations Research 23 (1979) 275–287.

[11] Bather, J.: Optimal decision procedures for finite Markov chains. Part I: Examples, Ad-

vances in Applied Probability 5 (1973) 328–339.

[12] Bather, J.: Optimal decision procedures for finite Markov chains. Part II: Communicating

systems, Advances in Applied Probability 5 (1973) 521–540.

687

688 BIBLIOGRAPHY

[13] Bauer, H.: Probability theory and elements of measure theory, Second English Edition,

Academic Press, London, 1981.

[14] Bayal-Gürsoy, M.: Two-person zero-sum stochastic games, annals of Operations Research

28 (1991) 135–152.

[15] Bayal-Gürsoy, M. and K.W. Ross: Variability-sensitive Markov decision processes, Math-

ematics of Operations Research 17 (1992) 558–571.

[16] Beckmann, M.: An inventory model for arbitrary interval and quantity distributions of

demands, Management Science 8 (1961) 35–57.

[17] Bellman, R.: Dynamic programming, Princeton University Press, Princeton, 1957.

[18] Bellman, R., I. Glicksberg and O. Gross: On the optimal inventory equation, Management

Science 2 (1955) 83–104.

[19] Bello, D. and G. Riano: Linear programming solvers for Markov decision processes, in: M.

DeVore (ed.), Proceedings of the 2006 IEEE System and Information Engineering Design

Symposium (2006) 93-98.

[20] Ben-Israel, A. and S.D. Fl̊am: A bisection/successive approximation method for computing

Gittins indices, Zeitschrift für Operations Research 34 (1990) 411–422.

[21] Bertsekas, D.P. and S.E. Shreve: Stochastic optimal control: the discrete time case, Aca-

demic Press, New York, 1978.

[22] Bertsekas, D.P.: Dynamic programming: deterministic and stochastic models, Prentice-

Hall, 1987.

[23] Bertsimas, D. and J. Nino-Mora: Conservation laws, extended polymatroids and multi-

armed bandit problems: a unified approach to indexable systems, Mathematics of Opera-

tions Research 21 (1996) 257–306.

[24] Beutler, F.J. and K.W. Ross: Optimal policies for controlled Markov chains with a con-

straint, Journal of Mathematical Analysis and Applications 112 (1985) 236–252.

[25] Bewley, T. and E. Kohlberg: The asymptotic theory of stochastic games, Mathematics of

Operations Research 1 (1976) 197–208.

[26] Bewley, T. and E. Kohlberg: The asymptotic solution of a recursive equation arising in

stochastic games, Mathematics of Operations Research 1 (1976) 321–336.

[27] Bewley, T. and E. Kohlberg: On stochastic games with stationary optimal solutions, Math-

ematics of Operations Research 3 (1978) 104–127.

[28] Bierth, K.-J.: An expected average reward criterion, Stochastic Processes and Applications

26 (1987) 133–140.

BIBLIOGRAPHY 689

[29] Blackwell, D.: Discrete dynamic programming, Annals of Mathematical Statistics 33 (1962)

719–726.

[30] Blackwell, D.: Positive dynamic programming, Proceedings Fifth Berkeley Symposium

Mathematical Statistics and Probability, Volume 1 (1967) 415–418.

[31] Blackwell, D. and T. Ferguson: The Big Match, Annals of Mathematical Statistics 39

(1968) 159–163.

[32] Breiman, L.: Stopping-rule problems, in: E.F. Beckenbach (ed.), Applied Combinatorial

Mathematics, Wiley, New York, 1964, 284–319.

[33] Breton, M., J.A. Filar, A. Haurie and T.A. Shultz: On the computation of equilibria in

discounted stochastic games, in: T.Basar (ed.), Dynamic games and applications in eco-

nomics, Lecture Notes in Economics and Mathematical Systems no. 265 (1985), Springer-

Verlag.

[34] Brown, B.W.: On the iterative method of dynamic programming on a finite space discrete

Markov process, Annals of Mathematical Statistics 36 (1965) 1279–1285.

[35] Bruno, J., P. Downey and G. Frederickson: Sequencing tasks with exponential service times

to minimize the expected flowtime or makespan Journal of the ACM 28 (1981) 100–113.

[36] Buyukkoc, C., P. Varaiya and J. Walrand: The µc-rule revisited, Advances in Applied

Probability 17 (1985) 237–238.

[37] Cesaro, E.: Sur la multiplication des séries, Bulletin des Sciences Mathématiques 14 (1890)

114–120.

[38] Chen, Y.-R. and M.N. Katehakis: Linear programming for finite state bandit problems,

Mathematics of Operations Research 11 (1986) 180–183.

[39] Cheng, M.C.: New criteria for the simplex method, Mathematical Programming 19 (1980)

230–236.

[40] Chung, K.L.: Markov chains with stationary transition probabilities, Springer, 1960.

[41] Chung, K.-J.: A note on maximal mean/standard deviation ratio in an undiscounted MDP,

OR Letters 8 (1989) 201–204.

[42] Chung, K.-J.: Remarks on maximal mean/standard deviation ratio in undiscounted MDPs,

Optimization 26 (1992) 385–392.

[43] Chung, K.-J.: Mean-variance tradeoffs in an undiscounted MDP: the unichain case, Op-

erations Research 42 (1994) 184–188.

[44] Cohen, E. and N. Megiddo: Improved algorithms for linear inequalities with two variables

per inequality, SIAM Journal of Computing 23 (1994) 131–1347.

690 BIBLIOGRAPHY

[45] Collins, E.J.: Finite-horizon variance penalized Markov decision processes, OR Spektrum

19 (1997) 35–39.

[46] Cook, S.A.: The complexity of theorem proving procedures, Proceedings of the 3rd ACM

Symposium on the theory of computing. ACM (1971) 151-158.

[47] Cox, D.R. and W.L. Smith: Queues, Methuen, London, 1961.

[48] Dantzig, G.B.: Linear programming and extensions, Princeton University Presss, 1963.

[49] Dash Optimization, Xpress-MP essentials, second edition, Dash Optimization Inc., 2002.

[50] De Cani, J.S.: A dynamic programming algorithm for embedded Markov chains when the

planning horizon is at infinity, Management Science 10 (1964) 716–733.

[51] De Ghellinck, G.T.: Les problèmes de décisions séquentielles, Cahiers du Centre de

Recherche Opérationelle 2 (1960) 161–179.

[52] De Ghellinck, G.T. and G.D. Eppen: Linear programming solutions for separable Marko-

vian decision problems, Management Science 13 (1967) 371–394.

[53] Dekker, R.: Denumerable Markov decision chains: Optimal policies for small interest rate,

Ph.D. Dissertation, Leiden University, 1985.

[54] Dekker, R. and A. Hordijk: Average, sensitive and Blackwell optimality in denumerable

Markov decision chains with unbounded rewards, Mathematics of Operations Research 13

(1988) 395–421.

[55] Dembo, R.S. and M. Haviv: Truncated policy iteration methods, OR Letters 3 (1984)

243–246.

[56] Denardo, E.V.: Contraction mappings in the theory underlying dynamic programming,

SIAM Review 9 (1967) 165–177.

[57] Denardo, E.V.: Separable Markov decision problem, Management Science 14 (1968) 451–

462.

[58] Denardo, E.V.: On linear programming in a Markov decision problem, Management Sci-

ence 16 (1970) 281–288.

[59] Denardo, E.V.: Computing a bias-optimal policy in a discrete-time Markov decision prob-

lem, Operations Research 18 (1970) 279–289.

[60] Denardo, E.V.: Markov renewal programs with small interest rates, Annals of Mathemat-

ical Statistics 42 (1971) 279–289.

[61] Denardo, E.V.: A Markov decision problem, in: T.C.Hu and S.M.Robinson (eds.) Mathe-

matical Programming, Academic Press (1973) 33–68.

BIBLIOGRAPHY 691

[62] Denardo, E.V.: Stopping and regeneration, Draft of Chapter 7, problem 4 (1975).

[63] Denardo, E.V.: Dynamic programming: Models and Applications, Prentice-Hall, 1982.

[64] Denardo, E.V. and B.L. Fox: Multichain Markov renewal programs, SIAM Journal on

Applied Mathematics 16 (1968) 468–487.

[65] Denardo, E.V. and B.L. Miller: An optimality condition for discrete dynamic programming

with no discounting, Annals of Mathematical Statistics 39 (1968) 1220–1227.

[66] Denardo, E.V. and U.G. Rothum: Overtaking optimality for Markov decision chains,

Mathematics of Operations Research 4 (1979) 144–152.

[67] D’Epenoux, F.: Sur un problème de production et de stockage dans l’aléatoire, Revue

Française de Recherche Opérationelle 14 (1960) 3–16 .

[68] Derman, C.: On optimal replacement rules when changes of state are Markovian, in:

R.Bellman (ed.) Mathematical Optimization Techniques, University of California Press,

Berkeley (1963) 201–210.

[69] Derman, C.: Finite state Markovian decision processes, Academic Press, New York, 1970.

[70] Derman, C. and M. Klein: Some remarks on finite horizon Markovian decision models,

Operations Research 13 (1965) 272–278.

[71] Derman, C. and R. Strauch: A note on memoryless rules for controlling sequential control

problems, Annals of Mathematical Statistics 37 (1966) 276–278.

[72] Derman, C., G.J. Lieberman and S.M. Ross: A sequential stochastic assignment model,

Management Science 18 (1972) 349–355.

[73] Derman, C. and A.F. Veinott Jr.: Constrained Markov decision chains, Management Sci-

ence 19 (1972) 389–390.

[74] Doob, J.L.: Stochastic processes, Wiley, 1953.

[75] Dubins, L.E. and L.J. Savage: How to gamble if you must: inequalities for stochastic

processes, McGraw-Hill, New York, 1965.

[76] Durinovic, S., H.M. Lee, M.N. Katehakis and J.A. Filar: Multiobjective Markov decision

processes with average reward criterion Large Scale Systems 10 (1986) 215–226.

[77] Eaves, B.C. and A.F. Veinott, Jr.: Maximum-stopping-value policies in finite Markov

population decision chains, Report, Stanford University, 2007.

[78] Ephremides, A., P. Varaiya and J. Walrand: A simple dynamic routing problem, IEEE

Transactions on Automatic Control AC-25 (1980) 690–693.

692 BIBLIOGRAPHY

[79] Faiz, A. and J. Falk: Jointly constrained biconvex programming, Mathematics of Opera-

tions Research 8 (1983) 273–286.

[80] Federgruen, A.: Markovian control problems: functional equations and algorithms, Math-

ematical Centre Tracts no.97, Amsterdam, 1984.

[81] Federgruen, A., P.J. Schweitzer and H.C. Tijms: Contraction mappings underlying undis-

counted Markov decision problems, Journal of Mathematical Analyss and Applications 65

(1978) 711–730.

[82] Federgruen, A. and D. Spreen: A new specification of the multichain policy iteration al-

gorithm in undiscounted Markov renewal programs, Management Science 26 (1980) 1211–

1217.

[83] Feinberg, E.A.: Constrained semi-Markov decision processes with average rewards, Math-

ematical Methods op Operations Research 39 (1994) 257–288.

[84] Feinberg, E.A. and A. Shwartz: Markov decision problems with weighted discounted crite-

ria, Mathematics of Operations Research 19 (1994) 152–168.

[85] Feinberg, E.A. and A. Shwartz: Constrained Markov decision models with weighted dis-

counted rewards, Mathematics of Operations Research 20 (1995) 302–320.

[86] Feinberg, E.A. and A. Shwartz: Constrained dynamic programming with two discount

factors: applications and an algorithm, IEEE Transactions on Automatic Control 44 (1999)

628–631.

[87] Feinberg, E.A. and F. Yang: On Polynomial Classification Problems for Markov Decision

Processes Proceedings of the 2008 NSF Engineering Research and Innovation Conference,

Knoxville, TN.

[88] Feller, W.: An introduction to probability theory and its aplications, Volume I, third edition,

Wiley, 1970.

[89] Filar, J.A.: Ordered field property for stochastic games when the player who controls tran-

sitions changes from state to state, Journal on Optimization Theory and Applications 34

(1981) 503–513.

[90] Filar, J.A.: On stationary equilibria of a single-controller stochastic game, Mathematical

Programming 30 (1984) 313–325.

[91] Filar, J.A.: The completely mixed single-controller stochastic game, Proceedings of the

American Mathematical Society 95 (1985) 585–594.

[92] Filar, J.A.: Quadratic programming and the single-controller stochastic game, Journal on

Mathematical Analysis and Applications 113 (1986) 136–147.

BIBLIOGRAPHY 693

[93] Filar, J.A., L.C.M. Kallenberg and H.M. Lee: Variance-penalized Markov decision pro-

cesses, Mathematics of Operations Research 14 (1989) 147–161.

[94] Filar, J.A., Schultz, F. Thuijsman and O.J. Vrieze: Nonlinear programming and stationary

equilibria in stochastic games, Mathematical Programming 50 (1991) 227–237.

[95] Filar, J.A. and T.E.S. Raghavan: A matrix game solution of the single-controller stochastic

game, Mathematics of Operations Research 9 (1984) 356–362.

[96] Filar, J.A. and T. Schultz: Nonlinear programming and stationary strategies in stochastic

games, Mathematical Programming 35 (1988) 243–247.

[97] Filar, J.A. and T. Schultz: Communicating MDPs: Equivalence and LP properties, Oper-

ations Research Letters 7 (1988) 303–307.

[98] Filar, J.A. and O.J. Vrieze: Weighted reward criteria in competitive Markov decision

processes, Methods of Operations Research 36 (1992) 343–358.

[99] Filar, J.A. and O.J. Vrieze: Competitive Markov decision processes, Springer-Verlag, 1997.

[100] Gal, S.: A O(N 3) algorithm for optimal replacement problems, SIAM Journal of Control

and Optimization 22 (1984) 902–910.

[101] Gallo, G. and A. Alkucu: Bilinear programming: an exact algorithm, Mathematical Pro-

gramming 12 (1977) 173–194.

[102] Garey, M.R. and D.S. Johnson: Computers and intractability - A guide to the theory of

NP-completeness, Freeman, San Francisco, California, 1979.

[103] Gillette, D: Stochastic games with zero stop probabilities in: Dresher, M., A.W. Tucker

and P. Wolfe (eds.), Contributions to the theory of games, vol. III, Princeton University

Press, Annals of Mathematics Studies 39 (1957) 179–187.

[104] Gittins, J.C.: Bandit processes and dynamic allocation indices, Journal of the Royal Statis-

tic Society Series B 14 (1979) 148–177.

[105] Gittins, J.C. and D.M. Jones: A dynamic allocation index for the sequential design of

experiments, in: J. Gani (ed.) Progress in Statistics North Holland, Amsterdam (1974)

241–266.

[106] Glazebrook, K.D.: Scheduling tasks with exponential service times on parallel processors

Journal of Applied Probability 16 (1979) 685–689.

[107] Glazebrook, K.D. and R.W. Owen: New results for generalized bandit problems Interna-

tional Journal of System Science22 (1991) 479–494.

694 BIBLIOGRAPHY

[108] Goldman, A.J. and A.W. Tucker: Theory of linear programming: in: Linear inequalities

and related systems, H.W. Kuhn and A.W. Tucker (eds.), Annals of Mathematical Studies

(1956) 53–97.

[109] Grinold, R.C.: Elimination of suboptimal actions in Markov decision problems, Operations

Research 21 (1973) 848–851.

[110] Hartley, R., A.C. Lavercombe and L.C. Thomas: Computational comparison of policy

iteration algorithms for discounted Markov decision processes, Computers & Operations

Research 13 (1986) 411-420.

[111] Hastings, N.A.J.: Some notes on dynamic programming and replacement, Operational

Research Quarterly 19 (1968) 453–464.

[112] Hastings, N.A.J.: Optimization of discounted Markov decision problems, Operations Re-

search Quarterly 20 (1969) 499–500.

[113] Hastings, N.A.J.: A test for nonoptimal actions in undiscounted finite Markov decision

chains, Management Science 23 (1976) 87–92.

[114] Haviv, M. and M.L. Puterman: An improved algorithm for solving communicating average

reward Markov decision processes, Annals of Operations Research 28 (1991) 229–242.

[115] Hertzberg, M. and U. Yechiali: Criteria for selecting the relaxation factor of the value iter-

ation algorithm for undiscounted Markov and semi-Markov decision processes, Operations

Research Letters 10 (1991) 193–202.

[116] Hertzberg, M. and U. Yechiali: Accelerated procedures of the value iteration algorithm for

discounted Markov decision processes, based on a one-step look-ahead analysis, Operations

Research 42 (1994) 940–946.

[117] Heyman, D.P. and M.J. Sobel: Stochastic models in Operations Research, Volume II:

Stochastic optimization, MacGraw-Hill, 1984.

[118] Hochbaum, D. and J. Naor: Simple and fast algorithms for linear and integer programs

with two variables per inequality, SIAM Journal of Computing 23 (1994) 1179–1192.

[119] Hoffman, A.J. and R.M. Karp: On non-terminating stochastic games, Management Science

12 (1966) 359–370.

[120] Hordijk, A.: A sufficient condition for the existence of an optimal policy with respect to

the average cost criterion in Markovian decision processes, Transactions of the Sixth Con-

ference on Information Theory, Statistical Decision Functions, Random Processes (1971)

263–274.

[121] Hordijk, A.: Dynamic programming and Markov potential theory, Mathematical Centre,

Amsterdam, 1974.

BIBLIOGRAPHY 695

[122] Hordijk, A.: Convergent dynamic programming, Report BW 47/75, Mathematical Centre,

Amsterdam, 1975.

[123] Hordijk, A.: Stochastic dynaming programming, Course notes, University of Leiden (in

Dutch), 1976.

[124] Hordijk, A.: From linear to dynamic programming via shortest paths, Mathematical Centre

Tract no. 100, Amsterdam, 1978.

[125] Hordijk, A., R. Dekker and L.C.M. Kallenberg: Sensitivity analysis in discounted Markov

decision problems, OR Spektrum 7 (1985) 143–151.

[126] Hordijk, A. and L.C.M. Kallenberg: Linear programming and Markov decision chains,

Management Science 25 (1979) 352–362.

[127] Hordijk, A. and L.C.M.Kallenberg: Linear programming and Markov games I, in: O.

Moeschlin and D. Pallaschke (eds.), Game theory and mathematical economics, North

Holland (1981) 291–305.

[128] Hordijk, A. and L.C.M.Kallenberg: Linear programming and Markov games II, in: O.

Moeschlin and D. Pallaschke (eds.), Game theory and mathematical economics, North

Holland (1981) 307–320.

[129] Hordijk, A. and L.C.M. Kallenberg: Transient policies in discrete dynamic programming:

linear programming including suboptimality and additional constraints, Mathematical Pro-

gramming 30 (1984) 46–70.

[130] Hordijk, A. and L.C.M. Kallenberg: Constrained undiscounted stochastic dynamic pro-

gramming, Mathematics of Operations Research 9 (1984) 276–289.

[131] Hordijk, A. and G.M. Koole: On the optimality of LEFT and µc rules for parallel proces-

sors and dependent arrival processes, Advances in Applied Probability 25 (1993) 979–996.

[132] Hordijk, A. and H.C. Tijms: Colloquium Markov programming, Mathematical Centre Re-

port BC 1/70, Mathematical Centre, Amsterdam (in Dutch).

[133] Hordijk, A. and N.M. van Dijk: Time-discretization for controlled Markov processes. I.

General approximation results, Kybernetika 32 (1996) 1–16.

[134] Howard, R.A.: Dynamic programming and Markov processes, MIT Press, Cambridge,

1960.

[135] Howard, R.A.: Semi-Markovian decision processes, Proceedings International Statistical

Institute, Ottawa, Canada, 1963.

[136] Hu, G. and C. Wu: Relative value iteration algorithm based on contraction span semi-

norm, OR Transactions 3 (1999) 1–9.

696 BIBLIOGRAPHY

[137] Huang, Y and L.C.M. Kallenberg: On finding optimal policies for Markov decision chains:

A unifying framework for mean-variance tradeoffs, Mathematics of Operations Research

19 (1994) 434–448.

[138] Iglehart, D.: Optimality of (s, S)-policies in the infinite horizon dynamic inventory prob-

lem, Management Science 9 (1963) 259–267.

[139] Iglehart, D.: Dynamic programming and stationary analysis of inventory problems, Chap-

ter 1 in: H. Scarf, D. Gilford and M. Shelly (eds.), Multistage inventory models and

techniques, Stanford University Press, Stanford, 1963.

[140] Iserman, M.: Proper efficiency and the linear vector maximization problem, Operations

Research 22 (1974) 189–191.

[141] Jeroslow, R.G.: An algorithm for discrete dynamic programming with interest rates near

zero, Management Science Research Report no. 300, Carnegie-Mellon University, Pitts-

burg, 1972.

[142] Jewell, W.S.: Markov renewal programming. I: Formulation, finite return models, Opera-

tions Research 11 (1963) 938–948.

[143] Jewell, W.S.: Markov renewal programming. II: Infinite return models, example, Opera-

tions Research 11 (1963) 949–971.

[144] Johnson, S.M.: Optimal two- and three-stages production schedules with setup times in-

cluded, Naval Research Logistics Quarterly 1 (1954) 61–68.

[145] Kakutani, S: A generalization of Brouwer’s fixed point theorem, Duke Mathematical Jour-

nal 8 (1941) 457–459.

[146] Kallenberg, L.C.M.: Finite horizon dynamic programming and linear programming, Meth-

ods of Operations Research 43 (1981) 105–112.

[147] Kallenberg, L.C.M.: Unconstrained and constrained dynamic programming over a finite

horizon, Report, University of Leiden, 1981.

[148] Kallenberg, L.C.M.: Linear programming and finite Markovian control problems, Mathe-

matical Centre Tract no.148, Amsterdam, 1983.

[149] Kallenberg, L.C.M.: A note on M.N.Katehakis and Y.-R.Chen’s computation of the Gittins

index, Mathematics of Operations Research 11 (1986) 184–186.

[150] Kallenberg, L.C.M.: Separable Markov decision problems, OR Spektrum 14 (1992) 43–52.

[151] Kallenberg, L.C.M.: Survey of linear programming for standard and nonstandard Marko-

vian control problem. Part I: Theory, ZOR - Mathematical Methods of Operations Re-

search 40 (1994) 1–42.

BIBLIOGRAPHY 697

[152] Kallenberg, L.C.M.: Survey of linear programming for standard and nonstandard Marko-

vian control problem. Part II: Applications, ZOR - Mathematical Methods of Operations

Research 40 (1994) 127–143.

[153] Kallenberg, L.C.M.: Classification problems in MDPs, in: Z. How, J.A. Filar and A. Chen

(ed.) Markov processes and controlled Markov chains, Kluwer Boston (2002) 151–165.

[154] Kao, E.P.C.: Optimal replacement rules when changes of state are semi-Markovian, Op-

erations Research 21 (1973) 1231–1249.

[155] Karlin, S.: Mathematical methods and theory in games, programming and economics, Vol-

ume I, Addison-Wesley, 1959.

[156] Karlin, S.: Dynamic inventory policy with varying stochastic demands, Management Sci-

ence 6 (1960) 231–258.

[157] Karmarkar, L.G.: A new polynomial-time algorithm for linear programming, Combinator-

ica 4 (1984) 373-395.

[158] Karp, R.: Reducibility among combinatorial problems, in: R.E. Miller and J.W. Thatcher

(eds.): Complexity of computer computations, Plenum Press (1972) 85103.

[159] Katehakis, M.N. and C. Derman: Optimal repair allocation in a series system, Mathemat-

ics of Operations Research 9 (1984) 615–623.

[160] Katehakis, M.N. and C. Derman: On the maintenance of systems composed of highly

reliable components, Management Science 35 (1989) 551–560.

[161] Katehakis M. N. and U. Rothblum: Finite state multi-armed bandit sensitive-discount,

average-reward and average-overtaking optimality, Annals of Applied Probability 6 (1996)

1024–1034.

[162] Katehakis, M.N. and A.F. Veinott Jr.: The multi-armed bandit problem: decomposition

and computation, Mathematics of Operations Research 12 (1987) 262–268.

[163] Kato, T.: Perturbation theory for linear operators, Springer, 1966.

[164] Kayne, R. and R. Wilson: Linear algebra Oxford University Press, 1998.

[165] Kawai, H.: A variance minimization problem for a Markov decision process, European

Journal of Operations Research 31 (1987) 140–145.

[166] Kawai, H. and N. Katoh: Variance constrained Markov decision process, Journal of the

Operations Research Society of Japan 30 (1987) 88–100.

[167] Kemeny, J. and L. Snell: Finite Markov chains, Van Nostrand, 1960.

698 BIBLIOGRAPHY

[168] Khachiyan, L.G.: A polynomial algorithm in linear programming Soviet Mathematics Dok-

lady 20 (1979) 191–194.

[169] Klee, V. and G.J. Minty: How good is the simplex method? in: Shisha (ed) Inequalities III,

Proceedings of the Third Symposium on Inequalities, held at the University of California,

Los Angelos, California, Academic Press (1972) 159–175.

[170] Kolesar, P.: Minimum cost replacement under Markovian deterioration, Management Sci-

ence 12 (1966) 694–706.

[171] Koole, G.M.: Stochastic scheduling and dynamic programming, CWI Tract 113, CWI,

Amsterdam, 1995.

[172] Krass, D., J.A. Filar and S.S. Sinha: A weighted Markov decision process, Operations

Research 40 (1992) 1180-1187.

[173] Kushner, H.J. and A.J. Kleinman: Mathematical programming and the control of Markov

chains, IEEE Transactions on Automatic Control AC-13 (1968) 801–820.

[174] Kushner, H.J. and A.J. Kleinman: Accelerated procedures for the solution of discrete

Markov control problems, IEEE Transactions on Automatic Control AC-16 (1971) 147–

152.

[175] Ladner, R.E.: The circuit value problem is log space complete for P , ACM SIGACT News

7 (1975) 18-20.

[176] Lasserre, J.B.: Updating formula for Markov chains and applications, LAAS Technical

Report, 1991.

[177] Lasserre, J.B.: Detecting optimal and non-optimal actions in average-cost Markov decision

processes Journal of Applied Probability 31 (1994) 979–990.

[178] Lasserre, J.B.: A new policy iteration scheme for Markov decision processes using

Schweitzer’s formula, Journal of Applied Probability 31 (1994) 268–273.

[179] Liggett, T.M. and S.A. Lippman: Stochastic games with perfect information and time

averqage payoff, SIAM Review 11 (1969) 604–607.

[180] Lin, W. and P.R. Kumar: Optimal control of a queueing system with two heterogeneous

servers, IEEE Tansactions on Automatic Control AC-29 (1984) 696–705.

[181] Lippman, S.A.: Criterion equivalence in discrete dynamic programming, Operations Re-

search 17 (1968) 920–923.

[182] Lippman, S.A.: Applying a new device in the optimization of exponential queueing systems,

Operations Research 23 (1975) 687–710.

BIBLIOGRAPHY 699

[183] Littman, M.L., T.L. Dean and L.P. Kaelbling: On the complexity of solving Markov deci-

sion problems Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial

Intelligence (1995) 394-402.

[184] Liu, J.Y. and K. Liu: An algorithm on the Gittins index, Systems Science and Mathemat-

ical Science 7 (1994) 106–114.

[185] Loève, M.: Probability theory, Van Nostrand, 1955.

[186] Lozovanu, D. and C. Petric: Algorithms for finding the minimum cycle mean in the

weighted directed graph, Computer Science Journal of Moldava 6 (1998) 27–34.

[187] Luenberger, D.G.: Optimization by vector space methods, Wiley, 1968.

[188] MacQueen, J.: A modified programming method for Markovian decision problems, Journal

of Mathematical Analysis and Applications 14 (1966) 38–43.

[189] MacQueen, J.: A test for suboptimal actions in Markov decision problems, Operations

Research 15 (1967) 559–561.

[190] Madani, O., M. Thorup and U. Zwick: Discounted deterministic Markov decision processes

and discounted all-pairs shortest paths, ACM Transactions on Algorithms 6 (2010) 33: 1–

15.

[191] Mangasarian, O.L. and H. Stone: Two-person nonzero-sum games and quadratic program-

ming, Journal of Mathematical Analysis and Applications 9 (1964) 348–355.

[192] Manne, A.S.: Programming of economic lot sizes, Management Science 4 (1958) 115–135.

[193] Manne, A.S.: Linear programming and sequential decisions, Management Science 6 (1960)

259–267.

[194] Manne, A.S. and A.F. Veinott, Jr.: Chapter 11 in A.S. Manne (ed.), Investments for

capacity expansion: size, location and time-phasing, MIT Press, 1967.

[195] Mansour, Y. and S. Singh: On the complexity of policy iteration, Proceedings of the 15th

International Conference on Uncertainty in Artificial Intelligence (1999) 401–408.

[196] McCuaig, W.: Intercyclic digraphs, in: N. Robertson and P. Seymour (eds.) Graph struc-

ture theory, Contemporary Mathematics 147, American Mathematical Society (1993) 203–

245.

[197] Melekopoglou, M. and A. Condon: On the complexity of the policy improvement algorithm

for Markov decision processes, INFORMS Journal on Computing 6 (1994) 188–192.

[198] Mertens, J.F. and A. Neyman: Stochastis games, International Journal of Game Theory

10 (1981) 53–56.

700 BIBLIOGRAPHY

[199] Miller, B.L. and A.F. Veinott Jr.: Discrete dynamic programming with a small interest

rate, Annals of Mathematical Statistics 40 (1969) 366–370.

[200] Mine, H. and S. Osaki: Markovian decision processes, Elsevier, New York, 1970.

[201] Morton, T.E.: On the asymptotic convergence rate of cost differences for Markovian deci-

sion processes, Operations Research 19 (1971) 244–248.

[202] Nash, J.F.: Non-cooperative games, Annals of Mathematics 54 (1951) 286–295.

[203] Nazareth, J.L. and R.B. Kulkarni: Linear programming formulations of Markov decision

processes Operations Research Letters 5 (1986) 13–16.

[204] Ng, M.K.: A note on policy algorithms for discounted Markov decision problems, Operation

Research Letters 25 (1999) 195–197.

[205] Nino-Mora, J.: A (2/3)n3 fast-pivoting algorithm for the Gittins index and optimal stop-

ping of a Markov chain INFORMS Journal of Computing 19 (2007) 596–606.

[206] Norman, J.M.: Dynamic programming in tennis - when to use a fast serve, Journal of the

Operational Research Society 36 (1987) 75–77.

[207] Odoni, A.R.: On finding the maximal gain for Markov decision processes, Operations

Research 17 (1969) 857–860.

[208] O’Sullivan, M.J.: New methods for dynamic programming over an infinite horizon, PhD

Thesis, Department of Management Science and Engineering, Stanford University, 2003.

[209] Owen, G.: Game theory, Academic Press, 1982.

[210] Papadimitriou, C.H.: Computational complexity, Addison-Wesley, Reading, Mas-

sachusetts, 1994.

[211] Papadimitriou, C.H. and J.N. Tsitsiklis: The complexity of Markov decision processes,

Mathematics of Operations Research 12 (1987) 441–450.

[212] Parthasarathy, T. and T.E.S. Raghavan: An orderfield property for stochastic games when

one player controls the transitions, Journal of Optimization Theory and Applications 33

(1981) 375–392.

[213] Parthasarathy, T. and T.E.S. Raghavan: Some topics in two-person games, Elsevier, 1971.

[214] Parthasarathy, T., S.H. Tijs and O.J. Vrieze: Stochastic games with state independent

transitions and separable rewards, in: Hammer, G. and D. Pallschke (eds.): Selected topics

in Operations Research and Mathematical Economics, Springer (1984) 262–271.

[215] Pinedo, M. and L. Schrage: Stochastic shop scheduling: a survey, in: Dempster, M.A.H.,

J.K. Lenstra and A.H.G. Rinnooy Kan (eds.), Deterministic and stochastic scheduling,

Reidel, Dordrecht, Holland (1982) 181–196.

BIBLIOGRAPHY 701

[216] Pinedo, M. and G. Weiss: Scheduling of stochastic tasks on two parallel processors Naval

Research Logistics Quarterly 26 (1979) 527–535.

[217] Platzman, L.K.: Improved conditions for convergence in undiscounted Markov renewal

programming, Operations Research 25 (1977) 529–533.

[218] Pollatschek, M. and Avi-Itzhak: Algorithms for stochastic games with geometric interpre-

tation, Manangement Science 15 (1969) 399–415.

[219] Popyack, J.L., R.L. Brown and C.C. White III: Discrete versions of an algorithm due to

Varaya, IEEE Transactions on Automatic Control 24 (1979) 503–504.

[220] Porteus, E.L.: Some bounds for discounted sequential decision processes, Management

Science 18 (1971) 7–11.

[221] Porteus, E.L.: On the optimality of generalized (s, S) policies, Management Science 17

(1971) 411–426.

[222] Porteus, E.L.: Bounds and transformations for discounted finite Markov decision chains,

Operations Research 23 (1975) 761–784.

[223] Porteus, E.L.: Improved iterative computation of the expected discounted return in Markov

and semi-Markov chains, Zeitschrift für Operations Research 24 (1980) 155-170.

[224] Porteus, E.L. and J.C. Totten: Accelerated computation of the expected discounted return

in a Markov chain, Operations Research 26 (1978) 350-358.

[225] Powell, R.E. and S.M. Shah: Summability theory and applications, Van Nostrand Reinhold,

London (1972).

[226] Prussing, J.E.: How to serve in tennis, The Mathematical Gazette 61 (1977) 294–296 .

[227] Puterman, M.L.: Markov decision processes, Wiley, New York, 1994.

[228] Puterman, M.L. and S.L. Brumelle: On the convergence of policy iteration in stationary

dynamic programming, Mathematics of Operations Research 4 (1979) 60–69.

[229] Puterman, M.L. and M.C. Shin: Modified policy iteration algorithms for discounted Markov

decision chains, Management Science 24 (1978) 1127–1137.

[230] Puterman, M.L. and M.C. Shin: Action elimination procedures for modified policy iteration

algorithms, Operations Research 30 (1982) 301–318.

[231] Raghavan, T.E.S. and J.A. Filar: Algorithms for stochastic games - a survey, Zeitschrift

für Operations Research 35 (1991) 437–472.

[232] Raghavan, T.E.S. and Z. Syed: A policy-improvement type algorithm for solving zero-

sum two-person stochastic games with perfect information, Mathematical Programming

95 (2003) 513–532.

702 BIBLIOGRAPHY

[233] Raghavan, T.E.S., S.H. Tijs and O.J. Vrieze: On stochastic games with additive reward and

trasition structure, Journal of Optimization Theory and Applications 47 (1985) 451–464.

[234] Reetz, D.: Solution of a Markovian decision problem by successive overrelaxation,

Zeitschrift für Operations Research 17 (1973) 29–32.

[235] Righter, R.: Scheduling, in: Shaked, M. and J.G. Shanthikumar (eds.), Stochastic orders

and their applications, Academic Press, 1994, 381–432.

[236] Ross, S.M.: Applied probability models with optimization applications, Holden-Day, San

Francisco, 1970.

[237] Ross, S.M.: Average cost semi-Markov decision processes, Journal of Applied Probability

7 (1970) 649–656.

[238] Ross, S.M.: Dynamic programming and gambling models, Advances in Applied Probability

6 (1974) 593–606.

[239] Ross, S.M.: Introduction to stochastic dynamic programming, Academic Press, New York,

1983.

[240] Ross, K.W.: Randomized and past-dependent policies for Markov decision processes with

multiple constraints, Operations Research 37 (1989) 474–477.

[241] Ross, K.W. and R. Varadarajan: Markov decision processes with sample path constraints:

the communicating case, Operations Research 37 (1989) 780–790.

[242] Ross, K.W. and R. Varadarajan: Multichain Markov decision processes with a sample path

constraint: a decomposition approach, Mathematics of Operations Research 16 (1991) 195–

207.

[243] Rothblum, U.G.: Normalized Markov decision chains. I: Sensitive discount optimality,

Operations Research 23 (1975) 785-795.

[244] Rothblum, U.G.: Normalized Markov decision chains. II: Optimality of nonstationary

policies, SIAM Journal of Control and Optimization 15 (1977) 221232.

[245] Rothblum, U.G.: Solving stopping stochastic games by maximizing a linear function sub-

ject to quadratic constraints, O. Moeschlin and D. Pallaschke (eds.), Game theory and

mathematical economics, North Holland (1978) 103–105.

[246] Rothblum, U.G.: Multiplicative Markov decision chains, Mathematics of Operations Re-

search 9 (1984) 6–24.

[247] Rothblum, U.G.: Nonnegative matrices and stochastic matrices, in L. Hogben, editor,

Handbook of Linear Algebra, CRC Press, 2006.

BIBLIOGRAPHY 703

[248] Rothblum, U.G. and A.F. Veinott Jr.: Cumulative average optimality for normalized

Markov decision chains, Working Paper, Dept. of Operations Research, Stanford Uni-

versity, 1975.

[249] Rudin, W.: Principles of mathematical analysis, McGraw Hill, New York, 1976.

[250] Savitch, W.J. : Relationships between nondeterministic and deterministic tape complexi-

ties, Journal of Computational System Sciences 4 (1970) 177–192.

[251] Scarf, H.: The optimality of (s, S)-policies in the dynamic inventory problem, Chapter

13 in: K.J. Arrow, S. Karlin and P. Suppes (eds.) Mathematical methods in the social

sciences, Stanford University Press, Stanford, 1960.

[252] Scarf, H.: A survey of analytic techniques in inventory theory, Chapter 7 in: H. Scarf,

D. Gilford and M. Shelly (eds.), Multistage inventory models and techniques, Stanford

University Press, Stanford, 1963.

[253] Schrijver, A.: Combinatorial optimization: Polyhedra and efficiency, Springer-Verlag,

Berlin, 2003.

[254] Schweitzer, P.J.: Perturbation theory and Markov decision chains, PhD dissertation, Mas-

sachusetts Institute of Technology, 1965.

[255] Schweitzer, P.J.: Multiple policy improvements in undiscounted Markov renewal program-

ming, Operations Research 19 (1971) 784–793.

[256] Schweitzer, P.J.: Iterative solution of the functional equations of undiscounted Markov

renewal programming, Journal of Mathematical Analysis and Applications 34 (1971) 495–

501.

[257] Schweitzer, P.J. and A. Federgruen: The asymptotic behavior of undiscounted value itera-

tion in a Markov decision problem, Mathematics of Operations Research 2 (1977) 360–381.

[258] Schweitzer, P.J. and A. Federgruen: The functional equation of undiscounted Markov re-

newal programming, Mathematics of Operations Research 3 (1978) 308–321.

[259] Schweitzer, P.J. and A. Federgruen: Foolproof convergence in multichain policy iteration,

Journal of Mathematical Analysis and Applications 64 (1978) 360–368.

[260] Schweitzer, P.J. and A. Federgruen: Geometric convergence of value-iteration in multi-

chain Markovian renewal programming, Advances in Applied Probability 11 (1979) 188–

217.

[261] Senata, E.: Nonnegative matrices and Markov chains, Springer-Verlag, 1981.

[262] Sennott, L.I.: Stochastic dynamic programming and the control of queueing systems, Wiley,

1999.

704 BIBLIOGRAPHY

[263] Serfozo, R.: Monotone optimal policies for Markov decision processes, Mathematical Pro-

gramming Study 6 (1976) 202–215.

[264] Serfozo, R.: An equivalence between continuous and discrete time Markov decision pro-

cesses, Operations Research 27 (1979) 616–620.

[265] Serin, Y.: Structured policies for Markov decision processes with linear constraints, Work-

ing paper, Middle East Technical University, Ankara, Turkey (2000)).

[266] Shapiro, J.F.: Brouwer’s fixed-point theorem and finite state space Markovian decision

theory, Journal of Mathematical Analysis and Applications 49 (1975) 710–712.

[267] Shapley, L.S.: Stochastic games, Proceedings of the National Academy of Sciences 39

(1953) 1095–1100.

[268] Shapley, L.S. and R.N. Snow: Basic solutions of discrete games, in: H.W. Kuhn & A.W.

Tucker (eds.), Contributions to the theory of games, Vol. I, Annals of Mathematical Studies

no. 24, pp. 27–35, Princeton University Press (1950).

[269] Sherif, Y.S. and M.L. Smith: Optimal maintenance policies for systems subject to failure

- A review, Naval Research Logistics Quarterly 28 (1981) 47–74.

[270] Sherali, H.N. and C.M. Shetty: A finitely convergent algorithm for bilinear programming

problems, Mathematical Programming 19 (1980) 14–31.

[271] Shiloach, Y. and U. Vishkin: On O(lo} \) parallel connectivity algorithm, Journal of Al-

goriithms 3 (1982) 14–31.

[272] Sinha, S.: An extension theorem for the class of stochastic games having ordered field

property, Opsearch 23 (1986) 197–205.

[273] Sladky, K.: On the set of optimal controls for Markov chains with rewards, Kybernetica

10 (1974) 350–367.

[274] Smallwood, R.D.: Optimum policy regions for Markov processes with discounting, Opera-

tions Research 14 (1966) 658–669.

[275] Smith, D.R.: Optimal repair of a series system, Operations Research 26 (1978) 653–662.

[276] Sobel, M.J.: Noncooperative stochastic games, Annals of Mathematical Statistics 42 (1971)

1930–1935.

[277] Sobel, M.J.: Myopic solutions of Markov decision processes and stochastic games, Opera-

tions Research 29 (1981) 995–1009.

[278] Sobel, M.J.: Maximal mean/standard deviation ratio in an undiscounted MDP, OR Letters

4 (1985) 157–159.

BIBLIOGRAPHY 705

[279] Sobel, M.J.: Mean-variance tradeoffs in undiscounted MDP, Operations Research 42

(1994) 175–183.

[280] Spreen, D.: A further anticycling rule in multichain policy iteration for undiscounted

Markov renewal programs, Zeitschrift für Operations Research 25 (1981) 225–233.

[281] Stein, J.: On efficiency of linear programming applied to discounted Markovian decision

problems, OR Spektrum 10 (1988) 153-160.

[282] Stern, M.: On stochastic games with limiting average payoff, PhD thesis, University of

Illinois at Chicago, Chicago, 1975.

[283] Stoer, J. and R. Bulirsch: Introduction to numerical analysis, Springer,1980.

[284] Stoer, J. and C. Witzgall: Convexity and optimization in finite dimensions, Springer,1970.

[285] Strauch, R.: Negative dynamic programming, Annals Mathematical Statistics 37 (1966)

871–889.

[286] Strauch, R. and A.F. Veinott Jr.: A property of sequential control processes, Report, Rand

McNally, Chicago, 1966.

[287] Tarjan, R.E.: Depth-first search and linear graph algorithms, SIAM Journal of Computing

1 (1972) 146–160.

[288] Tijms, H.C.: Stochastic models: An algorithmic approach, Wiley Series in Probability and

Mathematical Statistics, Wiley, 1994.

[289] Topkis, D.: Minimizing a submodular function on a lattice, Operations Research 26 (1978)

305–321.

[290] Tseng, p.: Solving H-horizon, stationary Markov decision problems in time proportional

to log (H), Operations Letters 9 (1990) 287–297.

[291] Tsitsiklis, J.N.: A lemma on the multi-armed bandit problem, IEEE Transactions on Au-

tomatic Control 31 (1986) 576–577.

[292] Tsitsiklis, J.N.: A short proof of the Gittins index theorem, Annals of Applied Probability

4 (1994) 194–199.

[293] Tsitsiklis, J.N.: NP-hardness of checking the unichain condition in average cost MDPs,

Operations Research Letters 35 (2007) 319–323.

[294] Van der Wal, J.: Discounted Markov games: successive approximations and stopping times,

International Journal of Game Theory 6 (1977) 11–22.

[295] Van der Wal, J.: Successive approximations for average reward Markov games, Interna-

tional Journal of Game Theory 9 (1980) 13–24.

706 BIBLIOGRAPHY

[296] Van der Wal, J.: The method of value oriented successive approximation for the average

reward Markov decision processes, OR Spektrum 1 (1980) 233–242.

[297] Van der Wal, J.: Stochastic dynamic programming, Mathematical Centre, Amsterdam,

1981.

[298] Van der Wal, J. and J.A.E.E. Van Nunen: A note on the convergence of value oriented

successive approximations method, Report, Eindhoven University of Technology, 1977.

[299] Van der Wal, J. and J. Wessels: Successive approximations for Markov games, in: H. Tijms

and J. Wessels (eds.), Markov decision theory, Mathematical Centre Tract no. 93, 1977,

Amsterdam.

[300] Van Hee, K.M., A. Hordijk and J. Van der Wal: Successive approximations for conver-

gent dynamic programming, in: H.C. Tijms and J. Wessels (eds.) Markov decision theory,

Mathematical Centre Tract no.93, Mathematical Centre, Amsterdam, 1977, 183–211.

[301] Van Nunen, J.A.E.E.: A set of successive approximation method for discounted Markovian

decision problems, Zeitschrift für Operations Research 20 (1976) 203–208.

[302] Van Nunen, J.A.E.E.: Contracting Markov decision processes Mathematical Centre Tract

71, Mathematical Centre, Amsterdam, 1976.

[303] Van Nunen, J.A.E.E. and J. Wessels: A principle for generating optimization procedures

for discounted Markov decision processes, Colloquia Mathematica Societatis Bolyai Janos,

Vol. 12, North Holland, Amsterdam, 1976, 683–695.

[304] Van Nunen, J.A.E.E. and J. Wessels: The generation of successive approximations for

Markov decision processes using stopping times, in: H. Tijms and J. Wessels (eds.) Markov

decision theory, Mathematical Centre Tract no.93, Mathematical Centre, Amsterdam,

1977, 25–37.

[305] Van Nunen, J.A.E.E. and J. Wessels: Markov decision processes with unbounded rewards,

in: H.C. Tijms and J. Wessels (eds.) Markov decision theory, Mathematical Centre Tract

no.93, Mathematical Centre, Amsterdam, 1977, 1–24.

[306] Varaiya, P.P., J.C. Walrand and C. Buyukkoc: Extensions of the multi-armed bandit prob-

lem: the discounted case, IEEE Transactions on Automatic Control 30 (1985) 426–439.

[307] Veinott, A.F. Jr.: Optimal policy for a multi-product, dynamic nonstationary inventory

problem, Management Science 12 (1965) 206–222.

[308] Veinott, A.F. Jr.: On finding optimal policies in discrete dynamic programming with no

discounting, Annals of Mathematical Statistics 37 (1966) 1284–1294.

[309] Veinott, A.F. Jr.: On the optimality of (s, S) inventory policies: new conditions and a new

proof, SIAM Journal on Applied Mathematics 14 (1966) 1067–1083.

BIBLIOGRAPHY 707

[310] Veinott, A.F. Jr.: Discrete dynamic programming with sensitive discount optimality crite-

ria (preliminary report), Annals of Mathematical Statistics 39 (1968) 1372.

[311] Veinott, A.F. Jr.: Discrete dynamic programming with sensitive discount optimality crite-

ria, Annals of Mathematical Statistics 40 (1969) 1635–1660.

[312] Veinott, A.F. Jr.: Markov decision chains, in: G.B.Dantzig and B.C.Eaves (eds.) Studies in

Mathematics, vol. 10: studies in optimization, The Mathematical Association of America

(1974) 124–159.

[313] Von Neumann, J. and O. Morgenstern: The theory of games and economic behaviour,

Princeton University Press, 1950.

[314] Vrieze, O.J.: Linear programming and undiscounted stochastic games, OR Spektrum 3

(1981) 29–35.

[315] Vrieze, O.J.: Stochastic games with finite state and action spaces, CWI Tracts 33, 1987.

[316] Vrieze, O.J., S.H. Tijs, T.E.S. Raghavan and J.A. Filar: A finite algorithm for the switching

controller stochastic game, OR Spektrum 5 (1983) 15–83.

[317] Wagner, H.M. and T. Whithin: Dynamic problems in the theory of the firm, T. Whithin

(ed.): Theory of inventory management, App. 6, 2nd ed., Princeton University Press, 1957.

[318] Walrand, J.: An introduction to queueing networks, Prentice-Hall, Englewood Cliffs, New

Jersey, 1988.

[319] Weber, R.R.: Scheduling jobs with stochastic processing requirements on parallel machines

to minimize makespan or flowtime, Journal of Applied Probabitily 19 (1982) 167–182.

[320] Weber, R.R.: On the Gittins index for multi-armed bandits, Annals of Applied Probabitily

2 (1992) 1024–1033.

[321] Weiss, G.: Multiserver stochastic scheduling, in: Dempster, M.A.H., J.K. Lenstra and

A.H.G. Rinnooy Kan (eds.), Deterministic and stochastic scheduling, Reidel, Dordrecht,

Holland (1982) 157–179.

[322] Weiss, G.: Braching bandit processes, in: Probability in the Engineering and Informational

Sciences 2 (1988) 269–278.

[323] Wessels, J.: Stopping times and Markov programming, in: Transactions of the 7-th Prague

conference on information theory, statistical decision functions and random processes,

Academia, Prague (1977) 575–585.

[324] Wessels, J. and J.A.E.E. Van Nunen: Discounted semi-Markov decision processes: linear

programming and policy iteration, Statistica Neerlandica 29 (1975) 1–7.

708 BIBLIOGRAPHY

[325] White, D.J.: Dynamic programming, Markov chains and the method of successive approx-

imations, Journal of Mathematical Analysis and Applications 6 (1963) 373–376.

[326] White, D.J.: Dynamic programming and probabilistic constraints, Operations Research 22

(1974) 654–664.

[327] White, D.J.: Multi-objective infinite-horizon discounted Markove decision processes, Jour-

nal of Mathematical Analysis and Applications 89 (1982) 639–647.

[328] White, D.J.: Monotone value iteration for discounted finite Markov decision processes,

Journal of Mathematical Analysis and Applications 109 (1985) 311-324.

[329] White, D.J.: Mean, variance and probabilistic criteria in finite decision processes: a review,

Journal of Optimization Theory and Applications 56 (1988) 1–30.

[330] White, D.J.: Computational approaches to variance-penalized Markov decision processes,

OR Spektrum 14 (1992) 79–83.

[331] White, D.J.: A mathematical programming approach to a problem in variance penalised

Markov decision processes, OR Spektrum 15 (1994) 225–230.

[332] Whittle, P.: Multi-armed bandits and the Gittins index, Journal of the Royal Statistical

Society, Series B 42 (1980) 143–149.

[333] Whittle, P.: Optimization over time, Wiley, 1982.

[334] Widder, D.V.: The Laplace transform, Princeton University Press, Princeton, New Jersey,

1946.

[335] Winston, W.: Optimality of the shortest line discipline, Journal of Applied Probability 14

(1977) 181–189.

[336] Ye, Y.: A new complexity result on solving the Markov decision problem, Mathematics of

Operations Research 30 (2005) 733–749.

[337] Ye, Y.: The simplex and policy-iteration methods are strongly polynomial for the Markov

decision problem with a fixed discount rate, Mathematics of Operations Research 36 (2011)

593–603.

[338] Yu, P. and M. Zeleny: The set of all nonrandomized solutions in linear cases and multi-

criteria simplex method, Journal of Mathematical Analysis and Applications 49 (1975)

430–468.

[339] Zangwill, W.I.: A deterministic multi-period production scheduling model with backlogging,

Management Science 13 (1966) 105–119.

[340] Zangwill, W.I.: A backlogging model and a multi-echelon model of a dynamic economic lot

size production system - a network approach, Management Science 15 (1969) 506–527.

BIBLIOGRAPHY 709

[341] Zoutendijk, G.: Mathematical programming methods, North Holland, 1976.

Index

δ-approximation, 73

µc-rule, 22, 360

ε-optimal policy, 73

1-optimality, 211

Abel convergent, 173

action set, 2

adaptive relaxation factor, 207

adjacent improvement, 581

admission control, 355

admission control for M/M/1 queue, 356

admission control for batch arrivals, 355

algebraic multiplicity, 110

anne, 151

aperiodicity

strong aperiodicity, 224

ARAT stochastic games, 609, 631

associated directed graph, 167

asymptotically stable, 629

automobile replacement problem, 387

average biased occupation, 497

average expected reward, 10

communicating case, 251

irreducible case, 215

unichain case, 228

average overtaking optimality, 14, 303

backlogging, 344

backward induction, 29

best response, 513

bias optimality, 13, 267

bias value vactor, 289

biased total occupation, 497

bimatrix game, 574

Blackwell adjacent improvement, 585

Blackwell optimality, 13

Blackwell value vector, 585

block-pivoting simplex algorithm, 67

certificate, 170

Cesaro convergent, 173

Chapman-Kolmogorov equations, 559

characteristic polynomial, 110

circuit, 412

circuit value problem, 412

communicating, 166

weakly communicating, 166

completely ergodic, 166

completely mixed stationary policy, 251

condensation, 169

conserving policy, 50, 127

continuous control, 21

continuous stationary Markov chain, 558

continuous-time Markov decision problem, 19

continuous-time Markov decision processes, 532

contracting, 108

contraction factor, 45

contraction mapping, 45

control of queues, 21

control-limit policy, 18, 19

convergent, 151

cumulative overtaking optimality, 303

customer assignment, 22

decision rule, 3

decision time point, 2

deterministic MDP, 211

deviation matrix, 177

deviation measure, 497

discount factor, 8

710

INDEX 711

discounted state-action frequencies, 437

discounted value, 8

dominating coefficient, 283

efficient solution

β-efficient, 481

lexicographically efficient, 485, 496

eigenvalue, 110

eigenvector, 110

elimination of suboptimal actions, 68

embedded Markov decision process, 533

equalizing, 152

equivalent norms, 109

excessive, 108

exponential time, 409

exposed subset, 470

fixed-point, 45

flowtime, 365

forward induction method, 363

fundamental matrix, 177

funnel, 468

gambling, 15, 154

game matrix, 571

gaming, 16

Gauss-Seidel, 76

geometric convergence, 46

geometric multiplicity, 110

Gittins index, 24, 372, 373

Gray code, 430

history, 4, 570

immediate cost, 2

immediate reward, 2

improvement, 581

improving action, 53

index policy, 24, 372

indifference value, 373

infinitesimal generator, 558

interest rate, 8

inventory model with backlog, 3

inventory problem, 388, 400

irreducible, 166, 636

Jacobian, 58

join-the-shortest-queue policy, 362

Jordan block, 111

Jordan normal form matrix, 112

K-convex, 352

K-quasi-convex, 353

Laurent expansion, 181

layered shortest path problem, 32

LEPT policy, 365

lexicographic ordering, 272

linear time, 409

long-run variance, 502

M-stage span contraction, 245

M/M/1 queue, 21

maintenance and repair, 19, 329

makespan, 365

Markov chain

regular, 179

Markov decision process, 2

embedded, 533

Markov game, 682

Markov property, 2

Markov renewal programs, 533

matrix game, 571

optimal policy, 572

value of the game, 572

matrix norm, 48

mean-standard deviation ratio, 502

mean-weight cycle, 417

mixed strategy, 571

modified policy iteration, 88

monotone mapping, 46

monotone policy, 33, 96

more sensitive optimality criteria, 13

multi-armed bandit, 23, 372

712 INDEX

multi-objective linear programming, 481

multichain, 166

myopic policy, 17

n-average optimality, 14, 266

n-discount optimality, 14, 266

natural process, 533

Neumann series, 175

Newton’s method, 57

nondegenerated basic solution, 68

nonexpanding mapping, 101

nonstationary, 2

normalized, 108

normalized value vector, 108

one-step look-ahead policy, 18, 158, 329

optimal stopping, 17, 156

monotone, 18, 158

optimal unichain, 257, 262

optimality criteria, 2, 7

average expected reward, 10

average overtaking optimality, 14

bias optimality, 13

Blackwell optimality, 13

more sensitive criteria, 13

n-average optimality, 14

n-discount optimality, 14

overtaking optimality, 14

total expected discounted reward, 8

total expected reward, 7, 9

uniform discount optimality, 629

optimality equation, 9

ordered field property, 598

overrelaxation, 101

overtaking optimality, 14, 302

p-summable, 125

payoff matrix, 571

perfect information, 579

planning horizon, 2

policy, 3

(s, S), 351

adjacent, 580

completely mixed, 251

conserving, 50, 127

control-limit, 18, 19

deterministic, 4

equalizing, 152

eventually stationary, 299

index, 24, 372

LEPT policy, 365

Markov, 4

memoryless, 4

monotone, 33

myopic, 17

normalized, 108

one-step look-ahead, 18, 158, 329

optimal, 7–9

randomized nondecreasing, 440

regular, 108

SEPT policy, 365

SFR, 20

single-critical-number, 350

stationary, 4

stopping, 17, 161

time-optimal, 298

transient, 108

ultimately deterministic, 305

policy iteration, 53

modified policy iteration, 88

polylogarithmic time, 409

polynomial time, 409

Pre-Gauss-Seidel, 76

principle of optimality, 29

production control, 20

pure strategy, 572

red-black gambling, 15, 154

regular, 108

regular Markov chain, 179

regular value vector, 108

relative value iteration, 211

relative value vector, 187

INDEX 713

relaxation factor, 82

replacement, 18, 322, 399

resolvent, 317

s,S-policy, 351

saddle point, 573

semi-Markov control, 21

semi-Markov decision process, 2

semi-transient game, 654

sensitive discount optimality equations, 270

separable, 607

totally separable, 405

SEPT policy, 365

server assignment, 22

SFR policy, 20

shortest queue policy, 363

similarity transformation, 111

simply connected, 211

single-controller stochastic game, 598, 641

single-critical-number policy, 350

single-server queue, 355

sojourn time, 533

span fixed point, 245

spectral radius, 112

stable, 153

state space, 1

state-action frequencies, 437, 446, 451

discounted state-action frequencies, 437

total state-action frequencies, 446

state-action probabilities, 436

stationary, 2

stationary matrix, 174

stochastic, 108

stochastic game, 570

ε-optimal policy, 576, 621

Blackwell optimal policy, 584

optimal policy, 576, 621

perfect information, 579

single-controller game, 598, 641

switching-controller game, 601

value, 576, 621

stochastic games

irreducible, 636

stochastic ordering, 368

stochastic scheduling, 22

µc-rule, 22, 360

customer assignment, 22

join-the-shortest-queue policy, 362

server assignment, 22

shortest queue policy, 363

threshold policy, 23, 361

stopping policy, 17

stopping time, 101

strong aperiodicity, 224

strongly polynomial, 409

subadditief, 34

subharmonic, 588, 626

submodular, 34

suboptimal action, 51, 161

subordinate matrix norm, 48

substochastic, 9, 108

successive approximation, 72

sum of discounted rewards, 310

superadditief, 34

superharmonic, 60, 140, 192, 284, 588, 626

supermodular, 34

supremum norm, 46

switching-controller stochastic game, 601

tandem queue, 369

threshold policy, 23, 361

time-homogeneous, 533

total expected discounted reward, 8

total expected reward, 7, 9, 108

total state-action frequencies, 446

totally separable, 405

transient, 9, 108

transient MDP, 32

transient value vector, 108

transition matrix, 4

transition probability, 2

transition rate, 107

714 INDEX

turnpike, 299

two-person general-sum stochastic game, 670

two-person zero-sum discounted semi-Markov game,

618

two-person zero-sum matrix game, 571

two-person zero-sum stochastic game, 570

two-person zero-sum undiscounted semi-Markov

game, 646

ultimately deterministic, 305

unichain, 166

uniform discount optimality, 629

uniform efficient policies, 494

uniformization, 22

utility function, 2

utopian bound, 304

valid inequality, 515

value iteration, 72

Gauss-Seidel, 76

Pre-Gauss-Seidel, 76

value vector, 7–10

normalized value vector, 108

regular value vector, 108

transient value vector, 108

variance, 502

weak unichain case, 257

weak unichain unichain, 263

weakly communicating, 166

